Chapter 3

Second order elliptic equations

In this chapter we discuss on some open subset Ω of \mathbb{R}^{d} an equation of the form

$$
\begin{equation*}
P u=f, \tag{3.1}
\end{equation*}
$$

where f is some given function, u is the unknown and P is a so-called elliptic operator. The model of an elliptic operator is the Laplace operator $P=-\Delta$ (in this case (3.1) is refered to as the Poisson equation, see Section 3.4 below). When $\Omega \neq \mathbb{R}^{d}$, we will have to add boundary conditions to the equation to get a well posed problem (see Section 3.2).

We will only consider second order equations. This means that P will be a partial differential operator of second order:

$$
\begin{equation*}
P=-\operatorname{div} A(x) \nabla+B(x) \nabla+c(x)=-\sum_{j, k=1}^{d} \partial_{j} a_{j, k}(x) \partial_{k}+\sum_{k=1}^{d} b_{k}(x) \partial_{j}+c(x) \tag{3.2}
\end{equation*}
$$

where $A=\left(a_{j, k}\right)_{1 \leqslant j, k \leqslant d}, B=\left(b_{k}\right)_{1 \leqslant k \leqslant d}$ and c are real-valued functions on Ω.
We will always assume that A is symmetric:

$$
\begin{equation*}
\forall j, k \in \llbracket 1, d \rrbracket, \quad a_{j, k}(x)=a_{k, j}(x) . \tag{3.3}
\end{equation*}
$$

We will also assume that the operator P is elliptic.
Definition 3.1. We say that the differential operator P defined by (3.2) is (uniformly) elliptic if there exists $\alpha>0$ such that for almost all $x \in \Omega$ and for all $\xi=\left(\xi_{1}, \ldots, \xi_{d}\right) \in \mathbb{R}^{d}$ we have

$$
\begin{equation*}
A \xi \cdot \xi=\sum_{j, k=1}^{d} a_{j, k}(x) \xi_{j} \xi_{k} \geqslant \alpha|\xi|^{2} . \tag{3.4}
\end{equation*}
$$

This means that the real symmetric matrix $A(x)$ is uniformly definite postive, with smallest eigenvalue greater than or equal to $\alpha>0$.

All these assumptions are in particular satisfied for the Poisson equation $(A(x)=\mathrm{Id}$, $B=0, c=0)$.

Since the equation (3.1) is linear and has real coefficients, it is enough to consider a real valued source term f, and we look for a real valued solution u.

3.1 Variational method

In this section we discuss the variational method used to solve second order elliptic equations. We illustrate the method on the simplest problem. We consider on \mathbb{R}^{d} the equation

$$
\begin{equation*}
-\Delta u+u=f \tag{3.5}
\end{equation*}
$$

Before trying to solve this problem, we have to be explicit about what will be called a solution of (3.5). Since two derivatives of the unknown u are involved, it is natural to look for twice differentiable solutions.

Definition 3.2. Assume that $f \in C^{0}\left(\mathbb{R}^{d}\right)$. Then a classical solution of (3.5) is a function $u \in C^{2}\left(\mathbb{R}^{d}\right)$ such that (3.5) holds in the usual sense.

We will see that this is not necessarily the best point of view to discuss this problem.

3.1.1 The Lax-Milgram Theorem

We recall in this paragraph the Lax-Milgram Theorem, which will be our main tool for the analysis of elliptic equations. We give different versions and different proofs.

Theorem 3.3 (Lax-Milgram's Theorem). Let \mathcal{V} be a real Hilbert space. Let a be a bilinear form on \mathcal{V}. We assume that
(i) a is continuous: there exists $C>0$ such that, for all $u, v \in \mathcal{V}$,

$$
|a(u, v)| \leqslant C\|u\|_{\mathcal{V}}\|v\|_{\mathcal{V}}
$$

(ii) a is coercive: there exists $\alpha>0$ such that, for all $u \in \mathcal{V}$,

$$
a(u, u) \geqslant \alpha\|u\|_{\mathcal{V}}^{2} .
$$

Then for any continuous linear form ℓ on \mathcal{V} there exists a unique $u \in \mathcal{V}$ such that

$$
\begin{equation*}
\forall v \in \mathcal{V}, \quad a(u, v)=\ell(v) \tag{3.6}
\end{equation*}
$$

Moreover

$$
\|u\|_{\mathcal{V}} \leqslant \frac{\|\ell\|_{\mathcal{V}^{*}}}{\alpha}
$$

This result is just a generalization of the Riesz representation theorem. If we add the assumption that the bilinear form a is symmetric, then it defines an inner product on \mathcal{V}, and the corresponding norm is equivalent to the original norm on \mathcal{V}. In particular, ℓ is still continuous if \mathcal{V} is endowed with this new Hilbert structure. Then the result follows by the Riesz representation theorem.

In general, the bilinear form a is not symmetric, but we can still give a proof which relies on the Riesz theorem.
Proof. - Let $u \in \mathcal{V}$. The map $v \mapsto a(u, v)$ is a continuous linear form on \mathcal{V}, so by the Riesz representation theorem there exists an element of \mathcal{V}, which we denote by $A u$, such that

$$
\forall v \in \mathcal{V}, \quad a(u, v)=\langle A u, v\rangle_{\mathcal{V}}
$$

This defines a map $A: \mathcal{V} \rightarrow \mathcal{V}$. Similarly, there exists $f \in \mathcal{V}$ such that $\ell(v)=\langle f, v\rangle_{\mathcal{V}}$ for all $v \in \mathcal{V}$, and $\|f\|_{\mathcal{H}}=\|\ell\|_{\mathcal{V}^{*}}$. Then (3.6) holds if and only if $A u=f$.

- Let $u_{1}, u_{2} \in \mathcal{V}$ and $\lambda \in \mathbb{R}$. For all $v \in \mathcal{V}$ we have

$$
\begin{aligned}
\left\langle A\left(u_{1}+\lambda u_{2}\right), v\right\rangle_{\mathcal{V}} & =a\left(u_{1}+\lambda u_{2}, v\right)=a\left(u_{1}, v\right)+\lambda a\left(u_{2}, v\right)=\left\langle A u_{1}, v\right\rangle_{\mathcal{V}}+\lambda\left\langle A u_{2}, v\right\rangle_{\mathcal{V}} \\
& =\left\langle A u_{1}+\lambda A u_{2}, v\right\rangle
\end{aligned}
$$

This proves that $A\left(u_{1}+\lambda u_{2}\right)=A u_{1}+\lambda A u_{2}$, and hence that the map $u \mapsto A u$ is linear. Moreover, for $u \in \mathcal{V}$ we have

$$
\|A u\|_{\mathcal{V}}^{2}=\langle A u, A u\rangle_{\mathcal{V}}=a(u, A u) \leqslant C\|u\|_{\mathcal{V}}\|A u\|_{\mathcal{V}}
$$

so $\|A u\|_{\mathcal{V}} \leqslant C\|u\|_{\mathcal{V}}$. This proves that the operator A is bounded on \mathcal{V}.

- For $u \in \mathcal{V}$ we have

$$
\alpha\|u\|_{\mathcal{V}}^{2} \leqslant a(u, u) \leqslant\langle A u, u\rangle_{\mathcal{V}} \leqslant\|A u\|_{\mathcal{V}}\|u\|_{\mathcal{V}}
$$

SO

$$
\begin{equation*}
\|A u\|_{\mathcal{V}} \geqslant \alpha\|u\|_{\mathcal{V}} . \tag{3.7}
\end{equation*}
$$

This proves in particular that A is injective. This also proves that the range of A is closed. Indeed, assume that the sequence $\left(v_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{V} is such that $A v_{n}$ goes to some $w \in \mathcal{V}$ as n goes to $+\infty$. Then for $n, m \in \mathbb{N}$ we have

$$
\left\|v_{n}-v_{m}\right\|_{\mathcal{V}} \leqslant \alpha^{-1}\left\|A v_{n}-A v_{m}\right\|_{\mathcal{V}} \xrightarrow[n, m \rightarrow+\infty]{ } 0
$$

Since \mathcal{V} is complete, the sequence $\left(v_{n}\right)_{n \in \mathbb{N}}$ has a limit $v \in \mathcal{V}$, and by continuity we have $w=A v \in \operatorname{Ran}(A)$.

Now let $w \in \operatorname{Ran}(A)^{\perp}$. Then in particular we have

$$
0=\langle A w, w\rangle_{\mathcal{V}}=a(w, w) \geqslant \alpha\|w\|_{\mathcal{V}}^{2}
$$

so $w=0$. Since $\operatorname{Ran}(A)$ is closed, this implies that $\operatorname{Ran}(A)=\mathcal{V}$. Thus A is bijective, so there exists a unique $u \in \mathcal{V}$ such that $A u=f$.

- Finally (3.7) gives

$$
\|\ell\|_{\mathcal{V}^{*}}=\|f\|_{\mathcal{V}}=\|A u\|_{\mathcal{V}} \geqslant \alpha\|u\|_{\mathcal{V}},
$$

and the proof is complete.
Corollary 3.4. We keep the notation of Theorem 3.3 and assume that a is symmetric. For $u \in \mathcal{V}$ we set

$$
J(u)=\frac{a(u, u)}{2}-\ell(u) .
$$

Then J atteins a unique minimum, obtained for the solution u of (3.6).
Proof. Let u be given by Theorem 3.3. For $h \in \mathcal{V} \backslash\{0\}$ we have

$$
J(u+h)=J(u)+a(u, h)-\ell(h)+\frac{a(h, h)}{2}=J(u)+\frac{a(h, h)}{2}>J(u)
$$

so J has a strict minimum at point u.
Exercise 23. We use the notation of Theorem 3.3 and assume that a is symmetric. The purpose of this exercice is to give a new proof of Theorem 3.3 in this case, based on the analysis of the minima of J.

1. Prove that the function J is bounded from below.
2. Consider a minimizing sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ of J. Prove that

$$
\limsup _{n, m \rightarrow+\infty} a\left(\frac{u_{n}-u_{m}}{2}, \frac{u_{n}-u_{m}}{2}\right) \leqslant 0
$$

and deduce that this sequence has a limit u in \mathcal{V}.
3. Prove that J reaches a minimum at point u.
4. Prove that u solves the variational problem (3.6).
5. Prove that this minimum is strict, and hence unique.

Exercise 24. We keep the notation of Theorem 3.3, and assume that \mathcal{V} is separable. We consider a sequence $\left(\mathcal{V}_{n}\right)_{n \in \mathbb{N}}$ of finite dimensional subspaces of \mathcal{V} such that $\mathcal{V}_{n} \subset \mathcal{V}_{n+1}$ for all $n \in \mathbb{N}$ and $\bigcup_{n \in \mathbb{N}} \mathcal{V}_{n}$ is dense in \mathcal{V}.

1. Prove that the problem (3.6) has at most one solution.
2. Prove that for all $n \in \mathbb{N}$ there exists a unique $u_{n} \in \mathcal{V}_{n}$ such that

$$
\forall v \in \mathcal{V}_{n}, \quad a\left(u_{n}, v\right)=\ell(v) .
$$

3. Prove that the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ has a weakly convergent subsequence in \mathcal{V}. We denote by u the corresponding weak limit.
4. Prove that u is a solution of (3.6).
5. Prove that for $n \in \mathbb{N}$ and $v \in \mathcal{V}_{n}$ we have

$$
\left\|u-u_{n}\right\|_{\mathcal{V}} \leqslant \frac{C}{\alpha}\|u-v\|_{\mathcal{V}} .
$$

6. Prove that u_{n} goes to u strongly in \mathcal{V}.

In this chapter we will only consider problems on real Hilbert space. However, for many applications we work in complex Hilbert space. All the results are easily adapted to this case, and in particular we have the following version of the Lax-Milgram theorem

Theorem 3.5 (Lax-Milgram's Theorem on a complex Hilbert space). Let \mathcal{V} be a complex Hilbert space. Let a be a sesquilinear form on \mathcal{V} (linear on the right and semi-linear on the left). We assume that a is continuous and that $\operatorname{Re} a$ is coercive: there exists $\alpha>0$ such that for all $u \in \mathcal{V}$ we have

$$
\operatorname{Re}(a(u, u)) \geqslant \alpha\|u\|_{\mathcal{V}}^{2} .
$$

Then for any continuous linear form ℓ on \mathcal{V} there exists a unique $u \in \mathcal{V}$ such that

$$
\forall v \in \mathcal{V}, \quad a(u, v)=\ell(v)
$$

Moreover

$$
\|u\|_{\mathcal{V}} \leqslant \frac{\|\ell\|_{\mathcal{V}^{*}}}{\alpha}
$$

Exercise 25. Prove Theorem 3.5.
Exercise 26. We consider the setting of Theorem 3.5, but instead of the coercivity we assume that there exist $\alpha>0$ and two bounded linear operators Φ_{1}, Φ_{2} on \mathcal{V} such that, for every $u \in \mathcal{V}$,

$$
|a(u, u)|+\left|a\left(\Phi_{1}(u), u\right)\right| \geqslant \alpha\|u\|_{\mathcal{V}}^{2}
$$

and

$$
|a(u, u)|+\left|a\left(u, \Phi_{2}(u)\right)\right| \geqslant \alpha\|u\|_{\mathcal{V}}^{2} .
$$

Show that the first conclusion of Theorem 3.5 hold with this weaker assumption.

3.1.2 Weak solutions on the Euclidean space

Our purpose in this paragraph is to apply the Lax-Milgram Theorem to solve (3.5). For this we have to define a suitable notion of solution. The Lax-Milgram theorem only applies in Hilbert spaces, so with this method we cannot work in $C^{2}(\Omega)$. Moreover, we do not want to restrict ourselves to the case $f \in C^{0}(\Omega)$.

The Sobolev spaces have been designed to be suitable this kind of analysis. With $p=2$ they are Hilbert spaces, and the corresponding topologies take into account the derivatives of a function. This suggests the following definition.
Definition 3.6. Let $f \in L^{2}(\mathbb{R})$. Then a strong solution of (3.5) is a function $u \in H^{2}\left(\mathbb{R}^{d}\right)$ such that (3.5) holds in the sense of distributions (this is then an equality in $L^{2}\left(\mathbb{R}^{d}\right)$).

Thus we look for a function u such that

$$
\begin{equation*}
\forall \phi \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right), \quad \int_{\mathbb{R}^{d}} u(\Delta \phi+\phi) d x=\int_{\mathbb{R}^{d}} f \phi d x \tag{3.8}
\end{equation*}
$$

Then we try to apply the Lax-Milgram theorem. We denote by $a(u, \phi)$ and $\ell(\phi)$ the left-hand side and right-hand side of (3.8), respectively. This defines a bilinear form a and a linear form ℓ.

