Contrôle Continu 2 - 11 avril 2018

Durée: 1h30

Aucun document ou appareil électronique n'est autorisé. La qualité de la rédaction sera un élément important pour la notation.

Exercice 1 En explicitant bien tous les arguments utilisés, calculer

$$\int_{D} \cos(x^2 + y^2) \, d\lambda_2(x, y),$$

où λ_2 désigne la mesure de Lebesgue sur \mathbb{R}^2 et D est le disque ouvert centré en 0 et de rayon 1.

<u>Correction</u>: On commence par observer que l'application $(x,y) \mapsto \cos(x^2 + y^2)$ est continue et donc borélienne sur D, et prend des valeurs positives. On note $\tilde{D} = D \setminus (\mathbb{R}_- \times \{0\})$. Comme $\mathbb{R}_- \times \{0\}$ est de mesure nulle, on a

$$\int_{D} \cos(x^{2} + y^{2}) d\lambda_{2}(x, y) = \int_{\tilde{D}} \cos(x^{2} + y^{2}) d\lambda_{2}(x, y).$$

L'application

$$\varphi: \left\{ \begin{array}{ccc}]0,1[\times]-\pi,\pi[& \to & \tilde{D} \\ (r,\theta) & \mapsto & (r\cos(\theta),r\sin(\theta)) \end{array} \right.$$

est un C^1 difféomorphisme et pour tout $(r,\theta)\in]0,1[\times]-\pi,\pi[$ on a Jac $\varphi(r,\theta)=r.$ D'après le théorème de changement de variable (pour une fonction à valeurs positives) on a

$$\int_{D} \cos(x^2 + y^2) \, d\lambda_2(x, y) = \int_{]0,1[\times] - \pi, \pi[} \cos(r^2) r \, d\lambda_2(r, \theta).$$

Comme \mathbb{R}^2 est $\sigma\text{-fini},$ on obtient par le théorème de Fubini-Tonelli

$$\int_{D} \cos(x^{2} + y^{2}) d\lambda_{2}(x, y) = \int_{-\pi}^{\pi} \left(\int_{0}^{1} \cos(r^{2}) r dr \right) d\theta.$$

On calcule alors

$$\int_{D} \cos(x^{2} + y^{2}) d\lambda_{2}(x, y) = \int_{-\pi}^{\pi} \left[\frac{\sin(r^{2})}{2} \right]_{0}^{1} d\theta = \pi \sin(1).$$

Exercice 2 On note

$$\Delta = \{(x, y) \in [0, 1]^2 \mid x^2 + y^2 \geqslant 1\}.$$

Calculer

$$\int_{\Delta} \frac{xy}{(1+x^2+y^2)^2} d\lambda_2(x,y).$$

<u>Correction</u>: On commence par observer que la fonction $(x,y)\mapsto \frac{xy}{(1+x^2+y^2)^2}$ et continue et prend des valeurs positives sur Δ . Pour $x\in\mathbb{R}$ on note

$$\Delta_x = \{ y \in \mathbb{R} \, | \, (x, y) \in \Delta \} \, .$$

On a

$$\Delta_x = \begin{cases} [\sqrt{1-x^2},1] & \text{si } x \in [0,1], \\ \emptyset & \text{sinon.} \end{cases}$$

D'après le théorème de Fubini-Tonelli on a alors

$$\int_{\Delta} \frac{xy}{(1+x^2+y^2)^2} d\lambda_2(x,y) = \int_0^1 \left(\int_{\sqrt{1-x^2}}^1 \frac{xy}{(1+x^2+y^2)^2} dy \right) dx.$$

On calcule alors

$$\int_{\Delta} \frac{xy}{(1+x^2+y^2)^2} d\lambda_2(x,y) = \int_0^1 \left[-\frac{x}{2(1+x^2+y^2)} \right]_{\sqrt{1-x^2}}^1 dx = \int_0^1 \left(-\frac{x}{2(2+x^2)} + \frac{x}{4} \right) dx$$
$$= \left[-\frac{\ln(2+x^2)}{4} + \frac{x^2}{8} \right]_0^1 = \frac{1}{8} + \frac{\ln(2) - \ln(3)}{4}.$$

Exercice 3 Dans cet exercice, \mathbb{R} est muni de sa tribu borélienne usuelle et de la mesure de Lebesgue.

1. Soient f et g deux fonctions mesurables de \mathbb{R} dans \mathbb{R} . Montrer que pour tout $x \in \mathbb{R}$ la fonction $y \mapsto f(y)g(x-y)$ est mesurable. Lorsque cette application est intégrable sur \mathbb{R} on pose

$$(f * g)(x) = \int_{\mathbb{D}} f(y)g(x - y) \, dy.$$

Correction: Pour $x \in \mathbb{R}$ on note F_x la fonction $y \mapsto f(y)g(x-y)$. La fonction $y \mapsto g(x-y)$ est mesurable comme composée de la fonction g avec la fonction $y \mapsto x-y$ continue et donc mesurable. Ainsi F_x est mesurable comme produit de fonctions mesurables.

