Examen Final - 07 mai 2014

Durée: 2 heures.

Aucun document (ni calculatrice, ni téléphone, etc.) n'est autorisé. On accordera un soin particulier à la rédaction. Il n'est pas nécessaire de traiter les questions dans l'ordre, mais veillez à toujours bien préciser le numéro de la question à laquelle vous répondez.

Exercice 1. On considère la forme différentielle ω définie sur \mathbb{R}^2 par

$$\omega = -2xy\sin(x^2y) dx + (2y - x^2\sin(x^2y)) dy.$$

- 1. Montrer que ω est une forme exacte sur \mathbb{R}^2 .
- **2.** On note Γ la courbe de \mathbb{R}^2 paramétrée par $\gamma:[0;2\pi] \longrightarrow \mathbb{R}^2$ avec $\gamma(\theta)=(\sin\theta\cos^2\theta,\sin^2\theta)$. Calculer $\int_{\Gamma}\omega$.

Exercice 2. Pour tout réel $x \ge 0$ on note

$$F(x) = \int_0^{+\infty} \frac{1 - \cos(t)}{t^2} e^{-tx} dt.$$

- 1. Montrer que pour tout $x \ge 0$ l'intégrale définissant F(x) est convergente.
- **2.** Montrer que la fonction F est continue sur $[0, +\infty[$.
- 3. Étudier la limite éventuelle de F en $+\infty$.
- **4.** Montrer que F est de classe C^1 sur $]0, +\infty[$ et donner une expression de F'.

Exercice 3.

1. Soient $\alpha, \beta, R > 0$. Calculer l'aire de l'ellipse $\mathcal{E} \subset \mathbb{R}^2$ définie par l'équation

$$\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} < R^2.$$

2. Soit $H_{a,b,c} \subset \mathbb{R}^3$ le solide défini par le morceau d'hyperboloïde à une nappe :

$$H_{a,b,c} = \left\{ (x, y, z) \in \mathbb{R}^3 \mid -1 < z < 2, \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} < 1 \right\},$$

où a, b et c sont des réels strictement positifs. Calculer le volume de H.

3. On suppose que a = b = 1 et c = 2. Calculer l'intégrale

$$I = \iiint_{H_{1,1,2}} z e^{x^2 + y^2} \, dx \, dy \, dz.$$

Exercice 4. Soit f une fonction de classe C^2 sur \mathbb{R}^2 . On suppose que f vérifie pour tout $(x,y)\in\mathbb{R}^2$ la condition

$$\frac{\partial^2 f}{\partial x^2}(x,y) + \frac{\partial^2 f}{\partial y^2}(x,y) = 0.$$

(on dit que f est une fonction harmonique). On définit sur \mathbb{R}^2 la forme différentielle

$$\omega = -\frac{\partial f}{\partial y}(x,y) dx + \frac{\partial f}{\partial x}(x,y) dy.$$

1. Pour $r \ge 0$ on note Γ_r le cercle de rayon r centré en l'origine parcouru dans le sens trigonométrique. Calculer l'intégrale curviligne

$$\int_{\Gamma_r} \omega$$
.

2. Pour tout réel $r \geqslant 0$ on note

$$\varphi(r) = \int_0^{2\pi} f(r\cos(\theta), r\sin(\theta)) d\theta.$$

Montrer que φ est de classe C^1 sur \mathbb{R}_+ et que pour tout r > 0 on a $r\varphi'(r) = \int_{\Gamma_r} \omega$. En déduire une expression simple de φ .

3. Soit R>0. On note D_R le disque de rayon R centré en l'origine. Calculer la moyenne de f sur D_R , c'est-à-dire

$$\frac{1}{\operatorname{Aire}(D_r)} \iint_{D_R} f(x, y) \, dx \, dy.$$

Corrigé

Exercice 1. (3.5 = 2 + 1 pts)

1. Pour $(x,y) \in \mathbb{R}^2$ on note $P(x,y) = -2xy\sin(x^2y)$ et $Q(x,y) = 2y - x^2\sin(x^2y)$. Alors P et Q sont de classe C^1 sur \mathbb{R}^2 et pour tout $(x,y) \in \mathbb{R}^2$ on a

$$\frac{\partial Q}{\partial x}(x,y) = -2x\sin(x^2y) - 2x^3y\cos(x^2y) = \frac{\partial P}{\partial y}(x,y).$$

Cela prouve que la forme ω est fermée sur \mathbb{R}^2 . Comme \mathbb{R}^2 est étoilé, le théorème de Poincaré assure que ω est en fait exacte sur \mathbb{R}^2 .

