TD nº 3: Fonctions mesurables

Exercice 3.1. La fonction $\mathbb{1}_{\mathbb{Q}}$ est-elle borélienne sur \mathbb{R} ?

Exercice 3.2. Soit (X, \mathcal{M}) un espace mesurable.

- 1. Vérifier que si $\mathcal{M} = \mathcal{P}(X)$ alors toute fonction de X dans n'importe quel espace mesurable est mesurable.
- **2.** On suppose maintenant que $\mathcal{M} \neq \mathcal{P}(X)$. Donner un exemple de fonction $f: X \to \mathbb{R}$ qui n'est pas mesurable mais telle que |f| l'est.

Exercice 3.3. Montrer que la réciproque d'une bijection mesurable n'est pas nécessairement mesurable.

Exercice 3.4. 1. Soit $f: X \to \mathbb{R}$ une fonction mesurable. Montrer directement (*i.e.* sans utiliser le cours) que les fonctions $f_+ = \max(f, 0)$ et $f_- = \max(-f, 0)$ sont mesurables.

2. Soit $f: X \to \mathbb{C}$ une fonction mesurable. Montrer que les fonctions Re(f) et Im(f) sont des fonctions mesurables de X dans \mathbb{R} .

Exercice 3.5. Montrer qu'une fonction $f: \mathbb{R} \to \mathbb{R}$ croissante est mesurable.

Exercice 3.6. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue à droite.

1. Soit $n \in \mathbb{N}^*$. On considère sur \mathbb{R} la fonction f_n telle que, pour $x \in \mathbb{R}$,

$$f_n(x) = \begin{cases} 0 & \text{si } x \leqslant -n, \\ f\left(\frac{p}{n}\right) & \text{si } x \in]-n, n] \text{ et } \frac{p-1}{n} < x \leqslant \frac{p}{n}, \text{ avec } p \in \mathbb{Z}, \\ 0 & \text{si } x > n. \end{cases}$$

Montrer que la fonction f_n ainsi définie est mesurable.

- **2.** Montrer que la suite $(f_n)_{n\in\mathbb{N}^*}$ converge simplement vers f.
- **3.** En déduire que f est mesurable.
- **4.** Montrer qu'une fonction $g: \mathbb{R} \to \mathbb{R}$ continue à gauche est mesurable.

Exercice 3.7. Soient (X, \mathcal{M}) un espace mesurable et $f: X \to \mathbb{C}$ une fonction mesurable. Montrer qu'il existe une fonction mesurable $\omega: X \to \mathbb{C}$ telle que pour tout $x \in X$ on a $|\omega(x)| = 1$ et $f(x) = |f(x)| \omega(x)$.

Exercice 3.8. Soient (X, \mathcal{M}) et (Y, \mathcal{N}) deux ensembles mesurables. Soit $A \in \mathcal{M}$. Soient $f_1, f_2 : X \to Y$ deux fonctions mesurables. Pour $x \in X$ on pose

$$f(x) = \begin{cases} f_1(x) & \text{si } x \in A, \\ f_2(x) & \text{si } x \in X \setminus A. \end{cases}$$

Montrer que f est une fonction mesurable de X dans Y.