
Chapitre 5

A Brief Introduction to Sobolev
spaces and applications

5.1 Derivatives in L2

In this first paragraph we define the Sobolev spaces of L2-functions whose derivatives in
the sense of distributions are also in L2.

5.1.1 Definition
We begin with the one dimensional case.

Définition 5.1. We denote by H1pRq the set of functions u P L2pRq whose derivative in the
sense of distributions is in L2pRq.

We recall that the derivative of u P L2pRq in the sense of distributions is said to be in
L2pRq if there exists v P L2pRq such that T 1

u “ Tv. In other words,

@φ P C8
0 pRq, ´

ż

R
uφ1 dx “

ż

R
vφ dx. (5.1)

In this case v is unique and it is denoted by u1.

Remark 5.2. If f P C1pRq is compactly supported then it belongs to H1pRq. In general, even
if f is of class C1, f and f 1 are well defined as functions but they are not necessarily in L2pRq.
In this case f is not in H1pRq. On the other hand, a function can be in H1pRq even if it is
not of class C1.
Example 5.3. — For x P R we set

fpxq “
#

1 ´ |x| if |x| ď 1,

0 if |x| ą 1.
(5.2)

In the sense of distributions we have

f 1pxq “

$
’&
’%

1 if x Ps ´ 1, 0r,
´1 if x Ps0, 1r,
0 if |x| ą 1.

Thus f and f 1 are in L2pRq, so f P H1pRq.
— Let H be the Heaviside function defined by (4.11). In the sense of distributions we

have H 1 “ δ. But δ is not the distribution given by a L2 function on R (see Proposition
4.19), so H is not in H1pRq.

The above definition can be extended to L2 functions in any dimension d P N˚ and we
can consider any order k P N˚ of derivatives.
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Définition 5.4. For k P N we set

HkpRdq “ �
u P L2pRdq : Bαu P L2pRdq for all α P Nd such that |α| ď k

(
,

where Bαu is the derivative of u in the sense of distributions. In other words, a function
u P L2pRdq belongs to HkpRdq if for all α P Nd with |α| ď k there exists vα P L2pRdq such
that

@φ P C8
0 pRdq, p´1q|α|

ż

Rd

u Bαφ dx “
ż

Rd

vα φ dx.

In this case vα is unique (up to equality almost everywhere) and we set Bαu “ vα.

Remark 5.5. By the Riesz Theorem and by density of C8
0 pRdq in L2pRdq, a function u P

L1
locpRdq belongs to HkpRdq is and only if for all α P Nd with |α| ď k there exists Cα ą 0

such that
@φ P C8

0 pRdq,
ˇ̌
ˇ̌
ż

Rd

uBαφ dx

ˇ̌
ˇ̌ ď Cα }φ}L2pRdq .

Example 5.6. The function f defined by (5.2) is in H1pRq but not in H2pRq.
Example 5.7. Let α Ps´8, d´1r. We have seen in Paragraph 4.3.3 that the derivatives in the
sense of distributions of f : x ÞÑ |x|´α are given by ∇fpxq “ ´α |x|´α´2

x. Let χ P C8
0 pRdq.

Then if α ă d
2 ´ 1 we have χf P H1pRdq with

∇pχfq “ f∇χ ` χ∇f P L2pRdq.
More generally, we can check that if α ă d

2 ´ k for some k P N then we have χf P HkpRdq.
We can similarly define the Sobolev spaces HkpΩq on any open subset Ω of Rd. We also

define the Sobolev spaces W k,ppΩq of Lp functions on Ω with all derivatives up to order k
in Lp, but we do not discuss these issues in this brief introduction. The discussion of the
following paragraph is only valid when p “ 2 and Ω “ Rd.

