Chapitre 9

Intégrales multiples

On commence dans ce chapitre à parler d'intégration pour une fonction de plusieurs variables. Les intégrales multiples sont l'objet principal de ce chapitre. On évoquera également les intégrales à paramètre (que le sous-groupe des matheux verra plus en détail par ailleurs).

Considérons par exemple une fonction de deux variables, définie et continue sur le rectangle $[a,b] \times [c,d]$. Pour tout $x \in [c,d]$ l'application $t \mapsto f(t,x)$ est une fonction d'une seule variable, continue et donc intégrable sur le segment [a,b]. Pour tout $x \in [c,d]$ on peut donc considérer la quantité

$$\phi(x) = \int_a^b f(t, x) \, dt.$$

Dans cette intégrale, x est considéré comme une constante (vous êtes maintenant habitués à ce petit jeu). Mais vous n'êtes pas dupes, vous vous doutez bien qu'on a maintenant envie d'étudier la fonction $x \mapsto \phi(x)$. Est-elle continue? Ce n'est pas clair, mais on verra que c'est effectivement le cas. Les choses se compliquent un peu si on remplace le segment [a,b] par un intervalle quelconque de $\mathbb R$. Bien sûr il n'est déjà plus si clair que l'intégrale définissant $\phi(x)$ a bien un sens pour tout x, et il est ensuite un peu plus subtile de s'assurer que la fonction ϕ obtenue est bien continue.

Une fois qu'on aura assuré la continuité de la fonction ϕ , on pourra se demander à quelle condition sur f l'intégrale ϕ est dérivable, de classe C^k , etc.

On observe que comme la continuité et la dérivabilité sont des propriétés locales, on n'aura pas trop de difficulté à remplacer le segment [c,d] par un intervalle quelconque de \mathbb{R} . Pour toutes ces questions les deux variables t et x jouent vraiment des rôles très différents. t est une variable d'intégration, x est plutôt vu comme un paramètre.

Une autre question, pour laquelle t et x ont des rôles plus symétriques, est de chercher à intégrer ϕ . En effet, si ϕ est continue sur le segment [c,d], elle est intégrable sur ce même segment. On peut donc considérer la quantité

$$I = \int_{c}^{d} \phi(x) dx = \int_{c}^{d} \left(\int_{a}^{b} f(t, x) dt \right) dx.$$

Évidemment, on aurait pu commencer par intégrer la fonction $x\mapsto f(t,x)$ sur [c,d] pour chaque $t\in [a,b]$ fixé, puis intégrer la quantité obtenue par rapport à t. Autrement dit on aurait pu considérer

$$\tilde{I} = \int_{a}^{b} \left(\int_{c}^{d} f(t, x) \, dx \right) dt.$$

Les intégrales I et \tilde{I} sont-elles égales? Que représentent-elles? Peut-on intégrer sur autre chose qu'un rectangle? Réponses (partielles) dans les quelques pages qui suivent...

9.1 Intégrales à paramètres

On donne (très) rapidement les résultats principaux concernant les intégrales à paramètre. On énonce également le théorème de convergence dominée pour une suite d'intégrales (plutôt que pour une intégrale dépendant d'un paramètre x continu).

Les hypothèses utilisées ici peuvent être affaiblies. En outre, on intègre ici par rapport à une variable réelle t et on obtient une fonction d'une variable réelle x. En partant d'une fonction f à p+n variables on pourrait également (après avoir vu les intégrales multiples) intégrer par rapport à p variables t_1, \ldots, t_n et obtenir une fonction de n variables x_1, \ldots, x_n . Néanmoins il est complètement raisonnable, au moins dans un premier temps, de se contenter des énoncés présentés ici.

9.1.1 Théorème de convergence dominée

Théorème 9.1. Soit I un intervalle de \mathbb{R} . On considère une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions continues sur I. On suppose que la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement I vers une fonction I et qu'il existe une fonction I intégrable sur I telle que

$$\forall n \in \mathbb{N}, \forall t \in I, \quad |f_n(t)| \leq g(t).$$

Alors f est intégrable sur I et on a

$$\int_I f_n(t) dt \xrightarrow[n \to \infty]{} \int_I f(t) dt.$$

Attention, le fait de pouvoir passer à la limite sous l'intégrale n'a rien d'évident, il n'est d'ailleurs pas difficile de trouver des contre-exemples dès qu'on retire l'hypothèse de domination.