We cannot apply Theorem 3.3 with the topology of $L^{2}\left(\mathbb{R}^{d}\right)$, since then a is not continuous (there are too many derivatives in a), and we cannot work in $H^{2}\left(\mathbb{R}^{d}\right)$ since in this case a is not coercive (there are now too many derivatives in the definition of the norm $\|\cdot\|_{H^{2}\left(\mathbb{R}^{d}\right)}$).

The solution is to chose the intermediate situation, which will "equalize" the number of derivatives on u and ϕ. To write (3.8) we have transfered the two derivatives on the test function. A better choice is to transfer one derivative on the test function and to keep one on u. This gives this new definition.

Definition 3.7. Let $f \in L^{2}\left(\mathbb{R}^{d}\right)$. We say that $u \in H^{1}\left(\mathbb{R}^{d}\right)$ is a weak solution of (3.5) if for all $v \in H^{1}\left(\mathbb{R}^{d}\right)$ we have

$$
\int_{\mathbb{R}^{d}} \nabla u \nabla v d x+\int_{\mathbb{R}^{d}} u v d x=\int_{\Omega} f v d x
$$

With this notion of solution, it is now easy to see that by the Lax-Milgram theorem applied with $\varphi: v \mapsto \int_{\mathbb{R}^{d}} f v$ the problem (3.5) is well-posed.

Proposition 3.8. For $u, v \in H^{1}\left(\mathbb{R}^{d}\right)$ we set

$$
a(u, v)=\langle\nabla u, \nabla v\rangle_{L^{2}\left(\mathbb{R}^{d}\right)}+\langle u, v\rangle_{L^{2}\left(\mathbb{R}^{d}\right)} .
$$

Let $\varphi \in H^{-1}\left(\mathbb{R}^{d}\right)$. There exists a unique $u \in H^{1}\left(\mathbb{R}^{d}\right)$ such that

$$
\begin{equation*}
\forall v \in H^{1}\left(\mathbb{R}^{d}\right), \quad a(u, v)=\varphi(v) \tag{3.9}
\end{equation*}
$$

Moreover we have

$$
\|u\|_{H^{1}\left(\mathbb{R}^{d}\right)} \leqslant\|\varphi\|_{H^{-1}\left(\mathbb{R}^{d}\right)} .
$$

Proof. It is clear that a is a continuous bilinear form on $H^{1}\left(\mathbb{R}^{d}\right)$. Moreover for $u \in H^{1}\left(\mathbb{R}^{d}\right)$ we have

$$
a(u, u)=\|u\|_{H^{1}}^{2}
$$

so the coercivity is also clear in $H^{1}\left(\mathbb{R}^{d}\right)$. The conclusion follows from Theorem 3.3.

3.1.3 Regularity of the weak solution

We have seen that the Lax-Milgram Theorem easily give existence and uniqueness of a weak solution with continuity of this solution with respect to f. However, this notion of weak solution which was precisely designed to be adapted to the Lax-Milgram Theorem is not so natural.

Moreover, in this particular case, on \mathbb{R}^{d} and with constant coefficients, it is not difficult to prove with the Fourier transform that (3.5) has in fact a unique strong solution. Our purpose here is to recover this fact without the Fourier transform. For this we prove that the weak solution given by Proposition 3.8 belongs in fact to $H^{2}\left(\mathbb{R}^{d}\right)$ and is in fact a strong solution. The interest of this new method is that it will apply in situations where we can no longer use the Fourier transform. Since a strong solution is necessarily a weak solution, we already have uniqueness of a strong solution.

Proposition 3.9. Let $f \in L^{2}\left(\mathbb{R}^{d}\right)$ and let u be the unique weak solution of (3.5) given by Proposition 3.8. Then $u \in H^{2}\left(\mathbb{R}^{d}\right)$, the equality (3.5) holds in $L^{2}\left(\mathbb{R}^{d}\right)$ and there exists $C>0$ independant of f such that

$$
\|u\|_{H^{2}\left(\mathbb{R}^{d}\right)} \leqslant C\|f\|_{L^{2}(\Omega)}
$$

If moreover $f \in H^{k}\left(\mathbb{R}^{d}\right)$ for some $k \in \mathbb{N}$ then $u \in H^{k+2}\left(\mathbb{R}^{d}\right)$.
For the proof, we could proceed as follows. For all $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ we write

$$
\langle-\Delta u, \phi\rangle_{\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right), \mathcal{D}\left(\mathbb{R}^{d}\right)}=\langle\nabla u, \nabla \phi\rangle_{\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right), \mathcal{D}\left(\mathbb{R}^{d}\right)}=\langle\nabla u, \nabla \phi\rangle_{L^{2}\left(\mathbb{R}^{d}\right)}=\langle f-u, \phi\rangle_{L^{2}\left(\mathbb{R}^{d}\right)} .
$$

This proves that in the sense of distributions we have $-\Delta u=f-u \in L^{2}\left(\mathbb{R}^{d}\right)$, and hence $-\Delta u$ belongs to $L^{2}\left(\mathbb{R}^{d}\right)$. Then, by Remark 2.14 we have $u \in H^{2}\left(\mathbb{R}^{d}\right)$ and

$$
\|u\|_{H^{2}\left(\mathbb{R}^{d}\right)} \leqslant C\|-\Delta u+u\|_{L^{2}\left(\mathbb{R}^{d}\right)}=C\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)} .
$$

We provide another proof, which relies on the difference quotients (see Proposition 2.29).
Proof. Let $h \in \mathbb{R}^{d} \backslash\{0\}$. By (3.9) applied with $v=D_{-h}\left(D_{h} u\right) \in H^{1}\left(\mathbb{R}^{d}\right)$, (2.13) and Proposition 2.29 we have

$$
\begin{aligned}
\left\|D_{h} u\right\|_{H^{1}\left(\mathbb{R}^{d}\right)}^{2} & =\left\|\nabla D_{h} u\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+\left\|D_{h} u\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2} \\
& =\langle\nabla u, \nabla v\rangle_{L^{2}\left(\mathbb{R}^{d}\right)}+\langle u, v\rangle_{L^{2}\left(\mathbb{R}^{d}\right)} \\
& =\langle f, v\rangle_{L^{2}\left(\mathbb{R}^{d}\right)} \\
& \leqslant\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}\left\|D_{h} u\right\|_{H^{1}\left(\mathbb{R}^{d}\right)},
\end{aligned}
$$

so

$$
\left\|D_{h} u\right\|_{H^{1}\left(\mathbb{R}^{d}\right)} \leqslant\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)} .
$$

In particular, for all $j \in \llbracket 1, d \rrbracket$ we have

$$
\left\|D_{h} \frac{\partial u}{\partial x_{j}}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leqslant\|f\|_{L^{2}(\mathbb{R})}
$$

By Proposition 2.29, this proves that $\partial_{j} u \in H^{1}\left(\mathbb{R}^{d}\right)$ with $\left\|\partial_{j} u\right\|_{H^{1}\left(\mathbb{R}^{d}\right)} \leqslant\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}$ for all $j \in \llbracket 1, d \rrbracket$. Therefore $u \in H^{2}\left(\mathbb{R}^{d}\right)$ with $\|u\|_{H^{2}\left(\mathbb{R}^{d}\right)} \leqslant C\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}$ for some constant $C>0$ independant of f.

We prove the higher regularity result by induction on $k \in \mathbb{N}$. We have proved the case $k=0$, and we assume that the result is proved up to the case $k-1$ for some $k \in \mathbb{N}^{*}$. Assume that $f \in H^{k}\left(\mathbb{R}^{d}\right)$. By induction, since $f \in H^{k-1}\left(\mathbb{R}^{d}\right)$, we already know that $u \in H^{k+1}\left(\mathbb{R}^{d}\right)$. Let $\alpha \in \mathbb{N}^{d}$ with $|\alpha| \leqslant k$. Then $\partial^{\alpha} u \in H^{1}\left(\mathbb{R}^{d}\right)$ and

$$
-\Delta\left(\partial^{\alpha} u\right)+\partial^{\alpha} u=\partial^{\alpha} f \in L^{2}\left(\mathbb{R}^{d}\right)
$$

This proves that $\partial^{\alpha} u \in H^{2}\left(\mathbb{R}^{d}\right)$, and hence that $u \in H^{k+2}\left(\mathbb{R}^{d}\right)$.
Notice that for this second proof we have also used the fact that the problem (3.5) is posed on \mathbb{R}^{d}. In the following section we will see how this method is adapted for a problem posed on an open subset $\Omega \neq \mathbb{R}^{d}$.
Exercise 27. Let $\lambda>0$ and $f \in L^{2}\left(\mathbb{R}^{d}\right)$. We consider on \mathbb{R}^{d} the equation

$$
-\Delta u+\lambda u=f
$$

1. Prove that this problem has a unique weak solution u (in a suitable sense to be defined).
2. Prove that this solution belongs to $H^{2}\left(\mathbb{R}^{d}\right)$ and give an estimate of $\|u\|_{H^{2}\left(\mathbb{R}^{d}\right)}$ with respect to $\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}$ and $\lambda>0$.
3. What happens if $\lambda \leqslant 0$.

3.2 Boundary conditions

In the previous section, we have described the variational method for elliptic equations with the example of a problem on \mathbb{R}^{d}. We will apply the same global strategy on a general open subset Ω of \mathbb{R}^{d}, but some arguments have to be adapted. We first observe that, in general, the solution of equation (3.5) or the variational version (3.9) is not unique. This is easy to see in dimension 1. For instance, on $\Omega=]-1,1$ [any function of the form

$$
u(x)=A e^{x}+B^{-x}
$$

is in $H^{2}(\Omega)$ and satisfies $-u^{\prime \prime}+u=0$. Similarly, on the unbouded open set $\left.\Omega=\right] 0,+\infty[$, the same applies to the functions of the form $x \mapsto B e^{-x}$.

One possibility to recover a well posed problem is to add boundary conditions. This choice is physically relevent since what happens at the boundary can be controled or at least measured. For instance, for $f \in L^{2}(-1,1)$ the following problems on $]-1,1[$ have at most one solution $u \in H^{2}([-1,1])$:

$$
\left\{\begin{array} { l }
{ - u ^ { \prime \prime } + u = f , } \tag{3.10}\\
{ u (- 1) = u (1) = 0 , }
\end{array} \quad \left\{\begin{array}{l}
-u^{\prime \prime}+u=f \\
u^{\prime}(-1)=u^{\prime}(1)=0
\end{array}\right.\right.
$$

Exercise 28. Give explicitely the solutions of the two problems (3.10).
We can write the corresponding problems in any dimension. If we add the condition that the solution vanishes at the boundary, we obtain the so-called boundary value problem with Dirichlet boundary condition:

$$
\begin{cases}-\Delta u+u=f & \text { on } \Omega \tag{3.11}\\ u=0, & \text { on } \partial \Omega\end{cases}
$$

As in (3.10), we can for instance solve the problem with the additional condition that the normal derivative of the solution vanishes at the boundary. This is the corresponding Neumann boundary problem:

$$
\begin{cases}-\Delta u+u=f & \text { on } \Omega \tag{3.12}\\ \partial_{\nu} u=0, & \text { on } \partial \Omega\end{cases}
$$

These are not the only possibilities, but we will focus on these two model cases in this course.
Exercise 29. Solve the following problems:

$$
\left\{\begin{array} { l }
{ - u ^ { \prime \prime } + u = 1 , } \\
{ u (- 1) = 0 , \quad u ^ { \prime } (1) = 0 , }
\end{array} \quad \left\{\begin{array}{l}
-u^{\prime \prime}+u=1, \\
u^{\prime}(-1)=0, \quad u^{\prime}(1)=u(1)
\end{array}\right.\right.
$$

If f is continuous on Ω, then a classical solution of the Dirichlet problem (3.11) is a function $u \in C^{2}(\bar{\Omega})$ which satisfies (3.11) in the usual sense. We similarly define a classical solution of the Neumann problem (3.12).

As in the previous section, we try to solve these two problems with the Lax-Milgram theorem. For this we need a suitable variational formulation (or, equivalently, a good definition for a weak solution).

3.2.1 Dirichlet boundary conditions

We begin with the Dirichlet problem. To take into account the condition $u=0$, it is natural to try to work in $H_{0}^{1}(\Omega)$ (see Proposition 2.42). If $u \in C^{2}(\bar{\Omega}) \cap H^{2}(\Omega)$ is a classical solution of (3.11) and $v \in H_{0}^{1}(\Omega)$, we have by the Green Formula (Theorem 2.43)

$$
\int_{\Omega}(-\Delta u+u) v d x=\int_{\Omega} \nabla u \cdot \nabla v d x+\int_{\Omega} u v d x
$$

This suggests the following definition.
Definition 3.10. Let Ω be an open subset of \mathbb{R}^{d} and let $f \in L^{2}(\Omega)$. We say that $u \in H_{0}^{1}(\Omega)$ is a weak solution of (3.11) if

$$
\begin{equation*}
\forall v \in H_{0}^{1}(\Omega), \quad \int_{\Omega} \nabla u \cdot \nabla v d x+\int_{\mathbb{R}^{d}} u v d x=\int_{\Omega} f v d x \tag{3.13}
\end{equation*}
$$

With this notion we can apply the Lax-Milgram theorem and (3.11) is well-posed.
Proposition 3.11. Let Ω be an open subset of \mathbb{R}^{d} and let $f \in L^{2}(\Omega)$. There exists a unique solution $u \in H_{0}^{1}(\Omega)$ of (3.13). Moreover $\|u\|_{H^{1}(\Omega)} \leqslant\|f\|_{L^{2}(\Omega)}$.
Proof. For $u, v \in H_{0}^{1}(\Omega)$ we set

$$
a(u, v)=\langle\nabla u, \nabla v\rangle_{L^{2}(\Omega)}+\langle u, v\rangle_{L^{2}(\Omega)}, \quad \ell(v)=\langle f, v\rangle_{L^{2}(\Omega)} .
$$

This defines a continuous bilinear form a and a continuous linear form ℓ on $H_{0}^{1}(\Omega)$. Moreover, for $u \in H_{0}^{1}(\Omega)$ we have

$$
a(u, u)=\|\nabla u\|_{L^{2}(\Omega)}^{2}+\|u\|_{L^{2}(\Omega)}^{2},
$$

so a is coercive. The conclusion follows from Theorem 3.3.
As in \mathbb{R}^{d}, we have worked with the H^{1} regularity to be able to apply the Lax-Milgram theorem, but we would like to have a solution at least in H^{2}.

Here we prove this result for $\Omega=\mathbb{R}_{+}^{d}$. The case where the boundary of Ω is not flat will be discussed with more generality in the following section.

The proof of the following regularity result is divided into two steps. We first check that u belongs to $H_{\text {loc }}^{2}\left(\mathbb{R}_{+}^{d}\right)$ (interior regularity), and for this we localize the solution far from the boundary and apply the result known on the Euclidean space. Then we look at the regularity near the boundary. For this, we adapt the proof of Proposition 3.9 with difference quotients. We recall that for $\Omega \neq \mathbb{R}^{d}$, the fact that u and Δu belong to $L^{2}(\Omega)$ does not imply that $u \in H^{2}(\Omega)$.

