TD nº 3:

Espaces de Sobolev

Exercice 3.1. Soient a et b des fonctions de classe C^1 sur [-1, 0] et sur [0, 1] respectivement. Soit $\lambda \in \mathbb{R}$. A quelle condition la fonction

$$u: x \mapsto \begin{cases} a(x) & \text{si } x \in]-1, 0[\\ \lambda & \text{si } x = 0\\ b(x) & \text{si } x \in]0, 1[\end{cases}$$

appartient-elle à $H^1(]-1,1[)$? Dans ce cas, donner une expression de sa dérivée.

Exercice 3.2. Soit $n \in \mathbb{N}^*$. On note B_n la boule unité ouverte de \mathbb{R}^n . Soit $p \in [1, +\infty[$. Pour quels $\alpha \in \mathbb{R}$ la fonction $f_{\alpha} : x \mapsto |x|^{-\alpha}$ appartient-elle à $W^{1,p}(B_n)$?

Exercice 3.3 (Fonctions de dérivée nulle au sens des distributions). **1.** Soit $u \in L^1_{loc}(\mathbb{R})$ telle que u' = 0 au sens des distributions. Montrer qu'il existe $\alpha \in \mathbb{R}$ tel que $u(x) = \alpha$ presque partout sur \mathbb{R} .

2. Soit $n \in \mathbb{N}^*$. Soit $u \in L^1_{loc}(\mathbb{R}^n)$ telle que $\partial_j u = 0$ au sens des distributions pour tout $j \in [1, n]$. Montrer qu'il existe $\alpha \in \mathbb{R}$ tel que $u(x) = \alpha$ presque partout sur \mathbb{R}^n .

Exercice 3.4 (Représentant continu d'une fonction de $W^{1,p}(\mathbb{R})$). Soit $p \in [1, +\infty]$ et $u \in W^{1,p}(\mathbb{R})$. Montrer qu'il existe une fonction v continue sur \mathbb{R} telle que v = u presque partout sur \mathbb{R} et

$$\forall x, y \in \mathbb{R}, \quad v(y) - v(x) = \int_{x}^{y} u'(t) dt.$$

Exercice 3.5. 1. On note B_2 le disque ouvert de centre 0 et de rayon 1 dans \mathbb{R}^2 . Pour quelles valeurs de $\alpha \in \mathbb{R}$ l'application $(x,y) \mapsto \left| \ln \left(\sqrt{x^2 + y^2} \right) \right|^{\alpha}$ est-elle dans $H^1(B_2)$?

2. Toute fonction dans $H^1(B_2)$ admet-elle un représentant continu?

Exercice 3.6 (Traces). On considère l'application

$$\gamma_0: \left\{ \begin{array}{ccc} \mathcal{D}(\mathbb{R}_+) & \to & \mathbb{R} \\ \phi & \mapsto & \phi(0) \end{array} \right.$$

- **1.** En considérant la suite de fonctions $(\phi_n)_{n\in\mathbb{N}}$ définie pour $n\in\mathbb{N}$ et $x\in\mathbb{R}_+$ par $\phi_n(x)=e^{-nx}$, montrer que γ_0 ne peut être étendue en une application continue sur $L^2(\mathbb{R}_+^*)$.
- **2.** Montrer que pour tout $\phi \in \mathcal{D}(\mathbb{R}_+)$ on a $|\gamma_0(\phi)| \leq ||\phi||_{H^1(\mathbb{R}_+^*)}$.
- **3.** En déduire que γ_0 peut être étendu à une application linéaire continue sur $H^1(\mathbb{R}_+^*)$.
- **4.** On note $\mathbb{R}^2_+ = \{(x,y) \in \mathbb{R}^2 \mid y > 0\}$. Montrer de même qu'on peut définir une application linéaire continue γ_0 de $H^1(\mathbb{R}^2_+)$ dans $L^2(\mathbb{R})$ telle que pour $\phi \in \mathcal{D}(\mathbb{R}^2_+)$ on a $\gamma_0 \phi : x \mapsto u(x,0)$.

Exercice 3.7 (Inégalité de Poincaré). Soit Ω un ouvert de \mathbb{R}^2 . On suppose qu'il existe $a,b\in\mathbb{R}$ tels que pour tout $(x,y)\in\Omega$ on a $x\in]a,b[$. Soit $p\in[1,+\infty[$. Montrer qu'il existe $C\geqslant 0$ tel que

$$\forall u \in W_0^{1,p}(\Omega), \quad \|u\|_{L^p(\Omega)} \leqslant C \|\nabla u\|_{L^p(\Omega,\mathbb{R}^2)}.$$

Exercice 3.8 (Inégalité de Poincaré-Wiertinger). Soit Ω un ouvert borné régulier connexe de \mathbb{R}^2 . Soit $p \in [1, +\infty[$. On rappelle que l'inclusion $W^{1,p}(\Omega) \subset L^p(\Omega)$ est compacte. Montrer qu'il existe une constante $C \geq 0$ telle que pour toute fonction $u \in W^{1,p}(\Omega)$ vérifiant

$$\int_{\Omega} u(x) \, dx = 0$$

on a

$$||u||_{L^p(\Omega)} \leqslant C ||\nabla u||_{L^p(\Omega,\mathbb{R}^2)}$$
.

Exercice 3.9 (Inégalité de Hardy). Soit $p \in]1, +\infty[$ (on peut éventuellement commencer par faire l'exercice pour le cas p=2). On veut montrer que pour tout $u\in W_0^{1,p}(\mathbb{R}_+)$ on a $u(x)/x \in L^p(\mathbb{R}_+)$ et

$$\left\| \frac{u(x)}{x} \right\|_{L^p(\mathbb{R}_+)} \le \frac{p}{p-1} \| u' \|_{L^p(\mathbb{R}_+)}.$$

1. Pour x > 0 on note v(x) = u(x)/x. Montrer que $v(x) = o(x^{-\frac{1}{p}})$. Que peut-on en conclure? Plus généralement, montrer que si $v(x_0) = 0$ alors

$$v(x) = \underset{x \to x_0}{o} (|x - x_0|^{-\frac{1}{p}}).$$

- **2.** On suppose que $u \in C_0^{\infty}(\mathbb{R}_+)$. a. Montrer que $|v|^p$ est de classe C^1 sur \mathbb{R}_+^* et calculer sa dérivée.
- b. En effectuant une intégration par parties dans l'intégrale $\int_0^{+\infty} |v(x)|^p dx$, montrer le résultat dans le cas où $u \in C_0^{\infty}(\mathbb{R}_+)$.
- 3. Conclure.
- **4.** Inversement, montrer que si $u \in W^{1,p}(\mathbb{R}_+)$ est telle que $u(x)/x \in L^p(\mathbb{R}_+)$ alors u(0) = 0.
- 5. En considérant la fonction $u: x \mapsto \chi(x) \left(1 + |\ln(x)|\right)^{-1}$, où $\chi \in C_0^{\infty}(\mathbb{R})$ est égale à 1 sur [-1,1], montrer que le résultat démontré n'est pas vrai pour p=1.