2. Soient $p, q \in [1, +\infty]$ deux exposants conjugués. On suppose que $f \in \mathcal{L}^p(\mathbb{R})$ et $g \in \mathcal{L}^q(\mathbb{R})$. Montrer que (f * g)(x) est bien définie pour tout $x \in \mathbb{R}$, que la fonction (f * g) ainsi définie est bornée, et que

$$\sup_{\mathbb{R}} |f * g| \leqslant \|f\|_p \|g\|_q.$$

<u>Correction</u>: Soit $x \in \mathbb{R}$. On note $g_x : y \mapsto g(x-y)$. En effectuant le changement de variables s = x - y, ds = -dy, on obtient

$$\int_{\mathbb{R}} |g_x(y)|^q \ dy = \int_{\mathbb{R}} |g(x-y)|^q \ dy = \int_{\mathbb{R}} |g(y)|^q \ dy,$$

donc $\|g_x\|_q = \|g\|_q$ et en particulier $g_x \in \mathcal{L}^q$. D'après l'inégalité de Hölder on a alors

$$\int_{\mathbb{R}} |f(y)| |g_x(y)| \ dy \leqslant ||f||_p ||g_x||_q = ||f||_p ||g||_q.$$

Cela prouve que (f * g)(x) est bien défini et

$$|(f * g)(x)| \le \int_{\mathbb{R}} |f(y)| |g_x(y)| dy \le ||f||_p ||g||_q$$

Ceci étant valable pour tout $x \in \mathbb{R}$, la fonction (f * g) est bornée et

$$\sup_{\mathbb{R}} |f * g| \leqslant \left\| f \right\|_p \left\| g \right\|_q.$$

- **3.** On suppose maintenant que f et g appartiennent à $\mathcal{L}^1(\mathbb{R})$.
 - a. Montrer que

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} \left| f(y) \right| \left| g(x-y) \right| \, dy \right) \, dx = \left\| f \right\|_1 \left\| g \right\|_1.$$

- b. Montrer que (f * g)(x) est bien définie pour presque tout $x \in \mathbb{R}$.
- c. Montrer que la fonction (f*g) ainsi définie (presque partout) est intégrable sur $\mathbb R$ avec

$$||f * g||_1 \leq ||f||_1 ||g||_1$$
.

d. Montrer que les fonctions f*g et g*f (bien définies presque partout) coïncident là où elles sont définies.

$\underline{\text{Correction}}:$

a. D'après le théorème de Fubini-Tonelli on a

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(y)| \left| g(x-y) \right| \, dy \right) \, dx = \int_{\mathbb{R}} |f(y)| \left(\int_{\mathbb{R}} \left| g(x-y) \right| \, dx \right) \, dy$$

(comme l'application $(x,y)\mapsto |f(y)|\,|g(x-y)|$ est mesurable, le fait que ces intégrales existent fait partie des conclusions du théroème de Fubini-Tonelli). Comme à la question précédente on a

$$\int_{\mathbb{R}} |g(x-y)| \ dx = \int_{\mathbb{R}} |g(s)| \ ds = \|g\|_{1},$$

d'où

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} \left| f(y) \right| \left| g(x-y) \right| \, dy \right) \, dx = \int_{\mathbb{R}} \left| f(y) \right| \left\| g \right\|_{1} \, dy = \left\| f \right\|_{1} \left\| g \right\|_{1}.$$

b. D'après la question précédente, l'application

$$x \mapsto \int_{\mathbb{R}} |F_x(y)| \ dy$$

est intégrable, donc il existe $E \in \mathcal{B}(\mathbb{R})$ tel que $\lambda(E) = 0$ et F_x est intégrable pour tout $x \in \mathbb{R} \setminus E$ (c'est en fait l'une des conclusion du théorème de Fubini-Lebesgue). Ainsi, (f*g)(x) est bien défini pour tout $x \in \mathbb{R} \setminus E$, et donc presque partout. On peut éventuellement compléter la définition de (f*g) par des valeurs arbitraires sur E.

c. Toujours d'après le théorème de Fubini-Lebesgue la fonction $x\mapsto \int_{\mathbb{R}} F_x(y)\,dy$ est mesurable. En outre on a

$$\int_{\mathbb{R}}\left|(f\ast g)(x)\right|\;dx\leqslant\int_{\mathbb{R}}\left(\int_{\mathbb{R}}\left|F_{x}(y)\right|\;dy\right)\;dx\leqslant\left\|f\right\|_{1}\left\|g\right\|_{1}$$

D'où $(f * g) \in \mathcal{L}^1(\mathbb{R})$ avec

$$\|f*g\|_1 \leqslant \|f\|_1 \, \|g\|_1 \, .$$

d. Soit $x \in \mathbb{R} \setminus E$. On effectue le changement de variable y = x - s et on obtient

$$(g * f)(x) = \int_{\mathbb{B}} g(y)f(x - y) \, dy = \int_{\mathbb{B}} g(x - s)f(s) \, ds = (f * g)(x).$$

D'où $(q * f) = (f * g) \operatorname{sur} \mathbb{R} \setminus E$.