9.1.2 Cas d'une intégrale sur un segment

Soient $a, b \in \mathbb{R}$ avec a < b et J un intervalle non vide de \mathbb{R} . On considère une fonction f de $[a, b] \times J$ dans \mathbb{R} . On cherche à étudier l'application ϕ définie sur J par

$$\phi(x) = \int_a^b f(t, x) \, dt.$$

Proposition 9.2. On suppose que f est continue sur $[a,b] \times J$. Alors ϕ est définie et continue sur J.

Proposition 9.3. On suppose que J est un intervalle ouvert. On suppose que f est continue sur $[a,b] \times J$ et admet une dérivée partielle $\frac{\partial f}{\partial x}$, elle-même continue sur $[a,b] \times J$. Alors l'application ϕ précédente est bien définie sur J, elle est de classe C^1 et

$$\forall x \in J, \quad \phi'(x) = \int_a^b \frac{\partial f}{\partial x}(t, x) dt.$$

Les démonstrations de ces deux propositions, ainsi que des deux théorèmes ci-dessous, sont par exemple dans [Liret-Martinais, Analyse 2^{ème} année].

9.1.3 Cas d'une intégrale généralisée

Soient $a \in \mathbb{R}$, $b \in [a, +\infty[\cup \{+\infty\}, J \text{ un intervalle de } \mathbb{R} \text{ et } f \text{ une fonction de } [a, b[\times J \text{ dans } \mathbb{R}. \text{ On s'intéresse, lorsqu'elle est bien définie, à la fonction } \phi \text{ définie sur } J \text{ par }$

$$\phi(x) = \int_{a}^{b} f(t, x) dt.$$

^{1.} Cela signifie que $f_n(t)$ tend vers f(t) quand n tend vers $+\infty$ pour tout $t\in I$.

Théorème 9.4 (Théorème de continuité sous l'intégrale). On suppose que f est continue sur $[a,b] \times J$ et qu'il existe une fonction g continue de [a,b] dans \mathbb{R} telle que

- (i) $\forall t \in [a, b[, \forall x \in J, |f(t, x)| \leq g(t).$
- (ii) L'intégrale $\int_a^b g(t) dt$ est convergente.

Alors l'application ϕ est bien définie et continue sur J.

Théorème 9.5 (Théorème de dérivation sous l'intégrale). On suppose que l'intervalle J est ouvert. On suppose que f est continue sur $[a,b[\times J]$ et que l'intégrale généralisée $\int_a^b f(t) dt$ est convergente pour tout $x \in J$. On suppose que la dérivée partielle $\frac{\partial f}{\partial x}$ est définie et continue sur $[a,b[\times J]$. Enfin on suppose qu'il existe une fonction g continue de [a,b[] dans $\mathbb R$ telle que

- (i) $\forall t \in [a, b[, \forall x \in J, \left| \frac{\partial f}{\partial x}(t, x) \right| \leq g(t),$
- (ii) l'intégrale généralisée $\int_a^b g(t) dt$ est convergente.

Alors pour tout $x \in J$ l'intégrale $\int_a^b \frac{\partial f}{\partial x}(t,x) dt$ est absolument convergente. En outre la fonction ϕ est définie et de classe C^1 sur J, et

$$\forall x \in J, \quad \phi'(x) = \int_a^b \frac{\partial f}{\partial x}(t, x) dt.$$

Exemple 9.6. Pour $x \in \mathbb{R}$ on pose :

$$\varphi(x) = \int_0^{+\infty} e^{-t^2} \cos(tx) \, dt.$$

Alors φ est bien définie et de classe C^1 sur \mathbb{R} . En outre pour tout $x \in \mathbb{R}$ on a

$$\varphi(x) = e^{-\frac{x^2}{4}}\varphi(0).$$

Démonstration. • Pour $t \in \mathbb{R}_+$ et $x \in \mathbb{R}$ on note

$$f(t,x) = e^{-t^2} \cos(tx).$$

La fonction f est de classe C^1 sur $\mathbb{R}_+ \times \mathbb{R}$ et

$$\forall t \in \mathbb{R}_+, \forall x \in \mathbb{R}, \quad |f(t,x)| \leqslant e^{-t^2} = \underset{t \to +\infty}{O} (e^{-t}).$$

Or l'intégrale $\int_0^{+\infty} e^{-t} dt$ est convergente, donc $\int_0^{+\infty} f(t,x) dt$ est absolument convergente pour tout $x \in \mathbb{R}$. Ainsi φ est bien définie sur \mathbb{R} .

