Quelques corrigés et résultats

Exercice 1.1.

- 1. Les primitives de la fonction f_1 sur \mathbb{R} sont les fonctions de la forme $x \mapsto \frac{x^4}{4} + x^3 x + c$ avec $c \in \mathbb{R}$.
- 2. $x \mapsto \frac{2}{3}x^{\frac{3}{2}} \frac{2}{5}x^{\frac{5}{2}} + c$.
- 3. $x \mapsto \frac{1}{12}(3x+2)^4 + c$.
- 4. $x \mapsto \frac{1}{4}\sin(4x+1) + c$.
- 5. $x \mapsto -\frac{1}{3}(1-x^2)^{\frac{3}{2}} + c$.
- 6. $x \mapsto \frac{1}{20} (5\sin(x) + 2)^4 + c$.
- 7. $x \mapsto \frac{\ln(|3x+5|)}{3} + c$.
- 8. $x \mapsto x \ln(1 + e^x) + c$.
- 9. $x \mapsto \frac{1}{10}(e^{2x} + 2)^5 + c$.
- 10. $x \mapsto x \ln(|x+2|) + c$.

Exercice 1.5. 1. On suppose qu'il existe $x_0 \in [a,b]$ tel que $f(x_0) > 0$. Par continuité il existe $\delta > 0$ tel que pour tout $y \in [a,b]$ avec $|x_0 - y| \le \delta$ on a

$$|f(y) - f(x_0)| \leqslant \frac{f(x_0)}{2}.$$

Pour tout $y \in [a, b] \cap [x_0 - \delta, x_0 + \delta]$ on a alors

$$f(y) \ge f(x_0) - |f(y) - f(x_0)| \ge \frac{f(x_0)}{2}.$$

En particulier il existe $y \in]a,b[$ tel que f(y)>0. Sans perte de généralité, on peut donc supposer qu'on avait déjà $x_0 \in]a,b[$, puis qu'on a choisi $\delta>0$ de sorte que $[x_0-\delta,x_0+\delta]\subset [a,b]$. On note u la fonction sur [a,b] qui vaut $f(x_0)/2$ sur $[x_0-\delta,x_0+\delta]$ et 0 sur $[a,b]\setminus [x_0-\delta,x_0+\delta]$. u est étagée sur [a,b], et en particulier intégrable. En outre on a $u\leqslant f$ sur [a,b], donc

$$\int_{a}^{b} f(t) dt \geqslant \int_{a}^{b} u(t) dt = \int_{x_{0} - \delta}^{x_{0} + \delta} \frac{f(x_{0})}{2} = \delta f(x_{0}) > 0.$$

- **2.** Par contraposée, si $\int_a^b f(t) dt = 0$ alors f est nulle sur [a, b].
- **3.** La fonction définie sur [-1,1] par f(x)=1 si x=0 et f(x)=0 sinon est positive, prend une valeur strictement postive en un point, mais son intégrale sur [-1,1] est nulle (il manque la continuité). D'autre part la fonction sin est continue et non identiquement nulle sur $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, mais son intégrale est nulle (il manque la positivité).

Exercice 1.7. Soit $n \in \mathbb{N}^*$. Par intégration par parties on obtient

$$\int_{a}^{b} f(t) \cos(nt) dt = \left[f(t) \frac{\sin(nt)}{n} \right]_{a}^{b} - \int_{a}^{b} f'(t) \frac{\sin(nt)}{n} dt$$

Comme f est de classe C^1 sur le segment [a,b], il existe $M \ge 0$ tel que $|f| \le M$ et $|f'| \le M$ sur [a,b]. On a alors

$$\left| \int_{a}^{b} f(t) \cos(nt) dt \right| \leqslant \frac{1}{n} \left(|f(b) \sin(nb)| + |f(a) \sin(na)| + \int_{a}^{b} |f'(t) \sin(nt)| dt \right)$$

$$\leqslant \frac{1}{n} \left(2M + M(b - a) \right)$$

$$\xrightarrow[n \to \infty]{} 0.$$

D'où le résultat.