Proposition 3.12. Let $f \in L^{2}\left(\mathbb{R}_{+}^{d}\right)$ and let $u \in H_{0}^{1}\left(\mathbb{R}_{+}^{d}\right)$ be the weak solution of (3.11). Then $u \in H^{2}\left(\mathbb{R}_{+}^{d}\right)$ and there exists $C>0$ independant of f such that $\|u\|_{H^{2}\left(\mathbb{R}_{+}^{d}\right)} \leqslant C\|f\|_{L^{2}(\Omega)}$.

Proof. - Let ω be an open bounded subset of \mathbb{R}_{+}^{d} such that $\bar{\omega} \subset \mathbb{R}_{+}^{d}$. Let $\chi \in C_{0}^{\infty}\left(\mathbb{R}_{+}^{d},[0,1]\right)$ be equal to 1 on a neighborhood of $\bar{\omega}$. Then χu belongs to $H_{0}^{1}\left(\mathbb{R}_{+}^{d}\right)$, it can be extended by 0 to a function $\tilde{u} \in H^{1}\left(\mathbb{R}^{d}\right)$, and \tilde{u} is a weak solution on \mathbb{R}^{d} for the problem

$$
\begin{equation*}
-\Delta \tilde{u}+\tilde{u}=\chi f-2 \nabla \chi \cdot \nabla u-u \Delta \chi \tag{3.14}
\end{equation*}
$$

Since the right-hand side belongs to $L^{2}\left(\mathbb{R}_{+}^{d}\right)$ we obtain by Proposition 3.9 that \tilde{u} belongs to $H^{2}\left(\mathbb{R}^{d}\right)$ and that the equality (3.14) holds in $L^{2}\left(\mathbb{R}^{d}\right)$. This proves that $u \in H^{2}(\omega)$ and $-\Delta u+u=f$ in $L^{2}(\omega)$. Since this holds for any ω, u belongs to $H_{\mathrm{loc}}^{2}\left(\mathbb{R}_{+}^{d}\right)$ and the equality $-\Delta u+u=f$ holds in $L_{\mathrm{loc}}^{2}\left(\mathbb{R}_{+}^{d}\right)$. This implies

$$
\begin{equation*}
-\Delta u=f-u \in L^{2}\left(\mathbb{R}_{+}^{d}\right) \tag{3.15}
\end{equation*}
$$

- Let $j \in \llbracket 2, d \rrbracket$ and $t \neq 0$. We can define $D_{t e_{j}} u \in L^{2}\left(\mathbb{R}_{+}^{d}\right)$ as in (2.12), and as for Proposition 2.29 we can check that

$$
\left\|D_{t e_{j}} u\right\|_{L^{2}\left(\mathbb{R}_{+}^{d}\right)} \leqslant\|\nabla u\|_{L^{2}\left(\mathbb{R}_{+}^{d}\right)}
$$

As in the proof of Proposition 3.9, we apply (3.13) with $v=D_{-t e_{j}}\left(D_{t e_{j}} u\right) \in H_{0}^{1}\left(\mathbb{R}_{+}^{d}\right)$ and we similarly obtain

$$
\left\|D_{t e_{j}} u\right\|_{H^{1}\left(\mathbb{R}_{+}^{d}\right)} \leqslant\|f\|_{L^{2}\left(\mathbb{R}_{+}^{d}\right)} .
$$

Then, for $k \in \llbracket 1, d \rrbracket$ we have

$$
\left|\left\langle u, D_{-t e_{j}}\left(\partial_{k} \phi\right)\right\rangle_{L^{2}\left(\mathbb{R}_{+}^{d}\right)}\right|=\left|\left\langle\partial_{k} D_{t e_{j}} u, \phi\right\rangle_{L^{2}\left(\mathbb{R}_{+}^{d}\right)}\right| \leqslant\|f\|_{L^{2}\left(\mathbb{R}_{+}^{d}\right)}\|\phi\|_{L^{2}\left(\mathbb{R}_{+}^{d}\right)} .
$$

Taking the limit $t \rightarrow 0$ proves that $\partial_{j} \partial_{k} u \in L^{2}$ and $\left\|\partial_{j} \partial_{k} u\right\|_{L^{2}\left(\mathbb{R}_{+}^{d}\right)} \leqslant\|f\|_{L^{2}\left(\mathbb{R}_{+}^{d}\right)}$.

- It remains to consider the second derivative $\partial_{1}^{1} u$. By (3.15) we have

$$
\partial_{1}^{2} u=-\sum_{j=2}^{d} \partial_{j}^{2} u-f-u \in L^{2}\left(\mathbb{R}_{+}^{d}\right)
$$

and hence $u \in H^{2}\left(\mathbb{R}_{+}^{d}\right)$ with $\|u\|_{H^{2}\left(\mathbb{R}_{+}^{d}\right)} \leqslant C\|f\|_{L^{2}\left(\mathbb{R}_{+}^{d}\right)}$ for some constant $C>0$.
We finish this paragraph with the higher regularity result.
Proposition 3.13. Let $k \in \mathbb{N}$ and $f \in H^{k}\left(\mathbb{R}_{+}^{d}\right)$. Let u be the weak solution of (3.11). Then $u \in H^{k+2}\left(\mathbb{R}_{+}^{d}\right)$.

Proof. We prove the result by induction on $k \in \mathbb{N}$. The case $k=0$ is Proposition 3.12. We assume that for some $k \in \mathbb{N}^{*}$ the result is proved up to order $k-1$. Let $f \in H^{k}\left(\mathbb{R}_{+}^{d}\right)$. Since $f \in H^{k-1}\left(\mathbb{R}_{+}^{d}\right)$ we already know by the inductive assumption that $u \in H^{k+1}\left(\mathbb{R}_{+}^{d}\right)$.

- Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}^{*}$ such that $|\alpha|=k$ and $\alpha_{1}=0$. Then $\partial^{\alpha} u \in H_{0}^{1}\left(\mathbb{R}_{+}^{d}\right)$ is the weak solution of (3.11) with f replaced by $\partial^{\alpha} f \in L^{2}(\Omega)$. By Proposition 3.12, this proves that $\partial^{\alpha} u \in H^{2}\left(\mathbb{R}_{+}^{d}\right)$. Thus, for any $\beta=\left(\beta_{1}, \ldots, \beta_{d}\right) \in \mathbb{N}^{d}$ with $|\beta| \leqslant k+2$ and $\beta_{1} \leqslant 2$ we have $\partial^{\beta} u \in L^{2}\left(\mathbb{R}_{+}^{d}\right)$.
- Now we prove by induction on $m \in \llbracket 0, k+2 \rrbracket$ that for $\beta \in \mathbb{N}^{d}$ with $|\beta| \leqslant k+2$ and $\beta_{1} \leqslant m$ we have $\partial^{\beta} u \in L^{2}\left(\mathbb{R}_{+}^{d}\right)$. We already have the cases $m \leqslant 2$. Assume that for some $m \in \llbracket 3, k+2 \rrbracket$ we have prove this statement up to order $m-1$ and consider $\beta \in \mathbb{N}^{d}$ with $|\beta| \leqslant k+2$ and $\beta_{1}=m$. Let $\tilde{\beta}=\left(\beta_{1}-2, \beta_{2}, \ldots, \beta_{d}\right)$. We have

$$
\partial^{\beta} u=\partial^{\tilde{\beta}}\left(\partial_{1}^{2} u\right)=-\partial^{\tilde{\beta}}\left(f+\sum_{j=2}^{d} \partial_{j}^{2} u\right) \in L^{2}\left(\mathbb{R}_{+}^{d}\right)
$$

The conclusion follows by (double) induction.

3.2.2 Neumann boundary conditions

Now we turn to the Neumann problem (3.12). Contrary to the Dirichlet problem, we cannot encode the boundary condition $\partial_{\nu} u=0$ in the variational space \mathcal{V}. The normal derivative does not even have a sense in $H^{1}(\Omega)$.

It turns out that the solution of (3.12) will be given by the variational problem posed in the full space $H^{1}(\Omega)$, without any condition at the boundary.

This is not an obvious guess. But we have not used the boundary condition in the proof of Proposition 3.11, so it is a natural to wonder what happens if we replace $H_{0}^{1}(\Omega)$ by $H^{1}(\Omega)$ in the results of the previous paragraph (notice that on \mathbb{R}^{d} we have $H^{1}=H_{0}^{1}$, so this distinction was irrelevant in that case).

Definition 3.14. Let Ω be an open subset of \mathbb{R}^{d} and let $f \in L^{2}(\Omega)$. We say that $u \in H^{1}(\Omega)$ is a weak solution of (3.12) if

$$
\begin{equation*}
\forall v \in H^{1}(\Omega), \quad \int_{\Omega} \nabla u \cdot \nabla v d x+\int_{\Omega} u v d x=\int_{\Omega} f v d x \tag{3.16}
\end{equation*}
$$

Exactly as for Proposition 3.11, we have the following well-posedness result in the weak sense.

Proposition 3.15. Let Ω be an open subset of \mathbb{R}^{d} and let $f \in L^{2}(\Omega)$. There exists a unique solution $u \in H^{1}(\Omega)$ of (3.16). Moreover $\|u\|_{H^{1}(\Omega)} \leqslant\|f\|_{L^{2}(\Omega)}$.

Now we prove the regularity of this weak solution when $\Omega=\mathbb{R}_{+}^{d}$. Compared to the Dirichlet case, the Neumann boundary condition is not explicit in the definition of the weak solution and can only be stated once we have the H^{2} regularity.

Proposition 3.16. Let $f \in L^{2}\left(\mathbb{R}_{+}^{d}\right)$ and let $u \in H^{1}\left(\mathbb{R}_{+}^{d}\right)$ be the weak solution of (3.11). Then $u \in H^{2}\left(\mathbb{R}_{+}^{d}\right)$ and $\partial_{\nu} u=0$ on $\partial \mathbb{R}_{+}^{d}$.

By $\partial_{\nu} u=0$ we mean that $\gamma_{1}(u)=0$ in $L^{2}\left(\partial \mathbb{R}_{+}^{d}\right)$, where γ_{1} is the normal trace introduced in Paragraph 2.5.2.

Proof. As in the proof of Proposition 3.12 we see that $u \in H^{2}\left(\mathbb{R}_{+}^{d}\right)$ and, in $L^{2}\left(\mathbb{R}_{+}^{d}\right)$,

$$
-\Delta u+u=f
$$

By the Green formula (see Theorem 2.44), we have for all $v \in H^{1}\left(\mathbb{R}_{+}^{d}\right)$

$$
\begin{aligned}
\int f v d x & =\int(-\Delta u+u) v d x \\
& =\int \nabla u \cdot \nabla v d x-\int_{\partial \mathbb{R}_{+}^{d}} \partial_{\nu} u v d x^{\prime}+\int u v d x \\
& =\int f v d x-\int_{\partial \mathbb{R}_{+}^{d}} \partial_{\nu} u v d x^{\prime} .
\end{aligned}
$$

This means that for all $v \in H^{1}\left(\mathbb{R}_{+}^{d}\right)$ we have

$$
\int_{\partial \mathbb{R}_{+}^{d}} \partial_{\nu} u v d x^{\prime}=0
$$

Since the range of the trace operator γ_{0} is dense in $L^{2}\left(\mathbb{R}^{d-1}\right)$, this proves that in $L^{2}\left(\mathbb{R}^{d-1}\right)$ we have

$$
\partial_{\nu} u=0 .
$$

3.2.3 Inhomogeneous boundary conditions

So far we have considered homogeneous Dirichlet boundary conditions ($u=0$) or homogeneous Neumann boundary conditions $\left(\partial_{\nu} u=0\right)$. Now we introduce a problem with an inhomogeneous boundary condition. For simplicity we continue with the equation $-\Delta u+u=f$
on the half-space \mathbb{R}_{+}^{d}, and we only consider the case of a Dirichlet boundary condition. Given $g \in L^{2}(\partial \Omega)$ we consider the problem

$$
\begin{cases}-\Delta u+u=f & \text { on } \Omega \tag{3.17}\\ u=g, & \text { on } \partial \Omega\end{cases}
$$

The boundary condition makes sense in the sense of the trace as soon as u belongs to $H^{1}\left(\mathbb{R}_{+}^{d}\right)$ and $g \in L^{2}\left(\partial \mathbb{R}_{+}^{d}\right)$. It means

$$
\gamma_{0}(u)=g
$$

We recall that the trace operator $\gamma_{0}: H^{1}\left(\mathbb{R}_{+}^{d}\right) \rightarrow L^{2}\left(\partial \mathbb{R}_{+}^{d}\right)$ is not surjective. And it is clear that if g is not in the range $H^{1 / 2}\left(\partial \mathbb{R}_{+}^{d}\right)$, then the problem (3.17) cannot have a solution.

Now we assume that g belongs to $H^{1 / 2}\left(\partial \mathbb{R}_{+}^{d}\right)$ and we consider $w \in H^{1}\left(\mathbb{R}_{+}^{d}\right)$ such that $\gamma_{0}(w)=g$. Then u is solution of (3.17) if and only if $\tilde{u}=u-w$ is a solution of

$$
\begin{cases}-\Delta \tilde{u}+\tilde{u}=f+\Delta w-w & \text { on } \Omega \tag{3.18}\\ u=0, & \text { on } \partial \Omega\end{cases}
$$

The right-hand side $f+\Delta w-w$ is not necessarily in $L^{2}(\Omega)$, but it is at least in $H^{-1}(\Omega)$. Then the Lax-Milgram Theorem gives a unique weak solution $\tilde{u} \in H_{0}^{1}(\Omega)$ of (3.18). Setting $u=\tilde{u}+w$ we have

$$
-\Delta u+u=f \in L^{2}(\Omega)
$$

and

$$
\gamma_{0}(u)=\gamma_{0}(w)=g
$$

Remark 3.17. Notice that $\Delta u \in L^{2}\left(\mathbb{R}_{+}^{d}\right)$ but u is not necessarily in $H^{2}\left(\mathbb{R}_{+}^{d}\right)$ (if $u \in H^{2}\left(\mathbb{R}_{+}^{d}\right)$ then $g=\gamma_{0}(u) \in H^{3 / 2}\left(\partial \mathbb{R}_{+}^{d}\right)$, which is not necessarily the case).

Exercise 30. In this exercise we discuss the problem

$$
\begin{cases}-\Delta u+u=f, & \text { on } \mathbb{R}_{+}^{d}, \tag{3.19}\\ \partial_{\nu} u=g, & \text { on } \partial \mathbb{R}_{+}^{d},\end{cases}
$$

where $f \in L^{2}\left(\mathbb{R}_{+}^{d}\right)$.