• Pour $t \in \mathbb{R}_+$ et $x \in \mathbb{R}$ on a

$$\left| \frac{\partial f}{\partial x}(t,x) \right| = \left| -t\sin(tx)e^{-t^2} \right| \leqslant te^{-t^2}.$$

Or l'application $t\mapsto te^{-t^2}$ est continue sur \mathbb{R}_+ et pour tout $A\geqslant 0$ on a

$$\int_0^A t e^{-t^2} dt = \left[-\frac{1}{2} e^{-t^2} \right]_0^A = -\frac{1}{2} e^{-A^2} + \frac{1}{2} \xrightarrow[A \to +\infty]{} \frac{1}{2},$$

donc l'intégrale $\int_0^{+\infty} t e^{-t^2} dt$ est convergente. D'après le théorème de dérivation sous l'intégrale, φ est donc de classe C^1 sur $\mathbb R$ et

$$\forall x \in \mathbb{R}, \quad \varphi'(x) = -\int_0^{+\infty} t e^{-t^2} \sin(tx) dt.$$

Année 2015-2016 59

Soit $A \ge 0$. En faisant une intégration par parties on a

$$\int_0^A -te^{-t^2} \sin(tx) \, dt = \left[\frac{1}{2} e^{-t^2} \sin(tx) \right]_0^A - \frac{1}{2} \int_0^A e^{-t^2} x \cos(tx) \, dt$$
$$= \frac{1}{2} e^{-A^2} \sin(Ax) - \frac{x}{2} \int_0^A e^{-t^2} \cos(tx) \, dt \xrightarrow[A \to +\infty]{} -\frac{x}{2} \varphi(x).$$

Cela prouve que

$$\forall x \in \mathbb{R}, \quad \varphi'(x) = -\frac{x}{2}\varphi(x)$$

et donc que

$$\forall x \in \mathbb{R}, \quad \varphi(x) = e^{-\frac{x^2}{4}}\varphi(0).$$

Remarque. Pour avoir la dérivabilité de ϕ sur J, il suffit de montrer la dérivabilité en tout point de J. En pratique il suffit donc de vérifier l'hypothèse de domination localement (en x) autour de chaque point $x_0 \in J$.

9.2 Construction de l'intégrale de Riemann sur \mathbb{R}^n

On s'intéresse maintenant à l'intégrale d'une fonction de plusieurs variables. Il s'agira ici de l'intégrale de Riemann. On rappelle que l'intégrale de Riemann d'une fonction sur un segment de $\mathbb R$ est définie de la façon suivante :

- l'intégrale de la fonction indicatrice d'un intervalle est définie de façon évidente,
- par linéarité, on définit l'intégrale d'une fonction en escalier (ou étagée),
- et enfin, lorsque c'est possible (dans un sens particulier, et dans ce cas on parle de fonction Riemann intégrable), on approche la fonction étudiée par des fonctions en escalier, puis on définit l'intégrale comme la limite des intégrales de ces fonctions en escalier,
- on montre ensuite qu'en particulier les fonctions continues, ou au moins continues par morceaux, sont toujours Riemann intégrables sur un segment.

L'intégrale de Riemann d'une fonction de plusieurs variables se construit de façon analogue, même s'il y a un certain nombre de subtilités supplémentaires. On ne donnera ici que les étapes de la construction, sans s'attarder sur les démonstrations (pour plus de détail, consulter par exemple le paragraphe IV.3 [Ramis-Warusfel, Tout-en-un pour la licence, niveau L2]. La raison est que vous verrez en L3 une autre façon de définir l'intégrale d'une fonction, à savoir l'intégrale de Lebesgue. Cet autre point de vue sera bien plus efficace pour obtenir les résultats d'intégration théoriques.

Par contre, tant qu'il s'agit de calculer les intégrales de fonctions simples sur des domaines simples (en des sens à préciser), cela revient au même de définir l'intégrale d'une façon ou d'une autre. Ainsi il est pertinant de s'entraîner à calculer concrêtement des intégrales même avant de connaître l'intégrale de Lebesgue. C'est l'objectif de ce chapitre.

Ainsi je vous conseille de lire ce paragraphe, mais vous pouvez sans trop de scrupules le passer et vous concentrer sur les suivants, qui constituent le véritable objectif de ce chapitre.