Exercice 1.9. Soit $n \in \mathbb{N}^*$. Pour $k \in [0, n]$ on note $a_k = a + \frac{k}{n}(b - a)$. Soit $k \in [0, n - 1]$. Pour tout $x \in [a_k, a_{k+1}]$ on a $|f(x) - f(a_k)| \leq K|x - a|$, et donc

$$\left| \int_{a}^{b} f(x) \, dx - \frac{b-a}{n} \sum_{k=0}^{n-1} f(a_{k}) \right| \leq \sum_{k=0}^{n-1} \left| \int_{a_{k}}^{a_{k+1}} f(x) \, dx - (a_{k+1} - a_{k}) f(a_{k}) \right|$$

$$\leq \sum_{k=0}^{n-1} \int_{a_{k}}^{a_{k+1}} |f(x) - f(a_{k})| \, dx$$

$$\leq \sum_{k=0}^{n-1} \int_{a_{k}}^{a_{k+1}} K |x - a_{k}| \, dx$$

$$\leq \sum_{k=0}^{n-1} K \frac{(a_{k+1} - a_{k})^{2}}{2}$$

$$\leq \frac{K(b-a)^{2}}{2n}.$$

D'où le résultat.

Exercice 1.10. $\frac{\pi}{4}$, $\frac{\ln 2}{2}$.

Exercice 1.11. $\frac{4}{\pi}$.

Exercice 2.3. Si $\alpha \geqslant -1$ alors l'intégrale $\int_1^{+\infty} t^{\alpha} dt$ est divergente (c'est une intégrale de Riemann), et si $\alpha \leqslant -1$, c'est l'intégrale $\int_0^1 t^{\alpha} dt$ qui est divergente. Ainsi pour tout $\alpha \in \mathbb{R}$, l'intégrale $\int_0^{+\infty} t^{\alpha} dt$ est divergente.

Exercice 2.4. 1. Soit $x \in \mathbb{R}_+$. Comme f est impaire, en faisant le changement de variables affine t = -s (dt = -ds) on obtient

$$\int_{-x}^{0} f(t) dt = -\int_{x}^{0} f(-s) ds = -\int_{0}^{x} f(s) ds.$$

Par la relation de Chasles on a alors

$$\int_{-x}^{x} f(t) dt = \int_{-x}^{0} f(t) dt + \int_{0}^{x} f(t) dt = 0.$$

2. L'application sinus est définie et continue sur \mathbb{R} . Pour $A \geqslant 0$ on a

$$\int_0^A \sin(t) dt = 1 - \cos(A).$$

Or cette quantité n'admet pas de limite quand A tend vers $+\infty$, donc l'intégrale $\int_0^{+\infty} \sin(t) \, dt$ est divergente. En particulier, l'intégrale $\int_{-\infty}^{+\infty} \sin(t) \, dt$ est divergente.

Exercice 2.5. 2. Pour tout $n \in \mathbb{N}^*$ on a $f(n + \frac{1}{4n^3}) = n$, donc f n'est pas bornée.

3. Soit $k \in \mathbb{N}^*$. L'intégrale $\int_k^{k+1} f(t) dt$ est l'aire du triangle dont les sommets ont pour coordonnées (k,0), $\left(k+\frac{1}{2k^3},0\right)$ et $\left(k+\frac{1}{4k^3},k\right)$, soit $\frac{1}{4k^2}$. On peut également faire le calcul. Pour tout $x \in \left[k,k+\frac{1}{2k^3}\right]$ on a $f(x)=4k^4(x-k)$, donc

$$\int_{k}^{k+\frac{1}{4k^3}} f(x) \, dx = 4k^4 \int_{k}^{k+\frac{1}{4k^3}} (x-k) \, dx = 4k^4 \times \frac{1}{32k^6} = \frac{1}{8k^2}.$$

