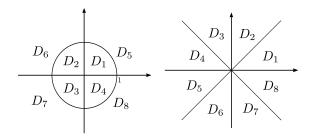
TD no 1

Nombres complexes

Exercice 1.1. 1. On partage le plan complexe en 8 zones D_1 à D_8 (voir figure 2). Remplir le tableau 1 en indiquant dans quel zone se trouvent \bar{z} , -z, 1/z et $-1/\bar{z}$ si z se trouve dans la zone D_j pour $j \in [1, 8]$.

2. Le plan complexe est maintenant partagé comme indiqué à la figure 3. On considère $z_1 \in D_{j_1}$ et $z_2 \in D_{j_2}$ pour $j_1, j_2 \in [1, 8]$. Indiquer dans le tableau 4 les zones où peut alors se trouver le produit $z_1 z_2$.

$z \in$	$\bar{z} \in$	$-z \in$	$1/z \in$	$-1/\bar{z} \in$
D_1				
D_2				
D_3				
D_4				
D_5				
D_6				
D_7				
D_8				



 $\begin{array}{ll} {\rm FIGURE} \ 2 - {\rm Zones} \ {\rm du} \\ {\rm plan} \ {\rm complexe} \end{array}$

FIGURE 3 – Zones du plan complexe (bis)

FIGURE 1 – Tableau pour la question 1 de l'exercice 1.1

$z_1 \in z_2 \in z_1$	D_1	D_2	D_3	D_4	D_5	D_6	D_7	D_8
D_1	$D_1 \cup D_2$							
D_2								
D_3								
D_4								
D_5								
D_6								
D_7								
D_8								

Figure 4 – Tableau pour la question 2 de l'exercice 1.1.

Exercice 1.2. (Forme cartésienne, forme trigonométrique, représentation géométrique)

- 1. Donner le module et l'argument de $zz',\,z'\overline{z},\,\frac{z}{z'}$, ainsi que $z'\overline{z}^2$ en fonction de ceux de z et de z'
- ${\bf 2.}$ Mettre sous forme polaire (ou trigonométrique) les nombres complexes suivants et les représenter géométriquement :

$$z_1 = i$$
 $z_2 = -1 + i$ $z_3 = -1 - i$ $z_4 = \frac{1}{2 + 2i}$ $z_5 = \frac{1 - i}{1 + i}$

3. Écrire sous forme cartésienne les nombres complexes suivants :

$$z_1 = e^{i\pi} \quad z_2 = 4e^{i\frac{\pi}{2}} \quad z_3 = 3e^{-i\frac{\pi}{3}}$$

- **4.** Soient $x, y \in \mathbb{C}$. Quelle est la partie réelle de x + iy?
- **5.** Soit $\lambda \in \mathbb{C}$ et $z \in \mathbb{C}$. A-t-on $\operatorname{Re}(\lambda z) = \lambda \operatorname{Re}(z)$?

Exercice 1.3. Mettre sous forme trigonométrique les nombres complexes suivants.

$$z_1 = 1 + \cos(\theta) - i\sin(\theta), \quad z_2 = 1/z_1, \quad z_3 = 1 + i\tan(\alpha), \quad z_4 = \frac{z_3}{z_3},$$

$$z_5 = 1 + i\cot(\alpha), \quad z_6 = \frac{\cos(x) - i\sin(x)}{\sin(x) - i\cos(x)}.$$

Exercice 1.4. Représenter les ensembles

$$\{\exp(1+it), t \in \mathbb{R}\}\$$
et $\{\exp(t+i), t \in \mathbb{R}\}.$

Exercice 1.5. 1. Calculer $(2+i)^3$.

2. Déterminer l'ensemble des racines cubiques de 2 + 11i.

Exercice 1.6. Démontrer que $e^{ix} - 1 = e^{ix/2}(2i\sin x/2)$. Donner une formule analogue pour $e^{ix} + 1$ et la démontrer.

Exercice 1.7. 1. Déterminer le module, un argument, les parties réelles et imaginaires de

$$e^{2+3i};$$
 $e^{i(2+3i)};$ $e^{z};$ $e^{iz};$ $e^{\bar{z}};$ $e^{1/z}$

où z = x + iy.

2. Résoudre l'équation

$$e^z = 1 + i$$

On donnera toutes les solutions, et on les exprimera sous forme polaire et cartésienne.

3. Même question avec

$$e^z = 12e^{i\frac{\pi}{13}}$$

Exercice 1.8. 1. On note Z = 3 - 4i.

- a. Donner le module de chacune des racines de Z.
- b. Sans calcul, préciser dans quelles zones parmi celles de la figure 3 se trouvent ces racines
- c. Calculer explicitement les racines carrées de Z et confirmer les réponses aux questions précédentes.
- **2.** Mêmes questions avec Z = 8 + 6i.