5.1.2 Characterisation via the Fourier transform
We can use the Fourier transform to give a simple characterisation of HkpRdq. We begin

with the following lemma.
Lemma 5.8. Let k P N. There exist C1, C2 ą 0 such that

@ξ P Rd, C1
`
1 ` |ξ|2 ˘k ď

ÿ

|α|ďk

ξ2α ď C2
`
1 ` |ξ|2 ˘k

.

Proof. Let ξ P Rd. For j P �0, k� we have

|ξ|2j “ pξ2
1 ` ¨ ¨ ¨ ` ξ2

dqj “
ÿ

1ďi1,...,ij ďd

ξ2
i1 . . . ξ2

ij
ď jd sup

|α|ďk

ξ2α,

so

p1 ` |ξ|2qk “
kÿ

j“0
Cj

k |ξ|2j ď
˜

kÿ

j“0
Cj

kjd

¸ ÿ

|α|ďk

ξ2α.

The first inequality follows with some C1 ą 0 independant of ξ. Now for α P Nd with |α| ď k
we have

ξ2α ď |ξ|2|α| ď `
1 ` |ξ|2 ˘k

,

which gives the second inequality.

A function u belongs to HkpRdq if its derivatives are in L2pRdq. After a Fourier transform,
this conditions turns into a condition about û multiplied by some polynomial.

Proposition 5.9. Let k P N˚ and u P L2pRdq. Then u P HkpRdq if and only if
ż

Rd

`
1 ` |ξ|2 ˘k|ûpξq|2 dξ ă `8. (5.3)
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Proof. We have û P L2pRdq. Let α P Nd with |α| ď k. If we identify functions with the
corresponding distributions we have by Proposition 4.94

FpBαuq “ piξqαû.

Thus Bαu belongs to L2pRdq if and only if the map ξ ÞÑ ξαûpξq does. Then u P HkpRdq if
and only if ż

Rd

ÿ

|α|ďk

ξ2α |ûpξq|2 dξ ă `8.

By Lemma 5.8, this is equivalent to (5.3).

Remark 5.10. If u P L2pRdq is such that Δu belongs to L2pRdq, then u belongs to H2pRdq.
Exercise 5.11. Let u P L2pRdq such that ΔpΔuq ` 2Δu ´ u P L2pRdq. Prove that u P H4pRdq.

5.1.3 Regularity of functions in Sobolev spaces
It is not clear that being in some Sobolev space is a regularity property for a function

u. However, if u has enough weak derivatives in L2, we recover some regularity in the usual
sense.

Proposition 5.12. Let k ą d
2 and u P HkpRdq. Then u is continous and goes to 0 at infinity

(in the sense that u has a representative which satisfies these properties). In particular it is
bounded. More generaly, if k ą n ` d

2 for some n P N then u is of class Cn.

Proof. ‚ By the Cauchy-Schwarz inequality we have
ż

Rd

|ûpξq|2 dξ ď
ˆż

Rd

`
1 ` |ξ|2 ˘´k

dξ

˙ 1
2 ´`

1 ` |ξ|2 ˘k |ûpξq|2 dξ
¯ 1

2 ă `8,

so û P L1pRdq. This implies that u is continuous and goes to 0 at infinity. If k ą n ` d
2 then

for all α P Nd with |α| ď n we have Bαu P Hk´npRdq, so Bαu is a continuous function. This
implies that u is of class Cn.

5.2 Topology on the Sobolev spaces
In this section we define the norms on the Sobolev spaces we have just defined, and we

give some properties of these new functional spaces.

5.2.1 Hilbert structure
Theorem 5.1. Let k P N. For u, v P HkpRdq we set

�u, v�HkpRdq “
ÿ

|α|ďk

�Bαu, Bαv�L2pRdq . (5.4)

This defines an inner product for which HkpRdq is a Hilbert space. Moreover, the correspon-
ding norm is equivalent to the norm defined by

}u}2 “
ż

Rd

`
1 ` |ξ|2 ˘k |ûpξq|2 dξ. (5.5)

Proof. ‚ The fact that (5.4) defines an inner product on HkpRdq is left as an exercice. We
prove that HkpRdq is complete for the corresponding norm, given by

}u}2
HkpRdq “

ÿ

|α|ďk

}Bαu}2
L2pRdq .