1. Discuss the problem when $g \in H^{1 / 2}\left(\partial \mathbb{R}_{+}^{d}\right)$.
2. Now we consider the case $g \in H^{-1 / 2}\left(\partial \mathbb{R}_{+}^{d}\right)$.
a. Prove that there exists a unique $u \in H^{1}\left(\mathbb{R}_{+}^{d}\right)$ such that
$\forall v \in H^{1}\left(\mathbb{R}_{+}^{d}\right), \quad \int_{\mathbb{R}_{+}^{d}} \nabla u \cdot \nabla v d x+\int_{\mathbb{R}_{+}^{d}} u v d x=\int_{\mathbb{R}_{+}^{d}} f v d x+\left\langle g, \gamma_{0}(v)\right\rangle_{H^{-1 / 2}\left(\partial \mathbb{R}_{+}^{d}\right), H^{1 / 2}\left(\partial \mathbb{R}_{+}^{d}\right)}$.
b. Does Δu belong to $L^{2}\left(\mathbb{R}_{+}^{d}\right)$? Does u belong to $H^{2}\left(\mathbb{R}_{+}^{d}\right)$? What can we say about $\partial_{\nu} u$?

3.3 More general settings

In this section we discuss on a general bounded open subset Ω the general elliptic second order equation (3.1), with the operator P introduced in (3.2). We assume that A is symmetric and P is uniformly elliptic, see (3.3) and (3.4). We have to add boundary conditions. Here, we only consider the case of the Dirichlet boundary condition:

$$
\begin{cases}P u=f, & \text { on } \Omega \tag{3.20}\\ u=0, & \text { on } \partial \Omega\end{cases}
$$

As above, we first solve a corresponding varitional problem and prove existence and uniqueness of a weak solution in $H_{0}^{1}(\Omega)$. Then we will prove the regularity of this weak solution to get a solution in $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$.

3.3.1 Weak solution for a general second order elliptic equation

Following the previous cases, we define the notion of weak solution in $H_{0}^{1}(\Omega)$ by transfering a derivative on the test function by a formal integration by parts.
Definition 3.18. Let Ω be an open subset of \mathbb{R}^{d} and let $f \in L^{2}(\Omega)$. We say that $u \in H_{0}^{1}(\Omega)$ is a weak solution of (3.20) if for all $v \in H_{0}^{1}(\Omega)$ we have

$$
\begin{equation*}
a_{P}(u, v)=\int_{\Omega} f v \tag{3.21}
\end{equation*}
$$

where we have set

$$
\begin{align*}
a_{P}(u, v) & =\langle A \nabla u, \nabla u\rangle_{L^{2}(\Omega)}+\langle B \cdot \nabla u, v\rangle_{L^{2}(\Omega)}+\langle c u, v\rangle_{L^{2}(\Omega)} \\
& =\sum_{j, k=1}^{d} \int_{\Omega} a_{j, k} \partial_{k} u \partial_{j} v d x+\sum_{k=1}^{d} \int_{\Omega} b_{k} \partial_{k} u v d x+\int_{\mathbb{R}^{d}} c u v d x . \tag{3.22}
\end{align*}
$$

As above, it is easy to check that a is a continuous bilinear form on $H_{0}^{1}(\Omega)$. However, it is not necessarily coercive. For instance, for $P=-\Delta$ on \mathbb{R}^{d} we have

$$
\begin{equation*}
a(u, u)=\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}, \tag{3.23}
\end{equation*}
$$

which is not coercive in $H^{1}\left(\mathbb{R}^{d}\right)$. But for any $\lambda>0$ the bilinear form defined by

$$
\begin{equation*}
a_{\lambda}(u, u)=a(u, u)+\lambda\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)} \tag{3.24}
\end{equation*}
$$

is coercive. In other words, we have a bilinear form which does not control the square of the H^{1} norm, but it controls at least the square of the norm of the gradient, so it is enough to add a multiple of the square of the L^{2} norm (which corresponds to adding to the operator a multiple of the identity) to get coercivity. This is why we considered the operator $-\Delta+\mathrm{Id}$ instead of $-\Delta$ in the first example in Section 3.1.

The same applies in the more general setting of this section. The ellipticity assumption (3.4) ensures that $a_{P}(u, u)$ controls at least $\|\nabla u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}$, and hence it will be possible to apply the Lax-Milgram Theorem to the equation $P u+\gamma u=f$ for $\gamma \geqslant 0$ large enough.
Lemma 3.19. Let a_{P} be defined by (3.22), with A satisfying (3.3) and (3.4). Let $\left.\alpha_{0} \in\right] 0, \alpha[$. There exists $\gamma_{0} \in \mathbb{R}$ such that for all $u \in H_{0}^{1}(\Omega)$ we have

$$
a_{P}(u, u) \geqslant \alpha_{0}\|\nabla u\|_{L^{2}(\Omega)}^{2}-\gamma_{0}\|u\|_{L^{2}(\Omega)}^{2} .
$$

Proof. Let $u \in H_{0}^{1}(\Omega)$. By (3.4) we have

$$
\langle A \nabla u, \nabla u\rangle_{L^{2}(\Omega)} \geqslant \alpha\|\nabla u\|_{L^{2}(\Omega)}^{2}
$$

Let $\varepsilon=\alpha-\alpha_{0}>0$. We have

$$
\left|\langle B \cdot \nabla u, u\rangle_{L^{2}(\Omega)}\right| \leqslant\|B\|_{L^{\infty}(\Omega)}\|\nabla u\|_{L^{2}(\Omega)}\|u\|_{L^{2}(\Omega)} \leqslant \varepsilon\|\nabla u\|_{L^{2}(\Omega)}^{2}+\frac{\|B\|_{L^{\infty}(\Omega)}^{2}\|u\|_{L^{2}(\Omega)}^{2}}{4 \varepsilon}
$$

so the conclusion follows with

$$
\gamma_{0}=\frac{\|B\|_{L^{\infty}(\Omega)}^{2}}{4 \varepsilon}-\inf _{x \in \Omega} c(x)
$$

Thus, instead of (3.20), we consider for $\gamma>\gamma_{0}$ the problem

$$
\begin{cases}P u+\gamma u=f & \text { in } \Omega \tag{3.25}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

A weak solution of (3.25) is a function $u \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
\forall v \in H_{0}^{1}(\Omega), \quad a_{P}(u, v)+\gamma\langle u, v\rangle_{L^{2}(\Omega)}^{2}=\int_{\Omega} f v d x \tag{3.26}
\end{equation*}
$$

By Lemma 3.19, the left-hand side defines a coercive bilinear form, so by the Lax-Milgram Theorem 3.3 we have the following result.

Proposition 3.20. Let $\left.\alpha_{0} \in\right] 0, \alpha\left[\right.$ and let $\gamma_{0} \in \mathbb{R}$ be given by Lemma 3.19. Then for $\gamma>\gamma_{0}$ and $f \in L^{2}(\Omega)$ the problem (3.25) has a unique weak solution in $H_{0}^{1}(\Omega)$. Moreover there exists $C_{\gamma}>0$ independant of f such that

$$
\begin{equation*}
\|u\|_{H^{1}(\Omega)} \leqslant C_{\gamma}\|f\|_{L^{2}(\Omega)} \tag{3.27}
\end{equation*}
$$

3.3.2 Regularity of the weak solution

Now we prove the regularity of a weak solution for the problem (3.20). Since we can replace c by $c+\gamma$, this also gives the regularity for a weak solution of (3.25).
Proposition 3.21. Let Ω be a bounded open subset of \mathbb{R}^{d} of class C^{2}. Let P be as above with $A \in C^{1}(\bar{\Omega})$ and $b, c \in L^{\infty}(\Omega)$. There exists $C>0$ such that if $f \in L^{2}(\Omega)$ and $u \in H_{0}^{1}(\Omega)$ is a weak solution of (3.20), then $u \in H^{2}(\Omega)$ and

$$
\begin{equation*}
\|u\|_{H^{2}(\Omega)} \leqslant C\left(\|f\|_{L^{2}(\Omega)}+\|u\|_{H^{1}(\Omega)}\right) \tag{3.28}
\end{equation*}
$$

and (3.20) holds in $L^{2}(\Omega)$. If moreover Ω is of class $C^{k+2}, A, B, c \in C^{k+1}(\bar{\Omega})$ and $f \in H^{k}(\Omega)$ for some $k \in \mathbb{N}$, then $u \in H^{k+2}(\Omega)$.

With little more effort, we can we fact replace $\|u\|_{H^{1}(\Omega)}$ by $\|u\|_{L^{2}(\Omega)}$ in the right-hand side of (3.28). Prove it as an exercice. Notice that in the context of Proposition 3.20 we can apply (3.27) and have an estimate which depends on f only.
Proof. - We begin with the case $\Omega=\mathbb{R}^{d}$ and assume that the derivatives of A are bounded on \mathbb{R}^{d}. For all $v \in H^{1}\left(\mathbb{R}^{d}\right)$ we have

$$
\int_{\mathbb{R}^{d}} A \nabla u \cdot \nabla v=\int_{\mathbb{R}^{d}} \tilde{f} v
$$

where we have set

$$
\tilde{f}=f-B \cdot \nabla u-c u \in L^{2}\left(\mathbb{R}^{d}\right)
$$

There exists $C_{1}>0$ which only depends on B and c such that

$$
\|\tilde{f}\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2} \leqslant C_{1}\left(\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+\|u\|_{H^{1}\left(\mathbb{R}^{d}\right)}^{2}\right) .
$$

Let $h \in \mathbb{R}^{d} \backslash\{0\}$. As in the proof of Proposition 3.9 we apply (3.26) with $v=D_{-h}\left(D_{h} u\right) \in$ $H^{1}\left(\mathbb{R}^{d}\right)$. For $\varepsilon>0$ we have

$$
\begin{array}{rl}
\int_{\mathbb{R}^{d}} & A \nabla u \cdot \nabla\left(D_{-h}\left(D_{h} u\right)\right) d x \\
& =\int_{\mathbb{R}^{d}} A \nabla\left(D_{h} u\right) \cdot \nabla\left(D_{h} u\right) d x+\int_{\mathbb{R}^{d}}\left(D_{h} A\right) \nabla u \cdot \nabla\left(D_{h} u\right) d x \\
& \geqslant \alpha\left\|\nabla\left(D_{h} u\right)\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}-\varepsilon\left\|\nabla\left(D_{h} u\right)\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}-\frac{\left\|D_{h} A\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}^{2}}{4 \varepsilon}\|u\|_{H^{1}\left(\mathbb{R}^{d}\right)}^{2}
\end{array}
$$

and

$$
\int_{\mathbb{R}^{d}} \tilde{f} v d x \leqslant \varepsilon\|v\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+\frac{\|\tilde{f}\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}}{4 \varepsilon} \leqslant \varepsilon\left\|\nabla\left(D_{h} u\right)\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+\frac{C_{1}}{4 \varepsilon}\left(\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+\|u\|_{H^{1}\left(\mathbb{R}^{d}\right)}^{2}\right)
$$

With $\varepsilon=\frac{\alpha}{4}$ we obtain

$$
\frac{\alpha}{2}\left\|D_{h}(\nabla u)\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2} \leqslant C_{2}\left(\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+\|u\|_{H^{1}\left(\mathbb{R}^{d}\right)}^{2}\right), \quad C_{2}=\frac{1}{\alpha}\left(C_{1}+\|A\|_{C^{1}\left(\mathbb{R}^{d}\right)}\right) .
$$

This proves that $u \in H^{2}\left(\mathbb{R}^{d}\right)$ and, for some $C>0$ which only depends on A, B and c,

$$
\|u\|_{H^{2}\left(\mathbb{R}^{d}\right)} \leqslant C\left(\|f\|_{L^{2}(\Omega)}+\|u\|_{H^{1}(\Omega)}\right) .
$$

- The case $\Omega=\mathbb{R}_{+}^{d}$ is proved similarly by taking h parallel to $\partial \mathbb{R}_{+}^{d}$ as in the proof of Proposition 3.12. This proves that for $j \in \llbracket 2, d \rrbracket$ and $k \in \llbracket 1, d \rrbracket$ we have $\partial_{j} \partial_{k} u \in L^{2}\left(\mathbb{R}_{+}^{d}\right)$,
with $\left\|\partial_{j} \partial_{k} u\right\|_{L^{2}\left(\mathbb{R}_{+}^{d}\right)} \leqslant C_{j, k}\left(\|f\|_{L^{2}\left(\mathbb{R}_{+}^{d}\right)}+\|u\|_{H^{1}\left(\mathbb{R}_{+}^{d}\right)}\right)$ for some $C_{j, k}>0$ independant of f and u. Then we observe that the ellipticity (3.4) applied with $\xi=(1,0, \ldots, 0)$ shows that $a_{1,1}(x) \geqslant \alpha>0$. Then

$$
\begin{aligned}
& \partial_{1}^{2} u=\frac{1}{a_{1,1}}\left(\partial_{1} a_{1,1} \partial_{1} u-\left(\partial_{1} a_{1,1}\right) \partial_{1} u\right) \\
&=\frac{1}{a_{1,1}}\left(-f-\sum_{\substack{1 \leqslant j, k \leqslant d \\
(j, k) \neq(1,1)}} \partial_{j} a_{j, k} \partial_{k} u+B \cdot \nabla u+c u-\left(\partial_{1} a_{1,1}\right) \partial_{1} u\right) \in L^{2}\left(\mathbb{R}_{+}^{d}\right),
\end{aligned}
$$

with

$$
\left\|\partial_{1}^{2} u\right\|_{L^{2}\left(\mathbb{R}_{+}^{d}\right)} \leqslant C_{1,1}\left(\|f\|_{L^{2}\left(\mathbb{R}_{+}^{d}\right)}+\|u\|_{H^{1}\left(\mathbb{R}_{+}^{d}\right)}\right)
$$

for some $C_{1,1}>0$ independant of f and u. The conclusion follows in this case.

- We consider the case where Ω is a bounded subset of \mathbb{R}^{d} of class C^{2}. As is now usual we will use a partition of unity and changes of variables as described in Paragraph 2.3.1. The regularity of a solution compactly supported in Ω is proved as in the proof of Proposition 3.12. Now we consider an open subset \mathcal{U} of \mathbb{R}^{d} such that $\partial \Omega \cap \mathcal{U}$ is a graph of class C^{2}, a diffeomorphism Φ of class C^{2} from \mathcal{U} to an open subset \mathcal{W} such that $\Phi(\mathcal{U} \cap \Omega)=\mathcal{W} \cap \mathbb{R}_{+}^{d}$, and we assume that the solution $u \in H_{0}^{1}(\Omega)$ is supported in $\mathcal{U} \cap \bar{\Omega}$. We set $\Psi=\Phi^{-1}$ and we denote by $J \Phi$ and $J \Psi$ the jacobian matrices of Φ and Ψ, respectively. We also write $|J \Psi|$ for $|\operatorname{det}(J \Psi)|$.