Comme en dimension 1, on commence par définir l'intégrale dans le cas trivial. L'intégrale de la fonction constante égale à α sur le pavé

$$P(a_1, b_1; ...; a_n, b_n) = [a_1, b_1] \times \cdots \times [a_n, b_n]$$

est définie comme étant égale à

$$\int_{P(a_1,b_1,\ldots,a_n,b_n)} \alpha = \alpha \operatorname{Vol}(P) = \alpha \prod_{j=1}^n (b_j - a_j).$$

On définit ensuite par linéarité l'intégrale d'une fonction f définie sur un pavé P et telle qu'il existe un nombre fini de pavés P_1, \ldots, P_k tels que P est égal à l'union de ces pavés, ils sont d'intérieurs disjoints (cela signifie que si on oublie les bords il n'y a pas d'intersection) et f est constante sur chacun de l'intérieur de ces pavés (on ne se préoccupe pas de la valeur sur les bords des pavés, de même qu'une intégrale en dimension 1 ne dépend pas de la valeur en un point donné).

On se donne maintenant une fonction f sur un pavé P. Si on se donne des sous-pavés P_1, \ldots, P_k d'intérieurs disjoints et tels que $P = \bigcup_{j=1}^k P_k$, ainsi que des points $x_1 \in P_1, \ldots, x_k \in P_k$. On sait alors donner un sens à l'intégrale de la fonction qui vaut $f(x_j)$ sur l'intérieur du pavé P_j pour tout $j \in [1, k]$:

$$I(P_1, x_1, \dots, P_k, x_k) = \sum_{j=1}^k f(x_j) \operatorname{Vol}(P_j).$$

On dit alors que f est intégrable sur P si cette quantité tend vers un réel I quand les longeurs des côtés des sous-pavés tendent toutes vers 0 (le nombre de sous-pavés tend lui vers $+\infty$), indépendamment du choix de ces sous-pavés. On dit alors que cette valeur I est l'intégrale de f sur le pavé P. On vérifie ensuite qu'en particulier les fonctions continues sur P sont intégrables.

Ce qui précède permet de définir l'intégrabilité et l'intégrale sur un pavé. Par linéarité on peut étendre sans difficulté la définition à une union finie de pavés. Mais on aimerait pouvoir intégrer des fonctions sur des domaines qui ne sont pas des unions de pavés, par exemple un simple disque de \mathbb{R}^2 . On se donne donc une fonction continue (on pourrait chercher à considérer des fonctions plus générales, mais cela ne nous intéressera pas ici) sur un domaine ouvert et borné $\mathcal U$ de $\mathbb R^n$. On peut alors trouver une suite $(P_j)_{j\in\mathbb N}$ de pavés inclus dans $\mathcal U$, d'intérieurs deux à deux disjoints, et tel que tout $x\in\mathcal U$ appartient à P_j pour au moins un $j\in\mathbb N$. Pour tout $j\in\mathbb N$ on note I_j l'intégrale de f sur le pavé P_j . On dit alors que f est intégrable sur $\mathcal U$ si la série

$$\sum_{j=1}^{\infty} I_j$$

est absolument convergente et dans ce cas on appelle intégrale de f sur \mathcal{U} la somme de cette série. Pour que cela ait un sens il faut que cette limite soit indépendante du choix de la suite $(P_j)_{j\in\mathbb{N}}$, ce qui est effectivement le cas.

De même qu'on utilise rarement les sommes de Riemann pour calculer l'intégrale d'une fonction continue sur un segment de \mathbb{R} , la construction qu'on vient d'esquisser ne permet pas de calculer concrètement des intégrales de fonctions sur des domaines de \mathbb{R}^n . C'est le théorème de Fubini 9.9, qui permet de ramener le calcul d'une intégrale de \mathbb{R}^n au calcul de n intégrales unidimensionnelles, que l'on utilisera en pratique.

S'il n'est pas primordial à ce stade de retenir en détail la construction de l'intégrale de Riemann sur \mathbb{R}^n , il sera par contre indispensable de bien savoir utiliser ce théorème pour savoir calculer concrètement des intégrales « simples ».

9.3 Intégrale d'une fonction continue sur un domaine simple

9.3.1 Intégration sur un domaine de \mathbb{R}^2

On arrive maintenant au cœur de ce chapitre, où on cherche à calculer des intégrales de fonctions « simples » sur des domaines « simples » de \mathbb{R}^2 . On commence par définir le type de domaines sur lesquels on va intégrer.