De même on vérifie que

$$\int_{k+\frac{1}{2k^3}}^{k+\frac{1}{2k^3}} f(x) \, dx = \frac{1}{8k^2},$$

et on a $\int_{k+\frac{1}{2k^3}}^{k+1} f(x) dx = 0$. Finalement, par la relation de Chasles on a bien

$$\int_{k}^{k+1} f(x) \, dx = \frac{1}{4k^2}.$$

Pour $n \in \mathbb{N}^*$ on obtient alors par la relation de Chasles que

$$\int_{1}^{n+1} f(x) \, dx = \sum_{k=1}^{n} \int_{k}^{k+1} f(x) \, dx = \sum_{k=1}^{n} \frac{1}{4k^{2}}.$$

4. On sait que la série $\sum_{k=0}^{+\infty} \frac{1}{4k2}$ est convergente (c'est une série de Riemann ¹). La fonction f est positive sur $[1,+\infty[$, donc la fonction $F:x\mapsto \int_1^x f(t)\,dt$ est croissante. Pour montrer qu'elle admet une limite, il suffit de montrer qu'elle est majorée. Soit $x\geqslant 1$ et $n\in\mathbb{N}^*$ tel que $x\leqslant n$. Alors on a :

$$F(x) \leqslant F(n) = \sum_{k=1}^{n-1} \frac{1}{4k^2} \leqslant \sum_{k=1}^{\infty} \frac{1}{4k^2}.$$

Cela prouve que F est majorée, et donc que l'intégrale $\int_1^{+\infty} f(t) dt$ est convergente.

Exercice 2.7.

•

• La fonction $x \mapsto \frac{\sqrt{x}\sin(\frac{1}{x^2})}{\ln(1+x)}$ est bien définie et continue sur $]0, +\infty[$. Pour $x \in]0, 1]$ on a

$$\left| \frac{\sqrt{x} \sin\left(\frac{1}{x^2}\right)}{\ln(1+x)} \right| \leqslant \frac{\sqrt{x}}{\ln(1+x)}$$

et

$$\frac{\sqrt{x}}{\ln(1+x)} \underset{x \to 0}{\sim} \frac{1}{\sqrt{x}}$$

Or l'intégrale $\int_0^1 \frac{1}{\sqrt{x}} dx$ est convergente (intégrale de Riemann), donc par comparaison pour des fonctions à valeurs positives on obtient que l'intégrale $\int_0^1 \frac{\sqrt{x} \sin\left(\frac{1}{x^2}\right)}{\ln(1+x)} dx$ est absolument convergente donc convergente. D'autre part pour $x \ge 1$ on a

$$\frac{\sqrt{x}\sin\left(\frac{1}{x^2}\right)}{\ln(1+x)} \geqslant 0$$

et

$$\frac{\sqrt{x}\sin\left(\frac{1}{x^2}\right)}{\ln(1+x)} \underset{x \to +\infty}{\sim} \frac{1}{x^{\frac{3}{2}}\ln(1+x)} = \underset{x \to +\infty}{O} \left(\frac{1}{x^{\frac{3}{2}}}\right),$$

donc par comparaison avec une intégrale de Riemann l'intégrale on obtient que $\int_1^{+\infty} \frac{\sqrt{x} \sin\left(\frac{1}{x^2}\right)}{\ln(1+x)} dx$ est convergente. Finalement l'intégrale $\int_0^{+\infty} \frac{\sqrt{x} \sin\left(\frac{1}{x^2}\right)}{\ln(1+x)} dx$ est convergente.

Exercice 2.8.

- Condition : $\alpha \in]-1,0[.$
- Soit $\alpha \in \mathbb{R}$. La fonction $t \mapsto \frac{t \ln t}{(1+t^2)^{\alpha}}$ est bien définie et continue sur $]0, +\infty[$. Par croissances comparées on a

$$\frac{t \ln t}{(1+t^2)^{\alpha}} \xrightarrow[t \to 0]{} 0$$

donc l'intégrale $\int_0^1 \frac{t \ln t}{(1+t^2)^{\alpha}} dt$ est faussement généralisée. D'autre part on a

$$\frac{t \ln t}{(1+t^2)^\alpha} \mathop{\sim}_{t \to +\infty} \frac{\ln t}{t^{2\alpha-1}}$$

^{1.} On rappelle d'ailleurs qu'on montre que cette série est convergente en la comparant à une intégrale de Riemann.