Let $\tilde{u}=u \circ \Psi \in H_{0}^{1}\left(\mathcal{W} \cap \mathbb{R}_{+}^{d}\right)$. Then we check that \tilde{u} is a weak solution on \mathcal{W} of the equation

$$
-\operatorname{div}(\tilde{A} \nabla \tilde{u})+\tilde{B} \cdot \nabla \tilde{u}+\tilde{c} \tilde{u}=\tilde{f}
$$

where for $\tilde{x} \in \mathcal{W} \cap \mathbb{R}_{+}^{d}$ and $x=\Psi(\tilde{x})$ we have set

$$
\tilde{A}(\tilde{x})=|J \Psi(\tilde{x})| J \Phi(x) A(x) J \Phi(x)^{\top}, \quad \tilde{B}(\tilde{x})=|J \Psi(\tilde{x})| B(x) J \Phi(x)^{\top}, \quad \tilde{c}(\tilde{x})=|J \Psi(\tilde{x})| c(x)
$$

and $\tilde{f}(\tilde{x})=|J \Psi(\tilde{x})| f(x)$. For instance, for $\tilde{v} \in H_{0}^{1}\left(\mathcal{W} \cap \mathbb{R}_{+}^{d}\right)$ and $v=\tilde{v} \circ \Phi$ we have by the change of variables $x=\Psi(\tilde{x})$

$$
\begin{aligned}
-\int_{\mathcal{W} \cap \mathbb{R}_{+}^{d}}(\tilde{A}(\tilde{x}) \nabla \tilde{u}(\tilde{x})) \cdot \nabla \tilde{v}(\tilde{x}) d \tilde{x} & =-\int_{\mathcal{W} \cap \mathbb{R}_{+}^{d}}(A(\Psi(\tilde{x})) \nabla u(\Psi(\tilde{x}))) \cdot \nabla v(\Psi(\tilde{x}))|J \Psi(\tilde{x})| d \tilde{x} \\
& =-\int_{\mathcal{U} \cap \Omega}(A(x) \nabla u(x)) \cdot \nabla v(x) d x
\end{aligned}
$$

The matrix \tilde{A} is symmetric, since A is. Now let $\xi \in \mathbb{R}^{d}$. For $\tilde{x} \in \mathcal{W} \cap \mathbb{R}_{+}^{d}$ and $x=\Psi(\tilde{x})$ we have

$$
(\tilde{A}(\tilde{x}) \xi) \cdot \xi=|J \Psi(\tilde{x})|\left(A(x) J \Phi(x)^{\top} \xi\right) \cdot\left(J \Phi(x)^{\top} \xi\right) \geqslant \alpha|J \Psi(\tilde{x})|\left|J \Phi(x)^{\top} \xi\right|^{2} \geqslant \tilde{\alpha}|\xi|^{2}
$$

with

$$
\tilde{\alpha}=\alpha \frac{\inf |J \Psi|}{\sup \|J \Psi\|}>0
$$

Thus, according to the case $\Omega=\mathbb{R}_{+}^{d}$, we have $\tilde{u} \in H^{2}\left(\mathcal{W} \cap \mathbb{R}_{+}^{d}\right)$ with $\|\tilde{u}\|_{H^{2}\left(\mathcal{W} \cap \mathbb{R}_{+}^{d}\right)} \leqslant$ $\tilde{C}\left(\|\tilde{f}\|_{L^{2}\left(\mathcal{W} \cap \mathbb{R}_{+}^{d}\right)}+\|\tilde{u}\|_{H^{1}\left(\mathcal{W} \cap \mathbb{R}_{+}^{d}\right)}\right)$, for some constant $C>0$ independant of f or \tilde{f}. Going back to Ω, we deduce that $u \in H^{2}(\mathcal{U} \cap \Omega)$ with $\|u\|_{H^{2}(\mathcal{U} \cap \Omega)} \leqslant C\left(\|f\|_{L^{2}(\mathcal{U} \cap \Omega)}+\|u\|_{H^{1}(\mathcal{U} \cap \Omega)}\right)$, with $C>0$ independant of f.

Now we use the notation of Paragraph 2.3.1. For all $j \in \llbracket 0, N \rrbracket$ we have in the weak sense

$$
P\left(\chi_{j} u\right)=f_{j}
$$

where, for some $C_{j}>0$,

$$
\left\|f_{j}\right\|_{L^{2}(\Omega)} \leqslant C_{j}\left(\|f\|_{L^{2}(\Omega)}+\|u\|_{H^{1}(\Omega)}\right)
$$

For $j \in \llbracket 0, N \rrbracket$ we apply the above results to $\chi_{j} u$. Then we deduce that $u=\sum_{j=0}^{N}\left(\chi_{j} u\right)$ belongs to $H^{2}(\Omega)$, and

$$
\begin{aligned}
&\|u\|_{H^{2}(\Omega)} \leqslant \sum_{j=0}^{N}\left\|\chi_{j} u\right\|_{H^{2}(\Omega)} \leqslant \sum_{j=0}^{N} \tilde{C}_{j}\left(\left\|f_{j}\right\|_{L^{2}(\Omega)}+\left\|\chi_{j} u\right\|_{\left.H^{1}(\Omega)\right)}\right) \\
& \leqslant C\left(\|f\|_{L^{2}(\Omega)}+\|u\|_{H^{1}(\Omega)}\right)
\end{aligned}
$$

This completes the proof. For the higher regularity, we check that under the stronger assumptions of the proposition we have higher regularity for \tilde{u} and u at each step of the proofs. We omit the details.

Exercise 31. Assume that $A \in W^{1, \infty}(\Omega), B \in L^{\infty}(\Omega)$ and $c \in L^{\infty}(\Omega)$. Prove that there exists $C \geqslant 1$ such that for all $u \in H^{2}(\Omega)$ we have

$$
C^{-1}\|u\|_{H^{2}(\Omega)} \leqslant\|P u\|_{L^{2}(\Omega)}+\|u\|_{L^{2}(\Omega)} \leqslant C\|u\|_{H^{2}(\Omega)}
$$

3.4 The Poisson equation on a bounded domain

After the analysis of a quite general second order elliptic equation, we go back to the model case, namely the Poisson equation. We have already discussed in Exercise 27 and in Paragraph 3.3.1 (see (3.23)) the fact that the equation $-\Delta u=f$ is not well posed on \mathbb{R}^{d}.

Here we consider the same problem on a bounded open subset Ω of \mathbb{R}^{d}. Of course, as above, we will have to add an additional condition to get a well posed problem (otherwise, we see that if u is a solution, then $u+\beta$ is also a solution for any constant β).

We begin with the Poisson equation with Dirichlet boundary condition

$$
\begin{cases}-\Delta u=f, & \text { on } \Omega \tag{3.29}\\ u=0, & \text { on } \partial \Omega\end{cases}
$$

The corresponding bilinear form is given by (3.23) as in \mathbb{R}^{d}. The important difference is the Poincaré inequality, according to which the H^{1} norm is controled by the norm of the gradient on $H_{0}^{1}(\Omega)$ (see Theorem 2.49).

Proposition 3.22. Let Ω be a bounded subset of \mathbb{R}^{d} and let $f \in L^{2}(\Omega)$. There exists a unique $u \in H_{0}^{1}(\Omega)$ such that

$$
\forall v \in H_{0}^{1}(\Omega), \quad \int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Omega} f v d x
$$

Proof. For $u, v \in H_{0}^{1}(\Omega)$ we set

$$
a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v
$$

This defines a continuous bilinear form on $H_{0}^{1}(\Omega)$. By the Poincaré Inequality, there exists $\alpha>0$ such that for $u \in H_{0}^{1}(\Omega)$ we have

$$
a(u, u)=\|\nabla u\|_{L^{2}(\Omega)}^{2} \geqslant \alpha\|u\|_{H^{1}(\Omega)}^{2}
$$

This gives the coercivity of a and the conclusion follows from the Lax-Milgram Theorem.
Then, by Proposition 3.21, the weak solution of (3.29) given by Proposition 3.22 belongs to $H^{2}(\Omega)$ (and it is even in $H^{k+2}(\Omega)$ if $f \in H^{k}(\Omega)$ and Ω is of class C^{k+2} for some $k \in \mathbb{N}$).

We continue with the same problem with Neumann boundary condition:

$$
\begin{cases}-\Delta u=f, & \text { on } \Omega \tag{3.30}\\ \partial_{\nu} u=0, & \text { on } \partial \Omega\end{cases}
$$

Compared to (3.12), we cannot give a analog of Proposition 3.22 with $H_{0}^{1}(\Omega)$ replaced by $H^{1}(\Omega)$. It is clear that the constant functions belong to $H^{1}(\Omega)$ and breaks the coercivity of the bilinear form a on $H^{1}(\Omega)$.

Thus, to recover some coercivity, we have to remove at least the constant functions from $H^{1}(\Omega)$. The Poincaré-Wiertinger inequality tells us that this is in fact enough, see Theorem 2.51 .

Notice that if $u \in H^{2}(\Omega)$ solves (3.30), then by the Green formula (see Theorem 2.44)

$$
\begin{equation*}
\int_{\Omega} f=-\int_{\Omega} \Delta u=0 \tag{3.31}
\end{equation*}
$$

This gives a necessary condition for (3.30) to have a solution in $H^{2}(\Omega)$. Thus it is natural to introduce

$$
\tilde{L}^{2}(\Omega)=\left\{f \in L^{2}(\Omega): \int_{\Omega} f=0\right\} .
$$

Proposition 3.23. Let Ω be a bounded, connected and open subset of \mathbb{R}^{d}. Let $f \in \tilde{L}^{2}(\Omega)$. There exists a unique $u \in \tilde{H}^{1}(\Omega)$ (see (2.32)) such that

$$
\begin{equation*}
\forall v \in \tilde{H}^{1}(\Omega), \quad \int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Omega} f v d x \tag{3.32}
\end{equation*}
$$

For the proof we check that $\tilde{H}^{1}(\Omega)$ is a Hilbert space, and then we follow the proof of Proposition 3.22, using Theorem 2.51 instead of Theorem 2.49.

Proposition 3.24. Let $f \in \tilde{L}^{2}(\Omega)$ and let u be the weak solution of (3.30) given by Proposition 3.23. Then in the sense of distributions we have $-\Delta u=f$.

Proof. Let $\phi \in C_{0}^{\infty}(\Omega)$. Then $\phi-\frac{1}{|\Omega|} \int_{\Omega} \phi d y$ belongs to $\widetilde{H}^{1}(\Omega)$, so we can write

$$
\begin{aligned}
\int_{\Omega} \nabla u \cdot \nabla \phi d x & =\int_{\Omega} \nabla u \cdot \nabla\left(\phi-\frac{1}{|\Omega|} \int_{\Omega} \phi d y\right) d x \\
& =\int_{\Omega} f\left(\phi-\frac{1}{|\Omega|} \int_{\Omega} \phi d y\right) d x \\
& =\int_{\Omega} f \phi d y-\int_{\Omega}\left(\frac{1}{|\Omega|} \int_{\Omega} f(x) d x\right) \phi d y \\
& =\int_{\Omega} f \phi d y
\end{aligned}
$$

This proves that $-\Delta u=f$ in the sense of distributions.
Exercise 32. Let Ω be a bounded subset of \mathbb{R}^{d}. Show that there exists $C>0$ such that for any $u \in H_{0}^{1}(\Omega)$ such that $\Delta u \in L^{2}(\Omega)$ we have

$$
\|u\|_{H^{1}(\Omega)} \leqslant C\|\Delta u\|_{L^{2}(\Omega)}
$$

Exercise 33. Let Ω be an open bounded subset of \mathbb{R}^{d}. We consider the Poisson equation with inhomogeneous Neumann boundary condition. Given $f \in L^{2}(\Omega)$ and $g \in H^{1 / 2}(\partial \Omega)$ we consider the problem

$$
\begin{cases}-\Delta u=f, & \text { on } \Omega \\ \partial_{\nu} u=g, & \text { on } \partial \Omega\end{cases}
$$

1. Give a necessary condition on f and g analogous to (3.31) for this problem to have a solution $u \in H^{2}(\Omega)$.
2. Give a variational formulation adapted to this problem. Prove existence and uniqueness of a weak solution in a suitable space.
3. What can we say about the regularity of this solution?
4. What happens if g is only in $H^{-1 / 2}(\partial \Omega)$?

3.5 The Fredholm alternative

3.5.1 Compact operators

We recall that we have defined compact operators in Definition 2.36. Given two Banach spaces X, Y we denote by $\mathcal{K}(X, Y)$ the set of compact operators from X to Y. We also write $\mathcal{K}(X)=\mathcal{K}(X, X)$.

Proposition 3.25. Let X and Y be two Banach spaces.
(i) Let $K \in \mathcal{K}(X, Y)$ and let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in X which converges weakly to some $x \in X$. Then $K\left(x_{n}\right)$ converges strongly to $K(x)$.
(ii) An operator with finite dimensional range is compact.
(iii) $\mathcal{K}(X, Y)$ is a closed subspace of $\mathcal{L}(X, Y)$.
(iv) For $K \in \mathcal{K}(X, Y), B_{1} \in \mathcal{B}\left(X_{1}, X\right)$ and $B_{2} \in \mathcal{B}\left(Y, Y_{2}\right)$ we have $K \circ B_{1} \in \mathcal{K}\left(X_{1}, Y\right)$ and $B_{2} \circ K \in \mathcal{K}\left(X, Y_{2}\right)$.
(v) For $K \in \mathcal{K}(X, Y)$ we have $K^{*} \in \mathcal{K}\left(Y^{*}, X^{*}\right)$.

Proof. We prove the first and last statements.
(i) The sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is weakly convergent, so it is bounded in X. By continuity, a convergent subsequence of $\left(K\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ necessarily goes to $K(x)$. This implies that $K\left(x_{n}\right)$ goes strongly to $K(x)$.
(ii) Let $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ be a bounded sequence in Y^{*}. We denote by B_{X} the unit ball in X. Since K is compact, $\overline{K\left(B_{X}\right)}$ is a compact metric space, and the functions $\varphi_{n}, n \in$ \mathbb{N}, are equicontinuous thereon. Then, by the Ascoli-Arzelà Theorem, there exists a subsequence $\left(\varphi_{n_{k}}\right)_{k \in \mathbb{N}}$ convergent in $C^{0}\left(\overline{K\left(B_{X}\right)}\right)$. We denote by $\varphi \in C^{0}\left(\overline{K\left(B_{X}\right)}\right)$ the limit. In particular we have

$$
\sup _{\|x\|_{X} \leqslant 1}\left|\varphi_{n_{k}}(K(x))-\varphi(K(x))\right| \xrightarrow[k \rightarrow+\infty]{ } 0
$$

We deduce that $\left(\varphi_{n_{k}} \circ K\right)$ is a Cauchy sequence in X^{*}. Since X^{*} is a Banach space, it has a limit in X^{*}. This proves that $K^{*} \in \mathcal{K}\left(Y^{*}, X^{*}\right)$.