Année 2015-2016 61

Définition 9.7. Une partie A de \mathbb{R}^2 est dite élémentaire s'il existe $a, b, c, d \in \mathbb{R}$ avec a < b et c < d, et des fonctions φ_1, φ_2 continues sur [a, b] et ψ_1, ψ_2 continues sur [c, d] telles que $\varphi_1(x) \leq \varphi_2(x)$ pour tout $x \in [a, b], \psi_1(y) \leq \psi_2(y)$ pour tout $y \in [c, d]$ et

$$A = \{(x, y) \in \mathbb{R}^2 \mid a \leqslant x \leqslant b, \varphi_1(x) \leqslant y \leqslant \varphi_2(x)\}$$

= \{(x, y) \in \mathbb{R}^2 \cong c \leq y \leq d, \psi_1(y) \leq x \leq \psi_2(y)\}.

Dans ce cas l'intérieur de A est

$$\mathring{A} = \{(x, y) \in \mathbb{R}^2 \mid a < x < b, \varphi_1(x) < y < \varphi_2(x)\}
= \{(x, y) \in \mathbb{R}^2 \mid c < y < d, \psi_1(y) < x < \psi_2(y)\}.$$

Exemples 9.8. • Le pavé $[a, b] \times [c, d]$ avec a < b et c < d est une partie élémentaire de \mathbb{R}^2 .

• Le disque unité

$$D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$$

peut s'écrire

$$D = \left\{ (x, y) \in \mathbb{R}^2 \mid -1 \leqslant x \leqslant 1, -\sqrt{1 - x^2} \leqslant y \leqslant \sqrt{1 - x^2} \right\}$$

ou encore

$$D = \left\{ (x, y) \in \mathbb{R}^2 \mid -1 \leqslant y \leqslant 1, -\sqrt{1 - y^2} \leqslant x \leqslant \sqrt{1 - y^2} \right\}.$$

Théorème 9.9 (Fubini). Soient A une partie élémentaire de \mathbb{R}^2 et f une fonction continue sur A. Avec les notations de la définition précédente, on a

$$\int_{A} f(x,y) \, dx \, dy = \int_{a}^{b} \left(\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x,y) \, dy \right) \, dx = \int_{c}^{d} \left(\int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x,y) \, dx \right) \, dy.$$

- Remarque 9.10. Le théorème précédent peut être lu de deux façons différentes. Si vous avez bien compris la construction de l'intégrale d'une fonction continue sur un domaine A de \mathbb{R}^2 , le théorème dit que cette intégrale est en fait égale à ce qu'on obtient en intégrant d'abord par rapport à une variable puis par rapport à l'autre, comme présenté en introduction, et indépendamment de l'ordre d'intégration. Si vous avez esquivé le paragraphe précédent, le théorème dit que les deux dernières intégrales de l'égalité sont égales, et on prend leur valeur commune comme définition de l'intégrale de f sur A. Dans tous les cas ce théorème est admis.
- On écrit parfois $\iint_A f(x,y) dx dy$ pour insister sur le fait que c'est une intégrale qui porte sur deux variables. On peut faire de même pour les intégrales portant sur trois variables, mais en général on abandonne cette convention au-delà...

Exemples 9.11. On cherche à calculer l'intégrale de la fonction $(x,y) \mapsto xy^2$ sur le pavé $P = [0,1] \times [1,2]$. On a

$$\int_{P} xy^{2} dx dy = \int_{0}^{1} \left(\int_{1}^{2} xy^{2} dy \right) dx = \int_{0}^{1} \left(\frac{8x}{3} - \frac{x}{3} \right) dx = \int_{0}^{1} \frac{7x}{3} dx = \frac{7}{6}$$

mais aussi

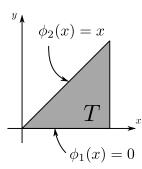
$$\int_{P} xy^{2} dx dy = \int_{1}^{2} \left(\int_{0}^{1} xy^{2} dx \right) dy = \int_{1}^{2} \frac{y^{2}}{2} dy = \frac{8}{6} - \frac{1}{6} = \frac{7}{6}.$$

