Chapitre 5

A Brief Introduction to Sobolev
spaces and applications

5.1 Derivatives in L2

In this first paragraph we define the Sobolev spaces of L2-functions whose derivatives in
the sense of distributions are also in L?.

5.1.1 Definition

We begin with the one dimensional case.

Définition 5.1. We denote by H'(R) the set of functions u € L?(R) whose derivative in the
sense of distributions is in L?(R).

We recall that the derivative of u € L%(R) in the sense of distributions is said to be in
L?(R) if there exists v € L?(R) such that T/, = T,. In other words,

Vo e CP(R), —f u¢' dz = J vo du. (5.1)
R R
In this case v is unique and it is denoted by u’.

Remark 5.2. If f € C1(R) is compactly supported then it belongs to H*(R). In general, even
if f is of class C*, f and f’ are well defined as functions but they are not necessarily in L?(R).
In this case f is not in H'(R). On the other hand, a function can be in H!(R) even if it is
not of class C!.

Ezample 5.3. — For z € R we set

1—|z| if |z| <1,
) = 5.2
J(@) {0 it |z] > 1. (5:2)

In the sense of distributions we have

1 ifxe]—1,0[,
f'(x) =< -1 if x€]0,1],
0 if x| > 1.

Thus f and f are in L2(R), so f € H'(R).
— Let H be the Heaviside function defined by (4.11). In the sense of distributions we
have H' = 6. But d is not the distribution given by a L? function on R (see Proposition
4.19), so H is not in H(R).
The above definition can be extended to L? functions in any dimension d € N* and we
can consider any order k € N* of derivatives.
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Définition 5.4. For k € N we set
H*(RY) = {ue L*(RY) : 0*ue L*(R?) for all & € N? such that |o| < k},

where 0%u is the derivative of u in the sense of distributions. In other words, a function
u € L?(R?) belongs to H*(RY) if for all a € N with |a| < k there exists v, € L?(R?) such
that

Vo e CPRY), (—1)l f wdpdr = f Vo ¢ dix.
R R4
In this case v, is unique (up to equality almost everywhere) and we set 0%u = v,

Remark 5.5. By the Riesz Theorem and by density of C°(R?) in L?(R%), a function u €
Li (RY) belongs to H*(R?) is and only if for all a € N? with |a| < k there exists Cp, > 0
such that

Vo e Cgo(Rd)v ‘J]Rd ud*¢dr) < Cq H(bHLQ(Rd) :

Example 5.6. The function f defined by (5.2) is in H!(R) but not in H?(R).

Ezample 5.7. Let o €] — 00, d— 1[. We have seen in Paragraph 4.3.3 that the derivatives in the
sense of distributions of f : z — |z|™* are given by Vf(z) = —a |z| * > z. Let y € CL(R?).
Then if « < 4 — 1 we have yf € H'(R?) with

V(xf) = fVx +xVfeL*RY.

More generally, we can check that if o < g — k for some k € N then we have yf € H*(R?).

We can similarly define the Sobolev spaces H*(2) on any open subset Q of RY. We also
define the Sobolev spaces W*P?(Q) of LP functions on Q with all derivatives up to order k
in LP, but we do not discuss these issues in this brief introduction. The discussion of the
following paragraph is only valid when p = 2 and = R%,

5.1.2 Characterisation via the Fourier transform

We can use the Fourier transform to give a simple characterisation of H*(R?). We begin
with the following lemma.

Lemma 5.8. Let k € N. There exist C'1, Cy > 0 such that

veeR:, Ci(1+le) < D <l le).

jal<h
Proof. Let € € RY. For j € [0, k] we have

R G D DTN A A

K3
J
léil,..‘,ijéd |a‘<k

SO

k
(1+ |&)" Zcf €)% < (Z Ciﬂ) e
j=0

|a|<k

The first inequality follows with some C; > 0 independant of £. Now for a € N¢ with |a| < k
we have

&2 < el < (1+ (¢,

which gives the second inequality. O

A function u belongs to H*(R?) if its derivatives are in L%(R%). After a Fourier transform,
this conditions turns into a condition about @ multiplied by some polynomial.