Now we consider a Hilbert space \mathcal{H}.
Theorem 3.26. Let $K \in \mathcal{K}(\mathcal{H})$. Then $(\operatorname{Id}-K)$ is injective if and only if it is surjective, and in this case its inverse defines a bounded operator on \mathcal{H}. In any case we have

$$
\operatorname{dim}(\operatorname{Ker}(\operatorname{Id}-K))=\operatorname{dim}\left(\operatorname{Ker}\left(\operatorname{Id}-K^{*}\right)\right)<+\infty
$$

Moreover $\operatorname{Ran}(\operatorname{Id}-K)$ is always closed, and in particular

$$
\operatorname{Ran}(\operatorname{Id}-K)=\operatorname{Ker}\left(\operatorname{Id}-K^{*}\right)^{\perp}
$$

Remark 3.27. We recall that for any $A \in \mathcal{L}(\mathcal{H})$ we have

$$
\overline{\operatorname{Ran}(A)}=\operatorname{Ker}\left(A^{*}\right)^{\perp} .
$$

Proof. - Assume by contradiction that $\operatorname{dim}(\operatorname{Ker}(\operatorname{Id}-K))=+\infty$. Then we can find a sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{H} such that $\left\langle u_{n}, u_{m}\right\rangle=\delta_{n, m}$ and $K u_{n}=u_{n}$ for all $n, m \in \mathbb{N}$. This is in particular a bounded sequence but, for $n \neq m$,

$$
\left\|K u_{n}-K u_{m}\right\|_{\mathcal{H}}^{2}=\left\|u_{n}-u_{m}\right\|_{\mathcal{H}}^{2}=2
$$

so the sequence $\left(K u_{n}\right)_{n \in \mathbb{N}}$ cannot have a convergent subsequence. This gives a contradiction and prove that $\operatorname{dim}(\operatorname{Ker}(\operatorname{Id}-K))<+\infty$.

- Then we prove that there exists $\gamma>0$ such that

$$
\begin{equation*}
\forall u \in \operatorname{Ker}(\operatorname{Id}-K)^{\perp}, \quad\|u-K u\|_{\mathcal{H}} \geqslant \gamma\|u\|_{\mathcal{H}} . \tag{3.33}
\end{equation*}
$$

If this is not the case, we can find a sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ in $\operatorname{Ker}(\operatorname{Id}-K)^{\perp}$ such that $\left\|u_{n}\right\|_{\mathcal{H}}=1$ and $\left\|u_{n}-K u_{n}\right\|_{\mathcal{H}} \leqslant 2^{-n}$ for all $n \in \mathbb{N}$. Since $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded, there exists a subsequence $\left(u_{n_{k}}\right)_{k \in \mathbb{N}}$ and $u \in \mathcal{H}$ such that $u_{n_{k}}$ goes weakly to u as $k \rightarrow+\infty$. Since K is compact, we have $\left\|K u_{n_{k}}-K u\right\|_{\mathcal{H}} \rightarrow 0$ as $k \rightarrow+\infty$. Then

$$
u_{n_{k}}=K u_{n_{k}}+\left(u_{n_{k}}-K u_{n_{k}}\right) \xrightarrow[k \rightarrow+\infty]{ } K u .
$$

This implies that $u=K u$, so $u \in \operatorname{Ker}(\operatorname{Id}-K)$. In particular, for all $n \in \mathbb{N}$ we have $\left\langle u, u_{n_{k}}\right\rangle_{\mathcal{H}}=$ 0 so, taking the limit, $\|u\|_{\mathcal{H}}=0$. This gives a contradiction and proves (3.33).

- We deduce from (3.33) that $\operatorname{Ran}(\operatorname{Id}-K)$ is closed in \mathcal{H}. Indeed, let $\left(v_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $\operatorname{Ran}(\operatorname{Id}-K)$ which goes to some v in \mathcal{H}. Then for all $n \in \mathbb{N}$ there exists $u_{n} \in \operatorname{Ker}(\operatorname{Id}-K)^{\perp}$ such that $v_{n}=(\operatorname{Id}-K) u_{n}$. By $(3.33),\left(u_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathcal{H}, and hence it has a limit $u \in \mathcal{H}$, By continuity, we have $v=(\operatorname{Id}-K) u \in \operatorname{Ran}(\operatorname{Id}-K)$, which proves that $\operatorname{Ran}(\operatorname{Id}-K)$ is closed.
- Now assume that $(\operatorname{Id}-K)$ is injective, and assume by contradiction that $\mathcal{H}_{1}=(\operatorname{Id}-K)(\mathcal{H})$ is not equal to \mathcal{H}. Since \mathcal{H}_{1} is closed, it is a Hilbert space with the structure inherited from \mathcal{H}, and by restriction, K defines a compact operator on \mathcal{H}_{1}. We set $\mathcal{H}_{2}=(\operatorname{Id}-K)\left(\mathcal{H}_{1}\right)$. Then \mathcal{H}_{2} is closed, and since ($\operatorname{Id}-K$) is injective, we have $\mathcal{H}_{2} \nsubseteq \mathcal{H}_{1}$ (take $u \in \mathcal{H} \backslash \mathcal{H}_{1}$, then (Id $-K) u$ belongs to $\left.\mathcal{H}_{1} \backslash \mathcal{H}_{2}\right)$. By induction we set $\mathcal{H}_{k}=(\operatorname{Id}-K)\left(\mathcal{H}_{k-1}\right)$ for all $k \geqslant 2$. Then \mathcal{H}_{k} is closed and $\mathcal{H}_{k+1} \mp \mathcal{H}_{k}$ for all $k \in \mathbb{N}^{*}$. In particular, for all $k \in \mathbb{N}^{*}$ we can find $u_{k} \in \mathcal{H}_{k}$ such that $\left\|u_{k}\right\|_{\mathcal{H}}=1$ and $u_{k} \in \mathcal{H}_{k+1}^{\perp}$. Then for $k \in \mathbb{N}^{*}$ and $j>k$ we have

$$
K u_{j}-K u_{k}=-\left(u_{j}-K u_{j}\right)+\left(u_{k}-K u_{k}\right)+u_{j}-u_{k} .
$$

Since $-\left(u_{j}-K u_{j}\right)+\left(u_{k}-K u_{k}\right)+u_{j} \in \mathcal{H}_{k+1}$ this yields

$$
\left\|K u_{j}-K u_{k}\right\| \geqslant 1
$$

This gives a contradiction since K is compact. Thus, if ($\operatorname{Id}-K$) is injective, then it is also surjective.

- Conversely, assume that $\operatorname{Ran}(\operatorname{Id}-K)=\mathcal{H}$. Then $\operatorname{Ker}\left(\operatorname{Id}-K^{*}\right)=\{0\}$. Since K^{*} is also compact, we deduce that $\left(\operatorname{Id}-K^{*}\right)$ is surjective, and finally

$$
\operatorname{Ker}(\operatorname{Id}-K)=\operatorname{Ker}\left(\operatorname{Id}-K^{* *}\right)=\operatorname{Ran}\left(\operatorname{Id}-K^{*}\right)^{\perp}=\{0\}
$$

This proves that $(\operatorname{Id}-K)$ is injective if and only if it is surjective. Moreover, in this case, (3.33) proves that the inverse $(\operatorname{Id}-K)^{-1}$ defines a bounded operator with $\left\|(\operatorname{Id}-K)^{-1}\right\|_{\mathcal{L}(\mathcal{H})} \leqslant$ γ^{-1}.

- It remains to prove that $\operatorname{Ker}(\operatorname{Id}-K)$ and $\operatorname{Ker}\left(\operatorname{Id}-K^{*}\right)$ have the same dimension. Assume by contradiction that $\operatorname{dim}(\operatorname{Ker}(\operatorname{Id}-K))<\operatorname{dim}\left(\operatorname{Ran}(\operatorname{Id}-K)^{\perp}\right)$. There exists a bounded operator $A: \operatorname{Ker}(\operatorname{Id}-K) \rightarrow \operatorname{Ran}(\operatorname{Id}-K)^{\perp}$ injective but not surjective. We extend A by 0 on $\operatorname{Ker}(\operatorname{Id}-K)^{\perp}$. This defines an operator A on \mathcal{H} which has a finite dimensional range included in $\operatorname{Ran}(\operatorname{Id}-K)^{\perp}$. In particular it is compact, and so is $\tilde{K}=K+A$. Let $u \in \operatorname{Ker}(\operatorname{Id}-\tilde{K})$. We have $u-K u=A u$. Since $u-K u \in \operatorname{Ran}(\operatorname{Id}-K)$ and $A u \in \operatorname{Ran}(\operatorname{Id}-K)^{\perp}$, we have $u-K u=0$. Therefore $u=0$ since A is injective on $\operatorname{Ker}(\operatorname{Id}-K)$. Then $(\operatorname{Id}-\tilde{K})$ is injective, and hence surjective. However for $v \in \operatorname{Ran}(\operatorname{Id}-K)^{\perp} \backslash \operatorname{Ran}(A)$ the equation

$$
u-(K u+A u)=v
$$

cannot have a solution. This gives a contradiction and proves that

$$
\operatorname{dim}(\operatorname{Ker}(\operatorname{Id}-K)) \geqslant \operatorname{dim}\left(\operatorname{Ran}(\operatorname{Id}-K)^{\perp}\right)=\operatorname{dim}\left(\operatorname{Ker}\left(\operatorname{Id}-K^{*}\right)\right)
$$

We get the opposite inequality by interchanging the roles of K and K^{*}, and the proof is complete.

Exercise 34. Let $K \in \mathcal{L}(\mathcal{H})$. Prove that

$$
\operatorname{dim}\left(\bigcup_{k \in \mathbb{N}} \operatorname{Ker}\left((\operatorname{Id}-K)^{k}\right)\right)<+\infty
$$

3.5.2 Aplication to second order elliptic equations

Now we apply the abstract Fredholm theory to our second order elliptic equations. We introduce the formal adjoint P^{*} of the operator P defined (3.2). It is defined by

$$
P^{*} u=-\operatorname{div}(A \nabla u)-B \cdot \nabla u+(c-\operatorname{div} B) u
$$

In particular $P^{*}=P$ if $B=0$ (this is not the case with complex coefficients). The corresponding bilinear form is defined on $H_{0}^{1}(\Omega)$ by

$$
a_{P *}(u, v)=a_{P}(v, u),
$$

where a_{P} is defined by (3.22). In particular, $u \in H_{0}^{1}(\Omega)$ is a weak solution for the problem

$$
\begin{cases}P^{*} u=0, & \text { on } \Omega \tag{3.34}\\ u=0, & \text { on } \partial \Omega\end{cases}
$$

if and only if $a_{P}(v, u)=0$ for all $v \in H_{0}^{1}(\Omega)$. Moreover P^{*} is elliptic with the same coefficient $\alpha>0$ as P (see (3.4)), and for $\left.\alpha_{0} \in\right] 0, \alpha\left[\right.$ Lemma 3.19 gives the same γ_{0} as for P.

Theorem 3.28. Let Ω be a bounded open subset of \mathbb{R}^{d} and let P be defined by (3.2).
(i) The problem (3.20) has a unique weak solution for any $f \in L^{2}(\Omega)$ if and only if 0 is the only weak solution for the homogeneous problem

$$
\begin{cases}P u=0, & \text { on } \Omega \tag{3.35}\\ u=0, & \text { on } \partial \Omega\end{cases}
$$

(ii) The problem (3.20) has a weak solution if and only if f is orthogonal in $L^{2}(\Omega)$ to the set N^{*} of weak solutions of the problem (3.34). And in this case the set of weak solutions of (3.20) is a subspace of $H_{0}^{1}(\Omega)$ of dimension $\operatorname{dim}\left(N^{*}\right)$.

Proof. - It is clear that if (3.20) has a unique weak solution for any $f \in L^{2}(\Omega)$ then in particular 0 is the unique weak solution for (3.35). Conversely, assume that 0 is the unique weak solution for (3.35). By linearity, a weak solution of (3.20) is necessarily unique. It remains to prove existence. Let $f \in L^{2}(\Omega)$.

Let γ_{0} be given by Lemma 3.19 and let $\gamma>\gamma_{0}$. For $g \in L^{2}(\Omega)$ we denote by $R g$ the unique weak solution u of the problem

$$
\begin{cases}P u+\gamma u=g, & \text { on } \Omega \\ u=0, & \text { on } \partial \Omega\end{cases}
$$

By Proposition 3.20, this defines a continuous operator $R: L^{2}(\Omega) \rightarrow H_{0}^{1}(\Omega)$. Since $H_{0}^{1}(\Omega)$ is compactly embedded in $L^{2}(\Omega)$ by Theorem 2.38 , we can see R as a compact operator on $L^{2}(\Omega)$.

A function $u \in H_{0}^{1}(\Omega)$ is a weak solution of (3.20) if and only if $u=R(f+\gamma u)$. If we set $K=\gamma R$, this is equivalent to

$$
\begin{equation*}
(\operatorname{Id}-K) u=R f \tag{3.36}
\end{equation*}
$$

If $u \in \operatorname{Ker}(\operatorname{Id}-K)$ then $u \in H_{0}^{1}(\Omega)$ and u is a weak solution of (3.35), so $u=0$. This proves that $\operatorname{Id}-K$ is injective. By Theorem 3.26, it is also surjective so there exists a solution $u \in L^{2}(\Omega)$ of (3.36). Since $u=R f+K u \in H_{0}^{1}(\Omega)$, it is a weak solution of (3.20), which proves the first statement.

- We observe that the adjoint R^{*} of R maps $g \in L^{2}(\Omega)$ to the unique weak solution of

$$
\begin{cases}P^{*} u+\gamma u=g, & \text { on } \Omega, \\ u=0, & \text { on } \partial \Omega\end{cases}
$$

Therefore v is a weak solution of (3.34) if and only if

$$
\left(\operatorname{Id}-K^{*}\right) v=0
$$

Then, by Theorem 3.26 again,

$$
N^{*}=\operatorname{Ker}\left(\operatorname{Id}-K^{*}\right)=\operatorname{Ran}(\operatorname{Id}-K)^{\perp}
$$

Then the problem (3.20) has a weak solution if and only if $R f \in\left(N^{*}\right)^{\perp}$, that is if and only if

$$
\forall v \in N^{*}, \quad\langle f, v\rangle_{\mathcal{H}}=\left\langle f, K^{*} v\right\rangle_{\mathcal{H}}=\langle K f, v\rangle_{\mathcal{H}}=\gamma\langle R f, v\rangle_{\mathcal{H}}=0 .
$$

This gives the first part of the second statement. Finally, by Theorem 3.26 we also have

$$
\operatorname{dim}(\operatorname{Ker}(\operatorname{Id}-K))=\operatorname{dim}\left(N^{*}\right)
$$

and the proof is complete.
Remark 3.29. The first statement of Theorem 3.28 is very important, and it does not hold in general. For instance, given $f \in L^{2}(\mathbb{R})$, then u is a weak solution of the Poisson equation

$$
-u^{\prime \prime}=f
$$

if and only if $u \in H^{2}(\mathbb{R})$ and, for almost all $\xi \in \mathbb{R}$,

$$
\xi^{2} \hat{u}(\xi)=\hat{f}(\xi) .
$$

Then we see that $u=0$ is the only solution when $f=0$, but there is no solution for instance if $\hat{f}=1$ on a neighborhood of 0 .