Exemple 9.12. On note

$$T = \left\{ (x,y) \in [0,1]^2 \, | \, y \leqslant x \right\}.$$

On a alors

$$\iint_T x^2 y^3 \, dx \, dy = \int_0^1 \left(\int_0^x x^2 y^3 \, dy \right) \, dx = \int_0^1 \frac{x^6}{4} \, dx = \frac{1}{24}.$$



Définition 9.13. On appelle partie simple de \mathbb{R}^2 un ensemble S qui s'écrit comme union finie de parties élémentaires A_1, \ldots, A_n d'intérieurs deux à deux disjoints :

$$\forall i, j \in [1, n], \quad i \neq j \implies \mathring{A}_i \cap \mathring{A}_j = \emptyset.$$

Si f est une fonction continue sur S, on définit alors

$$\int_{S} f = \sum_{k=1}^{n} \int_{A_k} f$$

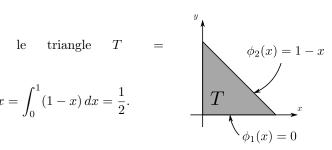
Exemple 9.14. La couronne $\{(x,y) \in \mathbb{R}^2 \mid 1 \leqslant \sqrt{x^2 + y^2} \leqslant 2\}$ est une partie simple de \mathbb{R}^2 .

Définition 9.15. Soit A une partie élémentaire de \mathbb{R}^2 . Alors on appelle aire de A la quantité

$$\iint_A 1 \, dx \, dy.$$

Exemple 9.16. On considère le triangle T $\{(x,y)\in [0,1]^2\,|\, x+y\leqslant 1\}.$ On a

Aire(T) =
$$\int_0^1 \left(\int_0^{1-x} 1 \, dy \right) \, dx = \int_0^1 (1-x) \, dx = \frac{1}{2}.$$



Exemple 9.17. On considère le disque D de centre 0 et de rayon 1. Alors on a

Aire(D) =
$$\int_{x=-1}^{1} \left(\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} 1 \, dy \right) dx = 2 \int_{x=-1}^{1} \sqrt{1-x^2} \, dx = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{1-\sin^2(\theta)} \cos(\theta) \, d\theta$$

= $2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2(\theta) \, d\theta = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(1 + \cos(2\theta) \right) d\theta = \pi.$

Définition 9.18. Soit A une partie simple de \mathbb{R}^2 . Alors on appelle centre de gravité de A le point de coordonnées

$$(x_G, y_G) = \frac{1}{\operatorname{Aire}(D)} \left(\iint_D x \, dx \, dy, \iint_D y \, dx \, dy \right).$$

Exemple 9.19. Le centre de gravité du disque D de centre (x_0, y_0) et de rayon R et le point (x_0, y_0) . En effet on a

$$\iint_D x \, dx \, dy = \int_{a-R}^{a+R} \int_{b-\sqrt{R^2 - (x-a)^2}}^{b+\sqrt{R^2 - (x-a)^2}} x \, dy \, dx = \int_{a-R}^{a+R} 2x \sqrt{R^2 - (x-a)^2} \, dx$$
$$= \int_{-R}^{R} 2x \sqrt{R^2 - x^2} \, dx + \int_{-R}^{R} 2a \sqrt{R^2 - x^2} \, dx = a \operatorname{Aire}(D).$$

Année 2015-2016 63

La deuxième coordonnée s'obtient de façon analogue.

Intégration en dimensions supérieures

On définit exactement comme dans \mathbb{R}^2 les domaines élémentaires et simples de \mathbb{R}^3 , puis l'intégrale

$$\iiint_V f(x, y, z) dx dy dz = \int_V f(x, y, z) dx dy dz$$

d'une fonction continue sur un tel domaine, en écrivant cette intégrale comme une intégrale en x d'une intégrale en y d'une intégrale en z. On dans un ordre différent.