4. Pour $f, g \in L^1(\mathbb{R})$ on a $(f * g) \in L^1(\mathbb{R})$ et $||f * g||_1 \leq ||f||_1 ||g||_1$. Expliquer ce que cela signifie et le justifier.

$$\int_{\mathbb{D}} |f_1(y)| |g_1(x-y)| \ dy = \int_{\mathbb{D}} |f_2(y)| |g_2(x-y)| \ dy$$

donc $(f_1*g_1)(x)$ est défini si et seulement si $(f_2*g_2)(x)$ l'est. En outre, dans ce cas les valeurs de $(f_1*g_1)(x)$ et $(f_2*g_2)(x)$ coïncident. Par ailleurs $\|f_1\|_1 \|g_1\|_1 = \|f_2\|_1 \|g_2\|_1$. Ainsi, pour $f,g \in \mathcal{L}^1$ et [f],[g] leurs classes d'équivalence dans $L^1(\mathbb{R})$ on peut poser

$$[f] * [g] = [f * g].$$

On a alors

$$\left\|[f*g]\right\|_1\leqslant \left\|[f]\right\|_1\left\|[g]\right\|_1.$$

П

П

5. Soient $f \in \mathcal{L}^1(\mathbb{R})$ et ρ une fonction de classe C^{∞} et à support compact de \mathbb{R} dans \mathbb{R} .

a. Montrer que $(f * \rho)(x)$ est bien défini pour tout $x \in \mathbb{R}$.

b. Montrer que la fonction $(f * \rho)$ ainsi définie est continue sur \mathbb{R} .

c. Montrer que $(f * \rho)$ est en fait de classe C^{∞} sur \mathbb{R} .

Correction:

a. Comme ρ est continue et à support compact, elle est en particulier dans \mathcal{L}^{∞} . Ainsi $(f * \rho)$ est bien défini d'après la question 2.

b. On a déjà vu que la fonction $y \mapsto f(y)\rho(x-y)$ est mesurable pour tout $y \in \mathbb{R}$. D'autre part, la fonction $x \mapsto f(y)\rho(x-y)$ est continue par continuité de ρ et de la fonction $x \mapsto x-y$. En outre pour tout $(x,y) \in \mathbb{R}^2$ on a

$$|f(y)\rho(x-y)| \leqslant |f(y)| \|\rho\|_{\infty}.$$

Or la fonction $y\mapsto |f(y)|\,\|\rho\|_\infty$ est intégrable sur $\mathbb R$, donc par le théorème de continuité sous l'intégrale, on obtient que la fonction

$$x \mapsto (f * \rho)(x) = \int_{\mathbb{R}} f(y)\rho(x - y) \, dy$$

est continue sur \mathbb{R} .

c. On montre par récurrence sur $n \in \mathbb{N}$ que la fonction (f * g) est n fois dérivable sur \mathbb{R} avec, pour tout $x \in \mathbb{R}$,

$$(f * g)^{(n)}(x) = \int_{\mathbb{R}} f(y)\rho^{(n)}(x - y) dy.$$

On a montré le cas n=0. Supposons maintenant le résultat acquis jusqu'au rang n avec $n\in\mathbb{N}$. Puisque ρ est de classe C^{n+1} et à support compact, les fonctions $\rho^{(n)}$ et $\rho^{(n+1)}$ sont bornées sur \mathbb{R} . En particulier l'application $y\mapsto f(y)\rho^{(n)}(x-y)$ est bien intégrable sur \mathbb{R} . En outre l'application $x\mapsto f(y)\rho^{(n)}(x-y)$ est dérivable pour tout $x\in\mathbb{R}$ et

$$\left|\frac{\partial}{\partial x} f(y) \rho^{(n)}(x-y)\right| = \left|f(y) \rho^{(n+1)}(x-y)\right| \leqslant |f(y)| \left\|\rho^{(n+1)}\right\|_{\infty}.$$

Or la fonction $y\mapsto |f(y)|\left\|\rho^{(n+1)}\right\|_{\infty}$ est intégrable sur \mathbb{R} , donc par le théorème de dérivation sous l'intégrable on obtient que $(f*g)^{(n)}$ est dérivable (et donc (f*g) est (n+1) fois dérivable) avec, pour tout $x\in\mathbb{R}$,

$$(f * g)^{(n+1)}(x) = ((f * g)^{(n)})'(x) = \int_{\mathbb{R}} f(y) \rho^{(n+1)}(x - y) \, dy.$$

Par récurrence, on a donc obtenu que (f*g) est en fait de classe C^{∞} sur \mathbb{R} .