Let punqnPN be a Cauchy sequence. Then the sequences pBαunqnPN for |α| ď k are Cauchy
sequences in L2pRdq. Since L2pRdq is complete, there exist vα P L2pRdq for |α| ď k such that
Bαun goes to vα. For |α| ď k and φ P C8

0 pRdq we have

p´1q|α|
ż

Rd

v0 Bαφ dx “ p´1q|α| lim
nÑ`8

ż

Rd

un Bαφ dx “ lim
nÑ`8

ż

Rd

Bαun φ dx “
ż

Rd

vα φ dx.
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This proves that in the sense of distributions we have Bαv0 “ vα. Then v0 P HkpRdq and

}un ´ v0}HkpRdq ÝÝÝÝÝÑ
nÑ`8 0.

Thus the sequence punqnPN has a limit HkpRdq. This proves that HkpRdq is complete.
‚ By the Parseval identity we have for u P HkpRdq

}u}2
HkpRdq “

ÿ

|α|ďk

}Bαu}2
L2pRdq “

ÿ

|α|ďk

}ξαû}2
L2pRdq “

ż

Rd

ÿ

|α|ďk

ξ2α |ûpξq|2 dξ.

As in the proof of Proposition 5.9, we conclude that this norm is equivalent to (5.5) with
Lemma 5.8.

Remark 5.13. If u P HkpRdq for all k P N then we have u P C8pRdq.

5.2.2 Density of smooth functions
In this paragraph we prove the density of smooth functions in the Sobolev spaces.

Theorem 5.2. Let k P N. Then C8
0 pRdq is dense in HkpRdq.

Proof. Let u P HkpRdq and ε ą 0. Let χ P C8
0 pRdq be supported in Bp0, 2q and equal to 1 on

Bp0, 1q. For m P N˚ and x P Rd we set χmpxq “ χp x
m q. Let α P Nd with |α| ď k. Let m P N˚.

By the Leibniz rule we have χmu P HkpRdq and

Bαpχmuq ´ χmBαu “
ÿ

0ďβďα
β‰α

ˆ
α
β

˙
Bα´βχmBβu.

Since p1´χmq and Bα´βχm vanish on Bp0, mq for all β, we have by the dominated convergence
theorem

}Bαpχmuq ´ Bαu}L2pRdq
“ pχm ´ 1qBαu ` `Bαpχmuq ´ χmBαu

˘

ď }χm ´ 1}L8pRdq
ż

|x|ěm

|Bαupxq|2 dx `
ÿ

0ďβďα
β‰α

ˆ
α
β

˙ ››Bα´βχm

››
L8pRdq

ż

|x|ěm

ˇ̌Bβupxqˇ̌2
dx

ÝÝÝÝÝÑ
mÑ`8 0.

Therefore there exists m P N˚ such that

}u ´ χmu}HkpRdq ď ε

2 .

We set v “ χmu. Now let pρnqnPN be an approximation of the identity with ρn P C8
0 pRdq for

all n P N. For n P N the function un “ pρn ˚ vq is smooth because ρn is, and it is compactly
supported because v and ρn are. Let α P Nd with |α| ď k. We have Bαun “ pρn ˚ Bαvq so

}Bαun ´ Bαv}L2pRdq ÝÝÝÝÝÑ
nÑ`8 0.

Thus there exists n P N such that

}un ´ v}HkpRdq ď ε

2 .

The conclusion follows.

With this density result we can extend to HkpRdq many results known for functions of
class Ck. We give for instance the Green formula in Rd.