Pour répondre à la question il était également possible de voir que les fonctions de la forme $(x,y) \mapsto y^2 + \cos(x^2y) + C$ avec $C \in \mathbb{R}$ sont des primitives de ω .

2. On a $\gamma(0) = (0,0) = \gamma(2\pi)$. Puisque la forme ω est exacte, cela assure que l'intégrale $\int_{\Gamma} \omega$ est nulle. Attention à ceux qui ont voulu appliquer la formule de Green-Riemann : sur quel domaine appliquez-vous ce résultat?

Exercice 2. (6.5 = 2 + 1.5 + 1 + 2 pts)

Pour $(t, x) \in \mathbb{R}_+^* \times \mathbb{R}$ on note

$$f(t,x) = \frac{1 - \cos(t)}{t^2}e^{-tx}.$$

Pour t > 0 on note

$$\varphi(t) = \frac{1 - \cos(t)}{t^2} \geqslant 0.$$

La fonction φ est continue sur \mathbb{R}_+^* comme quotient de fonctions continues dont le dénominateur ne s'annule pas. On a

$$\varphi(t) = \frac{1}{t^2} \left(1 - \left(1 - \frac{t^2}{2} + O\left(t^4\right) \right) \right) \xrightarrow[t \to 0]{} \frac{1}{2}.$$

Cela prouve que l'intégrale $\int_0^1 \varphi(t) dt$ est faussement généralisée. D'autre part pour tout $t \ge 1$ on a

$$0 \leqslant \varphi(t) \leqslant \frac{1}{t^2}.$$

Comme l'intégrale $\int_1^{+\infty} \frac{1}{t^2} dt$ est convergente (intégrale de Riemann), on en déduit par comparaison pour des fonctions à valeurs positives que $\int_1^{+\infty} \varphi(t) dt$ est absolument convergente et donc convergente.

1. Soit $x \ge 0$. Pour tout t > 0 on a

$$0 \leqslant f(t, x) \leqslant \varphi(t).$$

Par comparaison pour des fonctions à valeurs positives, on obtient que l'intégrale F(x) est bien convergente.

- **2.** L'application f est continue sur $\mathbb{R}_+^* \times \mathbb{R}_+$. D'après le théorème de continuité sous l'intégrale (l'hypothèse de domination a été vérifiée à la question précédente), on obtient que F est continue sur \mathbb{R}_+ .
- 3. La domination par la fonction φ permet également d'appliquer le théorème de convergence dominée. Puisque pour tout t>0 on a

$$f(t,x) \xrightarrow[x \to \infty]{} 0,$$

on obtient que F tend vers 0 en $+\infty$.

4. On commence par observer que la fonction f est de classe C^{∞} sur $\mathbb{R}_+^* \times \mathbb{R}_+^*$. Soit $x_0 > 0$. On note $J_{x_0} = \left[\frac{x_0}{2}, +\infty\right[$. Pour t > 0 et $x \in J_{\xi_0}$ on a

$$\left| \frac{\partial f}{\partial x}(t,x) \right| = t\varphi(t)e^{-tx} \leqslant \tilde{g}(t),$$

où on a noté

$$\tilde{g}(t) = \begin{cases} \varphi(t) & \text{si } t \in]0, 1] \\ e^{-\frac{tx_0}{2}} & \text{si } t > 1. \end{cases}.$$

L'intégrale $\int_0^{+\infty} \tilde{g}(t) dt$ est convergente, donc d'après le théorème de dérivation sous l'intégrale on obtient que F est de classe C^1 sur J_{x_0} et pour $x \in J_{x_0}$ (en particulier pour $x = x_0$) on a

$$F'(x) = -\int_0^\infty t\varphi(t)e^{-tx} dt.$$

Ceci étant valable pour tout $x_0 > 0$ on obtient que F est de classe C^1 sur \mathbb{R}_+^* et l'expression de F' est valable pour tout x > 0.

Exercice 3. (5 = 1.5 + 1.5 + 2 pts)

1. Pour $(X,Y) \in \mathbb{R}^2$ on pose $\Phi(X,Y) = (\alpha X, \beta Y)$. Soient $(X,Y) \in \mathbb{R}^2$ et $(x,y) = \Phi(X,Y) = (\alpha X, \beta Y)$. Alors on a

$$(x,y) \in \mathcal{E} \iff \frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} < R^2 \iff X^2 + Y^2 < R^2 \iff (X,Y) \in D_R,$$

où D_R désigne le disque ouvert de rayon R et centré en l'origine. Ainsi $\mathcal{E} = \Phi(D_R)$. En outre pour tout $(X,Y) \in \mathbb{R}^2$ on a $\operatorname{Jac} \Phi(X,Y) = \alpha \beta$, donc d'après le théorème de changement de variable on a

$$Aire(\mathcal{E}) = \int_{\Phi(D_R)} 1 \, dx \, dy = \int_{D_R} \alpha \beta \, dX \, dY = \alpha \beta \, Aire(D_R) = \alpha \beta \pi R^2.$$