Définition 9.20. Soit V une partie simple de \mathbb{R}^3 . Alors on appelle volume de V la quantité

$$\iiint_V 1 \, dx \, dy.$$

On définit le centre de gravité d'une partie simple de \mathbb{R}^3 de façon analogue à la dimension 2. Exemple 9.21. On considère le simple $T_3 = \{(x, y, z) \in [0, 1]^3 \mid x + y + z \leq 1\}$. On a

$$\operatorname{Vol}(T_3) = \int_0^1 \left(\int_0^{1-x} \left(\int_0^{1-x-y} 1 \, dz \right) dy \right) \, dx = \int_0^1 \left(\int_0^{1-x} (1-x-y) \, dy \right) \, dx$$
$$= \int_0^1 \left((1-x) - x(1-x) - \frac{(1-x)^2}{2} \right) \, dx = \frac{1}{6}.$$

Ici on aurait pu gagner une étape de calcul en observant que pour tout $x \in [0,1]$ on sait calculer

$$\int_0^{1-x} \left(\int_0^{1-x-y} 1 \, dz \right) dy$$

qui est l'aire du triangle $T_2(x) = \{(y,z) \in [0,1-x]^2 \mid y+z \leqslant 1-x\}$ c'est-à-dire $\frac{(1-x)^2}{2}$. On a alors

$$Vol(T_3) = \int_0^1 Aire(T_2(x)) dx = \int_0^1 \frac{(1-x)^2}{2} dx = \frac{1}{6}.$$

Exemple 9.22. On considère la boule unité $B=\left\{(x,y,z)\in\mathbb{R}^3\,|\,x^2+y^2+z^2\leqslant 1\right\}$. Pour tout $z\in[-1,1]$ on considère le disque $D(z)=\left\{(x,y)\in\mathbb{R}^2\,|\,x^2+y^2\leqslant 1-z^2\right\}$. On a alors

$$Vol(B) = \int_{z=-1}^{1} Aire(D(z)) dz = \int_{-1}^{1} \pi (1 - z^2) dz = \pi \left[1 - \frac{z^3}{3} \right]_{1}^{1} = \frac{4\pi}{3}.$$

Bien sûr, toutes ces définitions se généralisent en fait à des domaines de \mathbb{R}^n . Le théorème de Fubini ramène le calcul d'une intégrale sur un domaine de \mathbb{R}^n au calcul de n intégrales successives sur des intervalles de \mathbb{R} . On parlera encore de volume en dimension $n \geq 4$.

9.4 Exercices

Intégrales à paramètre

Exercice 9.1. Montrer que l'intégrale $I_n = \int_1^{+\infty} \frac{1}{n^2 + t^2} dt$ converge pour tout $n \in \mathbb{N}$. Étudier la convergence de la suite $(I_n)_{n\in\mathbb{N}}$.

Exercice 9.2. On définit deux fonctions $f, g : \mathbb{R} \to \mathbb{R}$ par les formules

$$f(x) = \int_0^x e^{-t^2} dt$$
 et $g(x) = \int_0^1 \frac{e^{-(t^2+1)x^2}}{t^2+1} dt$.

- 1. Montrer que g est dérivable.
- **2.** Montrer que la fonction $h(x) = g(x) + f^2(x)$ est constante. **3.** En déduire que $\int_0^{+\infty} e^{-t^2} dt = \sqrt{\pi}/2$.

Exercice 9.3. Pour $x \ge 0$, on définit

$$\psi(x) = \int_0^{+\infty} \frac{e^{-(t^2+1)x}}{t^2+1} dt.$$

- **1.** Montrer que ψ est continue sur $[0, +\infty[$.
- **2.** Montrer que ψ est de classe C^1 sur $]0, +\infty[$.
- **3.** Calculer $\psi(0)$ et la limite $\lim_{x \to +\infty} \psi(x)$. **4.** Montrer que $\psi'(x) = -\frac{e^{-x}}{\sqrt{x}} \int_0^{+\infty} e^{-s^2} ds$.
- **5.** Montrer que $\int_0^{+\infty} \psi'(x) dx = -2(\int_0^{+\infty} e^{-s^2} ds)^2$. **6.** En déduire que $\int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2}$.

9.4.2 Intégrales multiples

Exercice 9.4. Calculer $\iint_{\mathbb{R}} f(x,y) dx dy$ dans les cas suivants :

1.
$$f(x,y) = \frac{x^2}{y}$$
 et $D = [-1,1] \times [1,2]$,

2.
$$f(x,y) = \sin(x+y)$$
 et $D = [0, \frac{\pi}{2}] \times [0, \frac{\pi}{2}],$

1.
$$f(x,y) = \frac{x^2}{y}$$
 et $D = [-1,1] \times [1,2]$,
2. $f(x,y) = \sin(x+y)$ et $D = [0,\frac{\pi}{2}] \times [0,\frac{\pi}{2}]$,
3. $f(x,y) = \frac{x}{\sqrt{1+xy+x^2}}$ et $D = [3,7] \times [-2,2]$.