Exercice 1.9. 1. Calculer les racines carrés du nombre complexe -3-4i.

2. Résoudre dans \mathbb{C} l'équation $z^2 - z(1+4i) - 3 + 3i = 0$

Exercice 1.10. 1. Mettre le nombre complexe $e^{i\pi/6}$ sous forme cartésienne et calculer ses racines carrées.

2. En déduire que

$$\cos\frac{\pi}{12} = \frac{\sqrt{2+\sqrt{3}}}{2}$$

3. Utiliser la même méthode pour déterminer $\sin \frac{\pi}{8}$.

Exercice 1.11. Autre méthode pour déterminer des racines carrées. Soit z un nombre complexe n'appartenant pas à \mathbb{R}_{-} et soit u = z + |z|.

- **1.** Montrer que Re(u) > 0.
- **2.** Montrer que $u^2 = 2Re(u)z$.
- 3. Écrire z comme fonction de u et en déduire une expression simple des racines carrées de z.
- **4.** Application : Trouver les racines carrées de 15 8i.

Exercice 1.12. Les nombres suivants sont-ils des racines de l'unité? Si oui, préciser pour quelle valeur de n. Si non, expliquer pourquoi.

$$z_1 = \frac{\sqrt{2+\sqrt{3}}}{2} + i\frac{\sqrt{2-\sqrt{3}}}{2}; \qquad z_2 = \frac{4-i}{1+2i}; \qquad z_3 = e^{i\frac{5\pi}{15}}; \qquad z_4 = e^{\frac{i}{2}}$$

Exercice 1.13. 1. Soit $Z = \frac{-1}{(\sqrt{3}+i)^2}$. Mettre Z sous forme trigonométrique.

- **2.** $\frac{Z}{|Z|}$ est elle une racine n-ème de l'unité. Si oui, préciser n.
- 3. Résoudre $z^4 = Z$. Combien cette équation admet-elle de solutions? Les représenter dans le plan complexe. Quelle figure géométrique obtient-on? Expliquer.

Exercice 1.14. Soit $n \in \mathbb{N}^*$

- 1. Trouver toutes les solutions de $z^n = 1$ (utiliser l'écriture trigonométrique de z).
- **2.** Soit a, b deux nombres complexes non nuls tels que $a^n = b^n$. Que dire de a/b (c-a-d de quelle forme est-il)?
- 3. Représenter graphiquement tous les z solutions de l'équation $z^4 = (1+i)^4$.
- **4.** Résoudre $(z+i)^n = (z-i)^n$. Vérifier que les solutions sont réelles.
- **5.** Résoudre directement l'équation $(z+i)^4 = (z-i)^4$ et retrouver les résultats précédents.

Exercice 1.15. 1. Développer $(\cos x + i \sin x)^3$. En déduire une expression de $[\sin(3x) - \sin(x)]$ $\cos(3x)$] en fonction de $\cos x$ et $\sin x$.

- **2.** Exprimer $\cos(4x)$ et $\frac{\sin(3x)}{\sin x}$ comme polynômes en $\sin x$ et $\cos x$. **3.** Peut-on les exprimer comme polynômes en $\sin x$? comme polynômes en $\cos x$? Si oui, donner l'expression correspondante.
- **4.** Linéariser $\cos^3 x \sin x$.

Exercice 1.16. Soit $c \in \mathbb{C}$ avec |c| < 1.

- 1. Montrer que $|z+c|\leqslant |1+\bar cz|$ si et seulement si $|z|\leqslant 1$. Quand a-t-on égalité ?
- **2.** Soient $D=\{z\in\mathbb{C},|z|\leqslant1\}$ le disque unité et $C=\{z\in\mathbb{C},|z|=1\}$ le cercle unité. Montrer que l'application $f: D \to D$, $z \mapsto \frac{z+c}{1+\bar{c}z}$ est bien définie et que c'est une bijection vérifiant f(C) = C.

Exercice 1.17. On note $\mathbb{Z}[i]$ l'ensemble des nombres complexes de la forme m+ni, avec $m, n \in \mathbb{Z}$. On munit $\mathbb{Z}[i]$ de l'addition et de la multiplication comme dans \mathbb{C} .

- **1.** Vérifier que ces opérations sont « internes » à $\mathbb{Z}[i]$.
- 2. Quelles propriétés vérifient-elles ? $\mathbb{Z}[i]$ est-il un corps ? Dessiner l'ensemble correspondant dans le plan d'Argand-Cauchy.
- **3.** Quel est le plus petit corps contenant \mathbb{Z} et i contenu dans \mathbb{C} ?