Exercise 35. Let Ω be a bounded open connected subset of \mathbb{R}^{d} of class C^{1}.

1. For $f \in L^{2}(\Omega)$ we denote by $R(f) \in H^{1}(\Omega)$ the unique weak solution u of the problem

$$
\begin{cases}-\Delta u+u=f, & \text { on } \Omega \\ \partial_{\nu} u=0, & \text { on } \partial \Omega\end{cases}
$$

Prove that this defines a compact operator R on $L^{2}(\Omega)$.
2. Prove that $R^{*}=R$.
3. Prove that $\operatorname{Ker}(\operatorname{Id}-R)$ is the set $\langle 1\rangle$ of constant functions on Ω.
4. Let $f \in L^{2}(\Omega)$. Prove that (3.30) has a solution if and only if $R f \in\langle 1\rangle^{\perp}$. Deduce that (3.30) has a solution if and only if f itself is orthogonal to $\langle 1\rangle$.
5. Let $f \in L^{2}(\Omega)$ such that (3.30) has a solution $u_{0} \in H^{1}(\Omega)$. Prove that the set of solution is given by $u_{0}+\operatorname{Ker}(\operatorname{Id}-R)$.
Compare all these results with the results of Section 3.4.

3.6 Spectral properties of elliptic operators

Let \mathcal{H} be a real (or complex) Hilbert. An operator A on \mathcal{H} is a linear map from a dense subset \mathcal{D} of \mathcal{H} to \mathcal{H}. We say that \mathcal{D} is the domain of A.

Let $\lambda \in \mathbb{C}$ (or $\lambda \in \mathbb{R}$). We say that λ is in the resolvent set $\rho(A)$ of A if the operator $(A-\lambda \mathrm{Id}): \mathcal{D} \rightarrow \mathcal{H}$ is bijective and if its inverse $(A-\lambda \mathrm{Id})^{-1}$ defines a bounded operator on \mathcal{H}. We usually write $(A-\lambda)$ instead of $(A-\lambda \mathrm{Id})$. The spectrum $\sigma(A)$ of A is the complement of $\rho(A)$ in $\mathbb{R}($ or $\mathbb{C})$.

We recall that if \mathcal{H} is of finite dimension, a linear map is bijective if and only if it is injective, and in this case the inverse is always continuous, so the spectrum of A is exactly the set of eigenvalues. This is not the case in general, as was discussed in Remark 3.29.

If λ is an eigenvalue of A, then its geometric multiplicity is

$$
\operatorname{dim}(\operatorname{Ker}(A-\lambda))
$$

and its algebraic multiplicity is

$$
\operatorname{dim}\left(\bigcup_{k \in \mathbb{N}} \operatorname{Ker}\left((A-\lambda)^{k}\right)\right)=\lim _{k \rightarrow+\infty} \operatorname{dim}\left(\operatorname{Ker}(A-\lambda)^{k}\right)
$$

In particular, the geometric multiplicity is smaller than or equal to the algebraic multiplicity.

3.6.1 Spectrum of compact operators

For compact operators, we have the following result.
Theorem 3.30. Let $K \in \mathcal{K}(\mathcal{H})$.
(i) If $\operatorname{dim}(\mathcal{H})=+\infty$ then 0 belongs to the spectrum of K.
(ii) $\lambda \in \mathbb{C}^{*}$ belongs to the spectrum of K if and only if it is an eigenvalue of K. In this case it is an eigenvalue of finite (geometric and algebraic) multiplicity.
(iii) $\sigma(K) \backslash\{0\}$ is finite or is given by a sequence of eigenvalues tending to 0 .

Proof. - Assume by contradiction that 0 belongs to the resolvent set of K. Then Id is the composition of the compact operator K with the bounded operator K^{-1}, so Id is a compact operator. This is a contradiction and proves that 0 is in the spectrum of K.

- Let $\lambda \in \mathbb{C}^{*}$. Then we have $K-\lambda=\lambda\left(\lambda^{-1} K-\operatorname{Id}\right)$. Since $\lambda^{-1} K$ is compact, Theorem 3.26 shows that $(K-\lambda)$ is bijective (with bounded inverse) if and only if it is injective, so λ is in the resolvent set of K if and only if it is not an eigenvalue. Moreover, if λ is an eigenvalue of K we have $\operatorname{dim}(\operatorname{Ker}(K-\lambda))=\operatorname{dim}\left(\operatorname{Ker}\left(\lambda^{-1} K-\mathrm{Id}\right)\right)<+\infty$. More generally, Exercise 34 shows that 1 is an eigenvalue of finite algebraic multiplicity for $\lambda^{-1} K$.
- Since K is a bounded operator, the set of eigenvalues of K is bounded in \mathbb{C}. Assume that $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ is a sequence of distinct non-zero eigenvalues of K tending to some $\lambda \in \mathbb{C}$. We prove that $\lambda=0$. For $n \in \mathbb{N}$ we consider $w_{n} \in \mathcal{H} \backslash\{0\}$ such that $K w_{n}=\lambda_{n} w_{n}$. Then for $n \in \mathbb{N}$ we set $\mathcal{H}_{n}=\operatorname{span}\left(w_{0}, \ldots, w_{n-1}\right)$ and we consider $u_{n} \in \mathcal{H}_{n}$ such that $\left\|u_{n}\right\|=1$ and $u_{n} \in \mathcal{H}_{n-1}^{\perp}$ if $n \geqslant 1$. Then for $j \in \mathbb{N}$ and $k>j$ we have

$$
\left\|\frac{K u_{k}}{\lambda_{k}}-\frac{K u_{j}}{\lambda_{j}}\right\|_{\mathcal{H}}=\left\|\frac{K u_{k}-\lambda_{k} u_{k}}{\lambda_{k}}-\frac{K u_{j}-\lambda_{j} u_{j}}{\lambda_{j}}+u_{k}-u_{j}\right\|_{\mathcal{H}} \geqslant 1
$$

since $K u_{k}-\lambda_{k} u_{k}, K u_{j}-\lambda_{j} u_{j}, u_{j} \in \mathcal{H}_{k-1}$. If $\lambda \neq 0$ we obtain a contradiction with the compactness of K.

3.6.2 The case of symmetric operators

Let A be a bounded operator on \mathcal{H}. We assume that A is symmetric:

$$
\forall \varphi, \psi \in \mathcal{H}, \quad\langle A \varphi, \psi\rangle_{\mathcal{H}}=\langle\varphi, A \psi\rangle_{\mathcal{H}}
$$

In particular, even if \mathcal{H} is a complex Hilbert space, we have $\langle A u, u\rangle \in \mathbb{R}$ for all $u \in \mathcal{H}$. In particular, the eigenvalues of A are real. Moreover, two eigenspaces of A corresponding to two distinct eigenvalues are orthogonal.

Lemma 3.31. Let A be a bounded symmetric operator on \mathcal{H}. Let

$$
m=\inf _{\substack{u \in \mathcal{H} \\\|u\|=1}}\langle A u, u\rangle_{\mathcal{H}} \quad \text { and } \quad M=\sup _{\substack{u \in \mathcal{H} \\\|u\|=1}}\langle A u, u\rangle_{\mathcal{H}}
$$

Then $\sigma(A) \subset[m, M]$ and $m, M \in \sigma(A)$.
Proof. We consider the case where \mathcal{H} is a real Hilbert space. We prove that $] M,+\infty[\subset \rho(A)$ and that $M \in \sigma(A)$. Let $\lambda>M$. For $u \in \mathcal{H}$ we have

$$
\langle\lambda u-A u, u\rangle_{\mathcal{H}} \geqslant(\lambda-M)\|u\|_{\mathcal{H}}^{2} .
$$

By the Lax-Milgram Theorem, the operator $\lambda-A$ is bijective with bounded inverse on \mathcal{H}, so $\lambda \in \rho(A)$.

Now let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathcal{H} such that $\left\|u_{n}\right\|_{\mathcal{H}}=1$ for all $n \in \mathbb{N}$ and

$$
\left\langle A u_{n}, u_{n}\right\rangle \xrightarrow[n \rightarrow+\infty]{ } M
$$

The quadratic form $u \mapsto\langle(M-A) u, u\rangle$ is non-negative, so by the Cauchy-Schwarz inequality we have for all $u, v \in \mathcal{H}$

$$
\left|\langle(M-A) u, v\rangle_{\mathcal{H}}\right|^{2} \leqslant\langle(M-A) u, u\rangle_{\mathcal{H}}\langle(M-A) v, v\rangle_{\mathcal{H}}
$$

Applied with $u=u_{n}$ and $v=(M-A) u_{n}$ this gives

$$
\left\|(M-A) u_{n}\right\|_{\mathcal{H}}^{2} \leqslant\left\langle(M-A) u_{n}, u_{n}\right\rangle_{\mathcal{H}}\left\langle(M-A)^{3} u_{n},(M-A) u_{n}\right\rangle_{\mathcal{H}} \xrightarrow[n \rightarrow+\infty]{ } 0 .
$$

This proves that $M \in \sigma(A)$.
Theorem 3.32. Let \mathcal{H} be a separable Hilbert space and let K be a compact and symmetric operator on \mathcal{H}. Then there exists an orthonormal basis $\left(e_{n}\right)_{n \in \mathbb{N}}$ consisting of eigenvectors of K.

Proof. Let $\left(\lambda_{n}\right)_{1 \leqslant n \leqslant N}$ for $N \in \mathbb{N} \cup\{+\infty\}$ be the sequence of distinct non-zero eigenvalues of K. For $n \in \llbracket 1, N \rrbracket$ we set $\mathcal{H}_{n}=\operatorname{Ker}\left(K-\lambda_{n}\right)$. Then we have $\operatorname{dim}\left(\mathcal{H}_{n}\right) \in \mathbb{N}^{*}$. We also set $\mathcal{H}_{0}=\operatorname{Ker}(K)$.

We set $\tilde{\mathcal{H}}=\operatorname{span}\left(\bigcup_{n=0}^{N} \mathcal{H}_{n}\right)$. We have $K(\tilde{\mathcal{H}}) \subset \tilde{\mathcal{H}}$ and hence $K\left(\tilde{\mathcal{H}}^{\perp}\right) \subset \tilde{\mathcal{H}}^{\perp}$. Assume by contradiction that $\tilde{\mathcal{H}}^{\perp} \neq\{0\}$. The restriction of K to $\tilde{\mathcal{H}}^{\perp}$ is compact and symmetric, and it has no eigenvalue, so its spectrum is included in $\{0\}$. By Lemma 3.31, we have $\langle K u, u\rangle=0$ for all $u \in \tilde{\mathcal{H}}^{\perp}$. We deduce that $K=0$ on $\tilde{\mathcal{H}}_{\tilde{\mathcal{H}}}^{\perp}$, and hence $\tilde{\mathcal{H}}^{\perp} \subset \operatorname{Ker}(K) \subset \tilde{\mathcal{H}}$. This gives a contradiction and proves that $\tilde{\mathcal{H}}^{\perp}=\{0\}$, so $\tilde{\mathcal{H}}$ is dense.

It only remains to choose an orthonormal basis of each \mathcal{H}_{n} for $n \in \llbracket 1, N \rrbracket$, and a countable orthonormal basis of \mathcal{H}_{0} (it exists since \mathcal{H} is separable).

3.6.3 Operators with compact resolvent

Theorem 3.33. Let A be an operator on \mathcal{H} with domain \mathcal{D}. Assume that there exists z_{0} such that $\left(A-z_{0}\right)$ is bijective and $\left(A-z_{0}\right)^{-1}: \mathcal{H} \rightarrow \mathcal{D} \subset \mathcal{H}$ defines a compact operator on \mathcal{H}. Then the spectrum of A consists of a discrete set of eigenvalues with finite (geometric and algebraic) multiplicities (in particular the spectrum of A is countable without accumulation points).

Proof. Let $B=A-z_{0}: \mathcal{D} \rightarrow \mathcal{H}$. We have $0 \in \rho(B)$ and B^{-1} defines a compact operator on \mathcal{H}. Let $\lambda \in \mathbb{C}^{*}$. Assume that $\lambda \in \rho(B)$. We have

$$
B^{-1}-\lambda^{-1}=-\lambda^{-1}(B-\lambda) B^{-1},
$$

we deduce that $B^{-1}-\lambda^{-1}: \mathcal{H} \rightarrow \mathcal{H}$ is invertible, with bounded inverse $\left(B^{-1}-\lambda^{-1}\right)^{-1}=$ $-B(B-\lambda)^{-1} \lambda=-\lambda-\lambda^{2}(B-\lambda)^{-1}$. Similarly, on \mathcal{D} we have

$$
\begin{equation*}
B-\lambda=-\lambda\left(B^{-1}-\lambda^{-1}\right) B . \tag{3.37}
\end{equation*}
$$

If $\lambda^{-1} \in \rho\left(B^{-1}\right)$ then $B-\lambda: \mathcal{D} \rightarrow \mathcal{H}$ is invertible and its inverse $(B-\lambda)^{-1}=-B^{-1}\left(B^{-1}-\right.$ $\left.\lambda^{-1}\right)^{-1} \lambda^{-1}$ defines a bounded operator on \mathcal{H}. Thus $\lambda \in \rho(B)$. This proves that the map $\lambda \mapsto \lambda^{-1}$ is a bijection between the spectrum of B and the non-zero spectrum of B^{-1}. In particular, the spectrum of B is discrete. Moreover, if $\lambda \in \sigma(B)$ then $\left(B^{-1}-\lambda^{-1}\right)$ is not injective. By (3.37), λ is an eigenvalue of B, with finite geometric multiplicity. More precisely, since B and B^{-1} commute, we see that for $k \in \mathbb{N}^{*}$ we have

$$
\operatorname{Ker}\left((B-\lambda)^{k}\right)=\operatorname{Ker}\left(\left(B^{-1}-\lambda^{-1}\right)^{k}\right)
$$

so the eigenvalues of B have finite algebraic multiplicities. After translation, the operator A shares the same properties and the proof is complete.