Proposition 5.9. Let k € N* and v € L*(RY). Then ue H*(RY) if and only if

[+ 1Py aor de < +on 6:3)
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Proof. We have 4 € L*(R?). Let o € N? with |a| < k. If we identify functions with the
corresponding distributions we have by Proposition 4.94

F(0%u) = (i&)“a.
Thus 0%u belongs to L2(R?) if and only if the map ¢ +— £%4(¢) does. Then u € H¥(R?) if
and only if
2 EMa(©) de < +oo.
|a|<k

By Lemma 5.8, this is equivalent to (5.3). O

Rd

Remark 5.10. If u € L?(R?) is such that Au belongs to L?(R?), then u belongs to H?(R?).
Ezercise 5.11. Let u € L?(R?) such that A(Au) +2Au —u € L?(R?). Prove that u € H*(R%).

5.1.3 Regularity of functions in Sobolev spaces

It is not clear that being in some Sobolev space is a regularity property for a function
u. However, if u has enough weak derivatives in L2, we recover some regularity in the usual
sense.

Proposition 5.12. Let k > % and v e H*(RY). Then u is continous and goes to 0 at infinity
(in the sense that u has a representative which satisfies these properties). In particular it is
bounded. More generaly, if k > n + g for some n € N then u is of class C™.

Proof. ¢ By the Cauchy-Schwarz inequality we have

1

[[a@ra< (] |f|2)’“d§)é (s 16P) () de)” < +o.

so @ € LY(RY). This implies that u is continuous and goes to 0 at infinity. If & > n + % then
for all a € N? with |a| < n we have 0%u € H*"(R%), so 0%u is a continuous function. This
implies that v is of class C™. O

5.2 Topology on the Sobolev spaces

In this section we define the norms on the Sobolev spaces we have just defined, and we
give some properties of these new functional spaces.

5.2.1 Hilbert structure
Theorem 5.1. Let k € N. For u,v e H*¥(RY) we set

<U7U>Hk(JRd) = Z <5auaaav>L2(Rd)' (5.4)

la|<k

This defines an inner product for which H*(R9) is a Hilbert space. Moreover, the correspon-
ding norm is equivalent to the norm defined by

ot = [+ 1€)* fato e (55)

Proof. @ The fact that (5.4) defines an inner product on H*(R9) is left as an exercice. We
prove that H*(R?) is complete for the corresponding norm, given by

2 a, 112
HUHH’«(Rd) = Z lo “HL2(Rd)~
|a|<k

Let (uy),y be a Cauchy sequence. Then the sequences (0%up)nen for |a| < k are Cauchy
sequences in L2(R%). Since L?(R?) is complete, there exist v, € L2(RY) for |a| < k such that
0%u,, goes to v,. For |a| < k and ¢ € CF(R?) we have

(—1)le J vo 0%pdr = (—=1)1* lim Up 0%“¢dr = lim 0%uy pdx = J Vo ¢ d.
R4 Rd Rd

n—+o0 Rd n—-+0oo
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This proves that in the sense of distributions we have 0%vy = v,. Then vy € H k(Rd) and

|wn — UOHHk(Rd) 0.

n—-+w0

Thus the sequence (uy,), .y has a limit H*(R%). This proves that H*(R?) is complete.
e By the Parseval identity we have for u e H*(R?)

2 o 2 a2
ol = X 17l = 3 1608 = [

la| <k o<k R

DL Eea©) de.

|a|<k

As in the proof of Proposition 5.9, we conclude that this norm is equivalent to (5.5) with
Lemma 5.8. O

Remark 5.13. If u € H*(R?) for all k € N then we have u € C®(RY).