Proposition 5.14 (Green Formula on Rd). Let u, v P H1pRdq and j P �1, d�. We have
ż

Rd

Bju v dx “ ´
ż

Rd

u Bjv dx.
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Proof. Let punqnPN and pvnqnPN be sequences in C8
0 pRdq which go to u and v in H1pRdq. An

integration by parts gives, for all n P N,
ż

Rd

Bjun vn dx “ ´
ż

Rd

un Bjvn dx.

Taking the limit n Ñ `8 gives the result.

5.3 Examples of applications for partial differential equa-
tions

5.3.1 The Helmholtz equation
In section 2.6 we have discussed on Rd the equation

´Δu ` u “ f,

where f P L2pRdq. Using the Fourier transform we saw that for any f P SpRdq this problem
has a unique solution u P SpRdq and that the map R : f ÞÑ u extends to a continuous map
on L2pRdq.

The Sobolev spaces are the relevent context to discuss this kind of equation. We first
observe that the operator p´Δ ` Idq defines a continuous map from H2pRdq to L2pRdq. In
fact, it defines a bijection with continuous inverse.

Proposition 5.15. Let f P L2pRdq. Then there exists a unique u P H2pRdq such that

´Δu ` u “ f

in the sense of distributions, and there exists C ą 0 independant of f such that

}u}H2pRdq ď C }f}L2pRdq .

If moreover f P HkpRdq for some k P N then u P Hk`2pRdq.
Proof. If we consider on H2pRdq the norm given by (5.5) we see that for all u P H2pRdq we
have

}p´Δ ` Idqu}L2pRdq “ }u}H2pRdq ,

so p´Δ ` Idq defines a continuous and injective map from H2pRdq to L2pRdq. Moreover,
its inverse, defined on Ranp´Δ ` Idq, is continuous. It remains to prove that p´Δ ` Idq
is surjective (or equivalently that Ranp´Δ ` Idq “ L2pRdq). For this we use the Fourier
transform as in Section 2.6. Given f P L2pRdq we consider the function u P L2pRdq such that

ûpξq “ f̂pξq
ξ2 ` 1 .

Then u P H2pRdq by Proposition 5.9, and it belongs to Hk`2pRdq if f P HkpRdq. Taking the
inverse Fourier transform in the equality pξ2 `1qûpξq “ f̂pξq we obtain p´Δ` Idqu “ f . This
completes the proof.

5.3.2 The Heat equation
Given u0 P L2pRdq we consider the heat equation

@t ą 0,
duptq

dt
“ Δuptq (5.6)

with the initial condition
up0q “ u0. (5.7)

It was already discussed in Paragraph 4.5.4 with the help of the convolution product.
Here we use the Fourier transform to give a solution of the heat equation. We begin with a
result of uniqueness.
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Proposition 5.16. Let u P C0pR`, H2pRdqq X C1pR˚̀ , L2pRdqq be a solution of (5.6)-(5.7)
with u0 “ 0. Then uptq “ 0 for all t ě 0.

Proof. The map t ÞÑ }uptq}2
L2pRdq takes non-negative values, it is continuous on r0, `8r and

it is differentiable on s0, `8r. For t ą 0 we have by the Green formula

d

dt
}uptq}2

L2pRdq “ 2 Re �uptq, Δuptq�L2pRdq “ ´2 }∇uptq}2
L2pRdq ď 0.

Since }up0q}2
L2pRdq “ 0, we deduce that }uptq}2

L2pRdq “ 0 for all t ą 0.

Proposition 5.17. Let k P N and u0 P HkpRdq. For t ě 0 we consider the unique uptq P
L2pRdq such that for all t ě 0 and ξ P R we have

ûpt, ξq “ e´tξ2 xu0pξq.
Then u is continuous from r0, `8r to HkpRdq and differentiable from s0, `8r to HN pRdq
for any N P N, and it solves the heat equation (5.6)-(5.7).