Exercice 9.5. On note $D = \{(x,y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0, x+y \le 1\}$. Calculer

$$I_1 = \iint_D 1 \, dx \, dy$$
, $I_2 = \iint_D (x^2 + y^2) \, dx \, dy$, $I_3 = \iint_D xy(x+y) \, dx \, dy$.

Exercice 9.6. Calculer $\iint_D f(x,y) dx dy$ dans les cas suivants :

1.
$$f(x,y) = x + y$$
, $D = \{(x,y) \in \mathbb{R}^2 \mid 1 \ge x \ge 0, x^2 \le y \le x\}$,

2.
$$f(x,y) = \frac{1}{(x+y)^3}$$
, $D = \{(x,y) \in \mathbb{R}^2 \mid 3 > x > 1, y > 2, x+y < 5\}$

3.
$$f(x,y) = \cos(xy), \quad D = \{(x,y) \in \mathbb{R}^2 \mid 2 \ge x \ge 1, \ 0 \le xy \le 2\}$$

$$\begin{array}{ll} \textbf{1.} & f(x,y) = x+y, & D = \{(x,y) \in \mathbb{R}^2 \,|\, 1 \geqslant x \geqslant 0,\, x^2 \leqslant y \leqslant x\}, \\ \textbf{2.} & f(x,y) = \frac{1}{(x+y)^3}, & D = \{(x,y) \in \mathbb{R}^2 \,|\, 3 > x > 1,\, y > 2,\, x+y < 5\}, \\ \textbf{3.} & f(x,y) = \cos(xy), & D = \{(x,y) \in \mathbb{R}^2 \,|\, 2 \geqslant x \geqslant 1,\, 0 \leqslant xy \leqslant 2\}, \\ \textbf{4.} & f(x,y) = x, & D = \{(x,y) \in \mathbb{R}^2 \,|\, y \geqslant 0,\, x-y+1 \geqslant 0,\, x+2y-4 \leqslant 0\}, \\ \textbf{5.} & f(x,y) = xy, & D = \{(x,y) \in \mathbb{R}^2 \,|\, x \geqslant 0,\, y \geqslant 0,\, xy+x+y \leqslant 1\}. \end{array}$$

5.
$$f(x,y) = xy$$
, $D = \{(x,y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0, xy + x + y \le 1\}$

Exercice 9.7. Calculer les aires des domaines suivants :

$$D_1 = \{(x, y) \in \mathbb{R}^2 \mid -1 \leqslant x \leqslant 1, \ x^2 \leqslant y \leqslant 4 - x^3\},\$$

$$D_{2} = \{(x, y) \in \mathbb{R}^{2} \mid 0 \le x \le \pi, -\sin x \le y \le \sin x\},$$

$$D_{3} = \{(x, y) \in \mathbb{R}^{2} \mid y \ge 0, x - y + 1 \ge 0, y \le -x^{2} + 2x + 1\}.$$

$$D_3 = \{(x, y) \in \mathbb{R}^2 \mid y \geqslant 0, \ x - y + 1 \geqslant 0, \ y \leqslant -x^2 + 2x + 1\}.$$

Exercice 9.8. Soit $D = \{(x,y) \in \mathbb{R}^2 \mid x \in [0,1], y \in [0,1], x^2 + y^2 \ge 1\}$. Calculer $\iint_{\mathbb{R}^2} \frac{xy}{1 + x^2 + y^2} dx dy$.

Exercice 9.9. On considère le domaine

$$D = \{(x, y, z) \in \mathbb{R}^3 \mid x \geqslant 0, \ y \geqslant 0, \ z \geqslant 0, x + y + z \leqslant 1\}.$$

Pour $z_o \in \mathbb{R}$, on définit le plan $P_{z_o} = \{(x, y, z) \in \mathbb{R}^3 \mid z = z_o\}$. 1. Pour quelles valeurs de z_o l'intersection $P_{z_o} \cap D$ est-elle non-vide?

2. Soit $z_o \in \mathbb{R}$ tel que $P_{z_o} \cap D$ est non-vide. Calculer $\iint_{P_{z_o} \cap D} x \, dx \, dy$

3. Calculer $\iiint_D x \, dx \, dy \, dz$.

Exercice 9.10. On note
$$D = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 1\}$$
. Calculer $\iiint_D \cos(x) \, dx \, dy \, dz$.

Année 2015-2016 65