5.2.2 Density of smooth functions

In this paragraph we prove the density of smooth functions in the Sobolev spaces.
Theorem 5.2. Let k € N. Then C°(R?) is dense in H*(R?).
Proof. Let u e H*(R?) and ¢ > 0. Let x € C°(R?) be supported in B(0,2) and equal to 1 on

B(0,1). For m € N* and z € R? we set xom(2) = x(£). Let o € N® with |a] < k. Let m € N*.
By the Leibniz rule we have x,,u € H*(RY) and

o (Xmu) — Xm0%u = Z (Oé) aa_BXmaBu.
0<B<a
B#a

Since (1—x) and 0*#,,, vanish on B(0,m) for all 3, we have by the dominated convergence
theorem

[0% (Xmu) — aaU”L2(Rd)
— (X = D3+ (2 () — xm?)
D=ty [ e de s 3 (316l [l

=m 0<f<a
B#a

—— 0.
m——+0o0

Therefore there exists m € N* such that

lw = Xmul g gay <

N ™

We set v = x,pu. Now let (py,), oy be an approximation of the identity with p, € C§°(R?) for
all n € N. For n € N the function w, = (p, * v) is smooth because p,, is, and it is compactly
supported because v and p,, are. Let a € N? with |a| < k. We have 0%u,, = (p, * 0%v) so

[0%un = 0] 12 ay —> 0.

Thus there exists n € N such that
€
lun — vl grray < 3

The conclusion follows. O

With this density result we can extend to H*(R?) many results known for functions of
class C*. We give for instance the Green formula in R9.

Proposition 5.14 (Green Formula on RY). Let u,v € H'(R?) and j € [1,d]. We have

djuvdr = —J udjv dz.

R4 R4
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Proof. Let (up), oy and (vy,), oy be sequences in C§°(R?) which go to u and v in H'(R?). An
integration by parts gives, for all n € N,

f OjUp, U, dx = —J- Uy, 05Uy, dx.
Rd Rd

Taking the limit n — 400 gives the result. O

5.3 Examples of applications for partial differential equa-
tions

5.3.1 The Helmholtz equation

In section 2.6 we have discussed on R? the equation
—Au+u=f,

where f e L?(R%). Using the Fourier transform we saw that for any f € S(R?) this problem
has a unique solution u € S(RY) and that the map R : f ~ u extends to a continuous map
on L?(RY).

The Sobolev spaces are the relevent context to discuss this kind of equation. We first
observe that the operator (—A + Id) defines a continuous map from H?(R%) to L%(R%). In
fact, it defines a bijection with continuous inverse.

Proposition 5.15. Let f € L?>(R?). Then there exists a unique u € H*(R?) such that
—Au+u=f
in the sense of distributions, and there exists C > 0 independant of f such that

lull g2y < CI1F 1 L2 gay -
If moreover f € H*(R?) for some k € N then u e H¥2(R?).

Proof. 1f we consider on H?(R?) the norm given by (5.5) we see that for all u € H?(R?) we
have

I(=A +Td)u > (ray = [ul g2 gay >
so (—A + Id) defines a continuous and injective map from HZ?(R?) to L%(R%). Moreover,
its inverse, defined on Ran(—A + Id), is continuous. It remains to prove that (—A + Id)

is surjective (or equivalently that Ran(—A + Id) = L?(R%)). For this we use the Fourier
transform as in Section 2.6. Given f € L?(R) we consider the function u € L?(R9) such that

©)

GES

o

a(g)

Then u € H?(R?) by Proposition 5.9, and it belongs to H**2(R?) if f € H*(R?). Taking the
inverse Fourier transform in the equality (£2+1)a(£) = (&) we obtain (—A +1d)u = f. This
completes the proof. O

5.3.2 The Heat equation

Given ug € L?(R?) we consider the heat equation

du(t)

Vit >0
=5 dt

— Au(t) (5.6)

with the initial condition
u(0) = uo. (5.7)

It was already discussed in Paragraph 4.5.4 with the help of the convolution product.
Here we use the Fourier transform to give a solution of the heat equation. We begin with a
result of uniqueness.
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Proposition 5.16. Let u € C°(Ry, H*(R?)) n C1(R*, L*(R%)) be a solution of (5.6)-(5.7)
with ug = 0. Then u(t) =0 for all t = 0.