3.6.4 Spectrum of elliptic operators

Let Ω be an open bounded subset of \mathbb{R}^{d}. We consider a second order elliptic operator P as defined by (3.2), with the symmetry and ellipticity assumptions (3.38) and (3.4).

So far we have mostly discussed the variational version of the problem (3.20), given by the bilinear form (3.22) on $H_{0}^{1}(\Omega)$. This means that P was seen as a function from $H_{0}^{1}(\Omega)$ to its dual $H^{-1}(\Omega)$. However we have seen that a weak solution $u \in H_{0}^{1}(\Omega)$ belongs in fact to $H^{2}(\Omega)$, and (3.20) holds in the strong sense.

Now let us see P directly as a linear map from $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ to $L^{2}(\Omega)$. This is then an operator on $L^{2}(\Omega)$ with domain $\mathcal{D}(P)=H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$.

Theorem 3.34. The spectrum of P consists of a discrete set of eigenvalues with finite algebraic multiplicities.
Proof. Let $\left.\alpha_{0} \in\right] 0, \alpha\left[\right.$ and let γ_{0} be given by Lemma 3.19. Let $\gamma>\gamma_{0}$. For $f \in L^{2}(\Omega)$ the problem (3.25) has a unique weak solution $u \in H_{0}^{1}(\Omega)$. Moreover $u \in H^{2}(\Omega)$ and there exists $C>0$ independant of f such that $\|u\|_{H^{2}(\Omega)} \leqslant C\|f\|_{L^{2}(\Omega)}$. This proves that $P+\gamma$: $\mathcal{D}(P) \rightarrow L^{2}(\Omega)$ is bijective with bounded inverse. Thus $-\gamma \in \rho(P)$. Moreover, since the inclusion $H^{2}(\Omega) \subset L^{2}(\Omega)$ is compact, the inverse $(P+\gamma)^{-1}$ is compact. Then we conclude with Theorem 3.33.

In particular we recover the first statement of Theorem 3.28. We know that the sets of weak and strong solutions of (3.20) coincide. Then Theorem 3.34 says that P is bijective with bounded inverse (for all $f \in L^{2}(\Omega)$ the problem (3.20) has a unique strong solution u and $\|u\|_{H^{2}(\Omega)} \leqslant C\|f\|_{L^{2}(\Omega)}$ for some $\left.C>0\right)$ if and only if 0 is not an eigenvalue of $P(0$ is the unique solution if $f=0$).

Now we assume that $B=0$. Then P is formally symmetric, in the sense that

$$
\begin{equation*}
P^{*}=P \tag{3.38}
\end{equation*}
$$

where P^{*} is as in (2.18). In particular, in Lemma 3.19 we can take $\alpha_{0}=\alpha$ and $\gamma_{0}=-\inf c$.
Notice then that if $u \in H_{0}^{1}(\Omega) \backslash\{0\}$ and $\lambda \in \mathbb{R}$ are such that

$$
\forall v \in H_{0}^{1}(\Omega), \quad a(u, v)=\lambda\langle u, v\rangle
$$

then we necessarily have $\lambda>-\gamma_{0}$.
Theorem 3.35. Assume that the operator P is symmetric and let γ_{0} be as above.
(i) The spectrum of P consists of a sequence of eigenvalues greater than $\left(-\gamma_{0}\right)$ and going to $+\infty$. The geometric and algebraic multiplicities of these eigenvalues coincide, and they are all finite.
(ii) There exists an orthonormal basis of $L^{2}(\Omega)$ which consists of eigenfunctions for the operator P.

If we denote by $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ the non-decreasing sequence of eigenvalues repeated according to multiplicities we have

$$
\gamma_{0}<\lambda_{1} \leqslant \lambda_{2} \leqslant \ldots \leqslant \lambda_{n} \xrightarrow[n \rightarrow+\infty]{ }+\infty
$$

Then there exists an orthonormal basis $\left(\varphi_{n}\right)_{n \in \mathbb{N}^{*}}$ such that for $n \in \mathbb{N}^{*}$ we have $\varphi_{n} \in$ $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ and $P \varphi_{n}=\lambda_{n} \varphi_{n}$. Equivalently, $\varphi_{n} \in H_{0}^{1}(\Omega)$ is the unique weak solution for the problem

$$
\begin{cases}P \varphi_{n}=\lambda_{n} \varphi_{n} & \text { in } \Omega \tag{3.39}\\ \varphi_{n}=0 & \text { on } \partial \Omega\end{cases}
$$

Proof. We apply Theorem 3.34. We have already said that the eigenvalues are greater than $\left(-\gamma_{0}\right)$. Let $\gamma>\gamma_{0}$. By Theorem 3.32, there exists an orthonormal basis $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ of eigenfunctions for $(P+\gamma)^{-1}$. The functions $\varphi_{n}, n \in \mathbb{N}$, are also eigenfunctions for P. Indeed, if $(P+\gamma)^{-1} \varphi_{n}=\mu_{n} \varphi_{n}$ then $\mu_{n}>0,1-\gamma \mu_{n} \neq 0$ and $\left.P \varphi_{n}=\left(1-\gamma \mu_{n}\right)^{-1} \mu_{n}^{-1} \varphi_{n}\right)$. This implies that geometric and algebraic multiplicities of all the eigenvalues coincide. Moreover these multiplicities are finite, so there is an infinite (countable) number of eigenvalues. Since the spectrum is discrete and included in] $-\gamma_{0},+\infty[$, the sequence of eigenvalues goes to $+\infty$.

3.7 Maximum Principle

In this paragraph we discuss the maximum principle. Let Ω be an open bounded subset of \mathbb{R}^{d}. We recall that if $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ satisfies $\Delta u=0$ on Ω, then for $x \in \Omega$ and $r>0$ such that $B(x, r) \subset \Omega$ we have

$$
u(x)=\frac{1}{|S(x, r)|} \int_{S(x, r)} u(y) d \sigma(y)
$$

To see this we compute

$$
\begin{aligned}
\frac{d}{d r} \frac{1}{|S(x, r)|} \int_{S(x, r)} u(y) d \sigma(y) & =\frac{d}{d r} \frac{1}{|S(0,1)|} \int_{S(0,1)} u(x+r y) d \sigma(y) \\
& =\frac{1}{|S(0,1)|} \int_{S(0,1)} \partial_{r} u(x+r y) d \sigma(y) \\
& =\frac{1}{|S(x, r)|} \int_{\partial B(x, r)} \partial_{\nu} u(y) d \sigma(y) \\
& =0
\end{aligned}
$$

This proves in particular that u cannot reach a strict maximum at x, and that if u atteins a maximum at x then u is constant on a neighborhood of x. On the other hand, u is continuous on the compact sets $\bar{\Omega}$ and on $\partial \Omega$, so it has a maximum. We get

$$
\max _{x \in \Omega} u(x)=\max _{x \in \partial \Omega} u(x) .
$$

And moreover, if Ω is connected and u reaches a maximum on Ω, then u is constant on Ω.
This facts are already known for holomorphic functions, which are particular cases of harmonic functions (that is solutions in dimension 2 of $\Delta u=0$). It is already known that the maximum principle has many important consequences in that case. Our purpose in this section is to generalise these observations to more general settings. In dimension 1 it is not difficult to see that if $-u^{\prime \prime} \leqslant 0$ on some interval $[a, b]$, then $u(x) \leqslant \max (u(a), u(b))$, with equality if and only if u is constant on $[a, b]$.

Theorem 3.36. Let Ω be an open bounded subset of \mathbb{R}^{d}. Let P be defined by (3.2) with $c=0$. Let $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ be such that

$$
P u \leqslant 0 \quad \text { on } \Omega \text {. }
$$

(i) We have

$$
\max _{\bar{\Omega}} u=\max _{\partial \Omega} u
$$

(ii) If moreover Ω is connected and u atteins its maximum at an interior point, then u is constant.

The first statement is refered to as the weak maximum principle. The second statement is the strong maximum principle.

The idea for the weak maximum principle is the following. Consider the particular case $-\Delta u<0$ on Ω. If u reaches a maximum at $x_{0} \in \Omega$, then in particular $\partial_{j}^{2} u\left(x_{0}\right) \leqslant 0$ for all $j \in \llbracket 1, d \rrbracket$, which gives a contradiction. In the first step we generalize this idea to the general setting $P u<0$, and then we deduce the case $P u \leqslant 0$.

Proof of the weak maximum principle. - We first consider the case where $P u<0$ in Ω. For $h \in \mathbb{R}^{d} \backslash\{0\}$ we denote by $\partial_{h}^{2} u(x)$ the second derivative of $t \mapsto u(x+t h)$ at $t=0$. Assume by contradiction that there exists $x_{0} \in \Omega$ such that $u\left(x_{0}\right)=\max u$. Then we have $\nabla u\left(x_{0}\right)=0$ and $\partial_{h}^{2} u\left(x_{0}\right) \leqslant 0$ for any $h \in \mathbb{R}^{d}$. Since $A\left(x_{0}\right)$ is symmetric and definite positive, there exist an orthogonal matrix O and a diagonal matrix $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ with positive coefficients such that $A\left(x_{0}\right)=O D O^{\top}$. For $j \in \llbracket 1, d \rrbracket$ we set $\tilde{e}_{j}=O e_{j}$. This defines a new basis of \mathbb{R}^{d}. Then we have

$$
(P u)\left(x_{0}\right)=-\operatorname{div}\left(A\left(x_{0}\right) \nabla u\right)\left(x_{0}\right)=-\operatorname{div} O D O^{\top} \nabla u\left(x_{0}\right)=-\sum_{\ell=1}^{d} \lambda_{j} \partial_{\tilde{e}_{\ell}}^{2} u\left(x_{0}\right) \geqslant 0
$$

This gives a contradiction and proves the weak maximum principle when $P u<0$ on Ω.

- Then we consider the general case $P u \leqslant 0$. We can rewrite P as

$$
\begin{equation*}
P=-\sum_{j, k=1}^{d} a_{j, k} \partial_{j} \partial_{k}+\sum_{k=1}^{d} \tilde{b}_{k} \partial_{k} \tag{3.40}
\end{equation*}
$$

where for $k \in \llbracket 1, d \rrbracket$ we have set $\tilde{b}_{k}=b_{k}+\sum_{j=1}^{d} \partial_{j} a_{j, k}$. For $\varepsilon>0$ and $x=\left(x_{1}, \ldots, x_{d}\right) \in \Omega$ we set

$$
u_{\varepsilon}(x)=u(x)+\varepsilon e^{\beta x_{1}}
$$

for some $\beta>0$ to be fixed large enough. For $x \in \Omega$ we have

$$
P u_{\varepsilon}(x)=P u(x)+\varepsilon e^{\beta x_{1}}\left(-\beta^{2} a_{11}(x)+\beta \tilde{b}_{1}(x)\right) \leqslant \varepsilon e^{\beta x_{1}}\left(-\beta^{2} \alpha+\beta\left\|\tilde{b}_{1}\right\|_{L^{\infty}(\Omega)}\right) .
$$

This is negative if β was chosen large enough. By the first case we have

$$
\forall \varepsilon>0, \quad \max _{\bar{\Omega}} u_{\varepsilon}=\max _{\partial \Omega} u_{\varepsilon}
$$

We conclude by taking the limit $\varepsilon \rightarrow 0$.

- Now we turn to the proof of the strong maximum principle. Let

$$
F=\left\{x \in \Omega: u(x)=\max _{\bar{\Omega}} u\right\}, \quad \omega=\Omega \backslash F
$$

F is closed in Ω and ω is open. Assume by contradiction that $F \neq \varnothing$ and $F \neq \Omega$. We denote by $\bar{\omega}$ the closure of ω in Ω. Since Ω is connected, $\bar{\omega} \cap F \neq \varnothing$ cannot by disjoint to U. Let $x_{1} \in \bar{\omega} \cap F$. Near x_{1} we can find $x_{c} \in \omega$ such that $\operatorname{dist}\left(x_{c}, F\right)<\operatorname{dist}\left(x_{c}, \partial \Omega\right)$. Then we set $r=\operatorname{dist}\left(x_{c}, F\right)$ and we consider $x_{0} \in F$ such that $\left|x_{0}-x_{c}\right|=r$. We have $B\left(x_{c}, r\right) \subset \omega$ and, since $x_{0} \in F$, we have

$$
\nabla u\left(x_{0}\right)=0
$$

For $x \in B\left(x_{c}, r\right)$ we set

$$
v(x)=e^{-\beta|x|^{2}}-e^{-\beta r^{2}} \geqslant 0
$$

for some $\beta>0$ to be chosen large enough below. For $x \in B\left(x_{c}, r\right)$ we have with the notation (3.40)

$$
\begin{aligned}
P v(x) & =-\sum_{j, k=1}^{d} a_{j, k}(x) \partial_{j} \partial_{k} v(x)+\sum_{k=1}^{d} \tilde{b}_{k}(x) \partial_{k} v(x) \\
& =e^{-\beta|x|^{2}}\left(-4 \beta^{2} \sum_{j, k=1}^{d} a_{j, k}(x) x_{j} x_{k}+2 \beta \sum_{j=1}^{d} a_{j, j}(x)+2 \beta \sum_{k=1}^{d} \tilde{b}_{k}(x) x_{k}\right) \\
& \leqslant e^{-\beta|x|^{2}}\left(-4 \alpha \beta^{2}|x|^{2}+2 \beta \operatorname{Tr}(A)+2 \beta\|\tilde{b}\|_{\infty}|x|\right) .
\end{aligned}
$$

If β is large enough then on $C=B\left(x_{c}, r\right) \backslash B\left(x_{c}, \frac{r}{2}\right)$ we have

$$
P v \leqslant 0 .
$$

There exists $\varepsilon>0$ such that for all $x \in \partial B\left(x_{c}, \frac{r}{2}\right)$ we have

$$
u\left(x_{0}\right) \geqslant u(x)+\varepsilon v(x)
$$

This also holds on $\partial B\left(x_{c}, r\right)$ where v vanishes. We set $w(x)=u(x)+\varepsilon v(x)-u\left(x_{0}\right)$. Then $w \leqslant 0$ on ∂C and $P w \leqslant 0$ on C. By the weak maximum principle, we have $w \leqslant 0$ on C, and in particular $\nabla w\left(x_{0}\right) \cdot\left(x_{0}-x_{c}\right) \geqslant 0$. This gives

$$
\nabla u\left(x_{0}\right) \cdot\left(x_{0}-x_{c}\right) \geqslant-\varepsilon \nabla v\left(x_{0}\right) \cdot\left(x_{0}-x_{c}\right)=2 \varepsilon \beta r^{2} e^{-\beta r^{2}}>0
$$

This gives a contradiction, and proves that $F=\varnothing$ or $F=\Omega$.