2. Pour $z \in]-1,2[$ et $(x,y) \in \mathbb{R}^2$ on a $(x,y,z) \in H$ si et seulement si

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} < 1 + \frac{z^2}{c^2},$$

c'est-à-dire si et seulement si (x, y) appartient à l'ellipse \mathcal{E}_z définie comme à la question précédente avec $\alpha = a, \ \beta = b$ et $R = \sqrt{1 + \frac{z^2}{c^2}}$. En sommant par tranches on obtient donc

$$Vol(H) = \int_{-1}^{2} Aire(\mathcal{E}_z) dz = \int_{-1}^{2} ab\pi \left(1 + \frac{z^2}{c^2} \right) dz = 3ab\pi \left(1 + \frac{1}{c^2} \right).$$

3. On utilise pour cette question les coordonnées cylindriques. Cela donne

$$I = \int_{z=-1}^{2} \int_{\theta=0}^{2\pi} \int_{r=0}^{\sqrt{1+\frac{z^{2}}{4}}} ze^{r^{2}} r \, dr \, d\theta \, dz = 2\pi \int_{z=-1}^{2} \left[\frac{ze^{r^{2}}}{2} \right]_{0}^{\sqrt{1+\frac{z^{2}}{4}}}$$
$$= 2\pi \int_{-1}^{2} \left(\frac{ze^{1+\frac{z^{2}}{4}}}{2} - \frac{z}{2} \right) \, dz = 2\pi \left[e^{1+\frac{z^{2}}{4}} - \frac{z^{2}}{4} \right]_{-1}^{2} = 2\pi \left(e^{2} - e^{\frac{5}{4}} - \frac{3}{4} \right).$$

Exercice 4. (5 = 1.5 + 2 + 1.5 pts)

1. Soit r>0. On note D_r le disque de rayon r centré en l'origine. D'après la formule de Green-Riemann on a

$$\int_{\Gamma_r} \omega = \iint_{D_r} \left(\frac{\partial^2 f}{\partial x^2}(x, y) + \frac{\partial^2 f}{\partial y^2}(x, y) \right) dx dy = 0.$$

2. L'application $(r, \theta) \mapsto f(r\cos(\theta), r\sin(\theta))$ est de classe C^2 sur \mathbb{R}^2 . D'après le théorème de dérivation sous l'intégrale (pour une intégrale sur un segment), on obtient que φ est de classe C^1 sur \mathbb{R} pour pour tout $r \in \mathbb{R}$ on a

$$\varphi'(r) = \int_0^{2\pi} \frac{\partial}{\partial r} \left(f(r\cos(\theta), r\sin(\theta)) \right) dr$$
$$= \int_0^{2\pi} \left(\cos(\theta) \frac{\partial f}{\partial x} (r\cos(\theta), r\sin(\theta)) + \sin(\theta) \frac{\partial f}{\partial y} (r\cos(\theta), r\sin(\theta)) \right) d\theta.$$

D'autre part en utisant le paramétrage $\gamma:\theta\in[0,2\pi]\to \big(r\cos(\theta),r\sin(\theta)\big)$ on obtient que

$$\int_{\Gamma_r} \omega = \int_0^{2\pi} \left(r \sin(\theta) \frac{\partial f}{\partial y} \left(r \cos(\theta), r \sin(\theta) \right) + r \cos(\theta) \frac{\partial f}{\partial x} \left(r \cos(\theta), r \sin(\theta) \right) \right) d\theta.$$

Finalement on a bien

$$r\varphi'(r) = \int_{\Gamma_r} \omega.$$

D'après la question précédente, on a donc $\varphi'(r) = 0$ pour tout r > 0, ce qui prouve que φ est constante sur \mathbb{R}_+ , et donc égale à sa valeur en 0, c'est-à-dire $2\pi f(0,0)$.

3. En passant aux coordonnées polaires on voit que

$$\iint_{D_R} f(x,y) dx dy = \int_{r=0}^R \int_0^{2\pi} f(r\cos(\theta), r\sin(\theta)) r dr d\theta$$
$$= \int_0^R r\varphi(r) dr = 2\pi f(0,0) \frac{R^2}{2}$$
$$= \text{Aire}(D_R) f(0,0).$$

Cela prouve que la moyenne de f sur D_R est égale à f(0,0).