Proof. The map t — Hu(t)Hng (ra) takes non-negative values, it is continuous on [0, +-00[ and
it is differentiable on ]0, +oo[. For ¢ > 0 we have by the Green formula

d
D u0) 2 sy = 2Re u(t), A1) 2 gy = 2 [9000) B2y < 0.
Since Hu(O)Hiz(Rd) = 0, we deduce that Hu(t)”i?(Rd) =0 for all t > 0. O

Proposition 5.17. Let k € N and ug € H*(RY). For t > 0 we consider the unique u(t) €
L2(RY) such that for allt = 0 and & € R we have

a(t,§) = @ (9).
Then u is continuous from [0, +oo[ to H¥(R?) and differentiable from 10, +oo[ to HN (R?)
for any N € N, and it solves the heat equation (5.6)-(5.7).

Proof. For tg = 0 and t = 0 we have

Jut) = uto) 2 o, =f et o215 1) () de.

Rd
For all t > 0 and ¢ € R? we have
—tle)? to1€1212 ko~ ko~
e T — el P (1 1¢)*) " o (€)1 < (1 +1¢*)” [wo(€)1,

and the right-hand side defines an integrable function on R%, so by the dominated convergence
theorem we have

2
Ju(t) = ulto) s ety —— 0

Now let N € N and tg > 0. For t > 0, t # tg, we have

2 2

—t|€]? —tol€]?
O aue)]| = [ 0wy e Jae) de
If [t — to] < & and £ € R we have
e tE _ ptolel? |7 " N lel?
(1+ )V | e + 6P @) < P+ 1)V el e o

Then we can apply the dominated convergence theorem, and we obtain that the map t —
u(t) e HY(RY) is differentiable at to with

W (to) = Au(to).

The conclusion follows. O

5.3.3 The Wave equation
Let ¢ > 0. We consider on R? the wave equation
?u — c*Au = 0, (5.8)

with initial conditions
u(0) = ug, Opu(0) = ua, (5.9)

for some up € H%(RY) and u; € H'(RY).
We recall that for ug € C?(R) and u; € C'(R) the problem (5.8)-(5.9) has a unique
solution u € C?(R?), given by

uo(z + ct) +up(z —ct) 1 Jxﬂt
+ JE—
2 2c J,

u(t,z) = uy (s) ds.

r—ct
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Theorem 5.3. Let ug € H?>(R?) and u; € H'(R?). Then the problem (5.8)-(5.9) has a unique
solution u € C°(R, H2(R?)) n C1(R, HY(R?)) n C?(R, L*(R%)).

Assume that u is a solution. Taking the Fourier transform @ of w with respect to x we
obtain for t € R and ¢ € R?
0% .
wu(tvg) + C2£2U(t7 f) = 0.

Moreover (0, &) = wg(€) and 0;1(0,¢) = Uy (€). For each &€ € R? we solve this second order
equation with respect to t. This gives

(t,€) = cos(ct € (€) + ¢ sine(ct €)1 (€), (5.10)

where, for 6 € R,

sin(0) .
sinc(f) = 9 Tf 0 f 0,
1 if 6 = 0.

Conversely, for all ¢ € R we define u(t) as the inverse Fourier transform of (5.10) with respect
to &. Then we check that u is indeed a solution of (5.8)-(5.9).

The uniqueness is given by the linearity of the problem and the following result about
the conservation of the energy.

Proposition 5.18. Let u € C°(R, H2(R%)) n C*(R, H'(R?)) n C%(R, L2(R%)) be a solution
of (5.8). ForteR we set

E(t) = |0wu() |72 gy + [Vt 72 g -

Then for all t € R we have E(t) = E(0).
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