Proof. For t0 ě 0 and t ě 0 we have

}uptq ´ upt0q}2
HkpRdq “

ż

Rd

ˇ̌
e´t|ξ|2 ´ e´t0|ξ|2 ˇ̌2`

1 ` |ξ|2 ˘k |xu0pξq|2 dξ.

For all t ě 0 and ξ P Rd we have
ˇ̌
e´t|ξ|2 ´ e´t0|ξ|2 ˇ̌2`

1 ` |ξ|2 ˘k |xu0pξq|2 ď `
1 ` |ξ|2 ˘k |xu0pξq|2 ,

and the right-hand side defines an integrable function on Rd, so by the dominated convergence
theorem we have

}uptq ´ upt0q}2
HkpRdq ÝÝÝÑ

tÑt0
0.

Now let N P N and t0 ą 0. For t ą 0, t ‰ t0, we have
››››
uptq ´ upt0q

t ´ t0
´ Δupt0q

››››
2

HN pRdq
“

ż

Rd

`
1 ` |ξ|2 ˘N

ˇ̌
ˇ̌
ˇ
e´t|ξ|2 ´ e´t0|ξ|2

t ´ t0
` |ξ|2 e´t0|ξ|2

ˇ̌
ˇ̌
ˇ

2

|ûpξq|2 dξ.

If |t ´ t0| ď t0
2 and ξ P R we have

p1 ` ξ2qN

ˇ̌
ˇ̌
ˇ
e´t|ξ|2 ´ e´t0|ξ|2

t ´ t0
` |ξ|2 e´t0|ξ|2

ˇ̌
ˇ̌
ˇ

2

|ûpξq|2 ď t0
4

`
1 ` |ξ|2 ˘N |ξ|4 e´ t0|ξ|2

2 |ûpξq|2 .

Then we can apply the dominated convergence theorem, and we obtain that the map t ÞÑ
uptq P HN pRdq is differentiable at t0 with

u1pt0q “ Δupt0q.
The conclusion follows.

5.3.3 The Wave equation
Let c ą 0. We consider on Rd the wave equation

B2
t u ´ c2Δu “ 0, (5.8)

with initial conditions
up0q “ u0, Btup0q “ u1, (5.9)

for some u0 P H2pRdq and u1 P H1pRdq.

We recall that for u0 P C2pRq and u1 P C1pRq the problem (5.8)-(5.9) has a unique
solution u P C2pR2q, given by

upt, xq “ u0px ` ctq ` u0px ´ ctq
2 ` 1

2c

ż x`ct

x´ct

u1psq ds.
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Theorem 5.3. Let u0 P H2pRdq and u1 P H1pRdq. Then the problem (5.8)-(5.9) has a unique
solution u P C0pR, H2pRdqq X C1pR, H1pRdqq X C2pR, L2pRdqq.

Assume that u is a solution. Taking the Fourier transform û of u with respect to x we
obtain for t P R and ξ P Rd

B2

Bt2 ûpt, ξq ` c2ξ2ûpt, ξq “ 0.

Moreover ûp0, ξq “ xu0pξq and Btûp0, ξq “ xu1pξq. For each ξ P Rd we solve this second order
equation with respect to t. This gives

ûpt, ξq “ cospct |ξ|qxu0pξq ` t sincpct |ξ|qxu1pξq, (5.10)

where, for θ P R,

sincpθq “
#

sinpθq
θ if θ ‰ 0,

1 if θ “ 0.

Conversely, for all t P R we define uptq as the inverse Fourier transform of (5.10) with respect
to ξ. Then we check that u is indeed a solution of (5.8)-(5.9).

The uniqueness is given by the linearity of the problem and the following result about
the conservation of the energy.

Proposition 5.18. Let u P C0pR, H2pRdqq X C1pR, H1pRdqq X C2pR, L2pRdqq be a solution
of (5.8). For t P R we set

Eptq “ }Btuptq}2
L2pRdq ` }∇uptq}2

L2pRdq .

Then for all t P R we have Eptq “ Ep0q.
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