Si $\alpha > 1$ et $\varepsilon = \alpha - 1 > 0$ on a par croissances comparées :

$$\frac{\ln t}{t^{2\alpha - 1}} = \mathop{O}_{t \to +\infty} \left(\frac{1}{t^{2\alpha - 1 - \varepsilon}} \right).$$

Comme $2\alpha-1-\varepsilon=\alpha>1$ l'intégrale $\int_1^{+\infty}\frac{1}{t^{2\alpha-1-\varepsilon}}\,dt$ est convergente, donc par comparaison pour des fonctions à valeurs positives on obtient que l'intégrale $\int_1^{+\infty}\frac{t\ln t}{(1+t^2)^\alpha}dt$ est convergente. Si $\alpha\leqslant 1$ on a pour tout $t\geqslant e$

$$\frac{t \ln t}{(1+t^2)^{\alpha}} \geqslant \frac{t}{(1+t^2)^{\alpha}} \underset{t \to +\infty}{\sim} \frac{1}{t^{2\alpha-1}}.$$

Or l'intégrale $\int_e^{+\infty} \frac{1}{t^{2\alpha-1}} \, dt$ diverge, donc par comparaison l'intégrale $\int_e^{+\infty} \frac{t \ln t}{(1+t^2)^{\alpha}} \, dt$ diverge. Finalement l'intégrale $\int_0^{+\infty} \frac{t \ln t}{(1+t^2)^{\alpha}} \, dt$ converge si et seulement si $\alpha > 1$.

Exercice 3.3. 1. Pour tout $n \in \mathbb{N}$ on a

$$0 \leqslant \int_0^{1-\varepsilon} f(t)^n dt \leqslant \int_0^{1-\varepsilon} f(1-\varepsilon)^n dt = (1-\varepsilon)f(1-\varepsilon)^n$$

Comme $f(1-\varepsilon) \in [0,1[$ on a donc

$$\int_0^{1-\varepsilon} f(t)^n dt \xrightarrow[n \to \infty]{} 0$$

Ainsi il existe $N \in \mathbb{N}$ tel que pour tout $n \geqslant N$ on a

$$0 \leqslant \int_0^{1-\varepsilon} f(t)^n \, dt \leqslant \varepsilon.$$

2. D'autre part on a

$$0 \leqslant \int_{1-\varepsilon}^{1} f(t)^n dt \leqslant \int_{1-\varepsilon}^{1} 1 dt \leqslant \varepsilon,$$

et donc pour tout $n \ge N$:

$$0 \leqslant \int_0^1 f(t)^n \, dt \leqslant 2\varepsilon.$$

Cela prouve que

$$\int_0^1 f(t)^n dt \xrightarrow[n \to \infty]{} 0.$$

Exercice 3.4. Pour tout $n \in \mathbb{N}^*$, la fonction $|f_n|$ atteint son maximum en n, où elle vaut 1/n, donc la suite de fonction converge uniformément (et donc simplement) vers 0. On a alors

$$\int_0^{+\infty} \lim_{n \to \infty} f_n(t) dt = \int_0^{+\infty} 0 dt 0.$$

Mais d'autre part on a pour tout $n \in \mathbb{N}^*$

$$\int_{0}^{+\infty} f_n(t) dt = 1,$$

et donc

$$\int_0^{+\infty} f_n(t) dt \xrightarrow[n \to \infty]{} 1.$$

Pour cette suite de fonctions il n'y a pas égalité entre la limite de l'intégrale et l'intégrale de la limite, alors qu'il y a convergence uniforme.