TD 4 : Séries et suites de fonctions.

A. Séries de fonctions.

Exercice 1.

Montrer que les séries de fonctions suivantes convergent normalement sur \mathbb{R} :

1.
$$\sum_{n \in \mathbb{N}^*} \frac{\cos(nx)}{n^2}$$
 ; 2. $\sum_{n \in \mathbb{N}} n^2 e^{-n-x^2}$; 3. $\sum_{n \in \mathbb{N}^*} (-1)^n \sin\left(\frac{1}{n^2 + x^2}\right)$

Exercice 2.

- Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$ on pose $f_n(x) = \frac{nx}{1+n^3x^2}$. 1. Montrer que la série de fonctions $\sum_{n=0}^{\infty} f_n$ converge simplement sur \mathbb{R} . On notera f sa somme.
- 2. Soit a > 0. Montrer que la série de fonctions $\sum f_n$ converge normalement sur $]-\infty,-a]\cup[a,+\infty[.$
- **3.** Y a-t-il convergence normale sur \mathbb{R} ?
- **4.** Montrer que f est continue sur \mathbb{R}^* .

Exercice 3.

Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$ on pose $f_n(x) = x^n$.

- 1. Déterminer l'ensemble I des réels x tels que la série $\sum_{n=0}^{\infty} f_n(x)$ converge. Pour $x \in I$, on note $f(x) = \sum_{n=0}^{+\infty} f_n(x)$.
- **2.** Calculer f(x) pour tout $x \in I$.
- **3.** La série de fonctions $\sum f_n$ converge-t-elle normalement sur I?
- **4.** Soit $a \in]0,1[$. Montrer que la série $\sum f_n$ converge normalement sur [-a,a].
- Montrer que la série de fonctions $\sum g_n$ où $g_n(x) = nx^{n-1}$ converge
- normalement sur [-a,a] pour tout $a \in]0,1[$. 6. Calculer $\sum_{n=0}^{+\infty} nx^{n-1}$ pour tout $x \in I$.

Exercice 4.

Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}_+$ on pose $f_n(x) = \frac{x}{n(x+n)}$.

- 1. Montrer que la série de fonctions $\sum f_n$ converge simplement sur \mathbb{R}_+ . On notera f sa somme.
- 2. Montrer que la série de fonctions $\sum f'_n$ converge normalement sur \mathbb{R}_+ .
- **3.** Montrer que f est dérivable sur \mathbb{R}_+^* et croissante sur \mathbb{R}_+ .

Exercice 5.

Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$ on pose $f_n(x) = ne^{-nx}$.

- 1. Déterminer l'ensemble I des réels x tels que la série $\sum f_n(x)$ converge. Pour un tel x on notera $f(x) = \sum_{n=0}^{\infty} f_n(x)$.
- 2. Soit a > 0. Montrer que la série de fonctions $\sum f_n$ converge normalement vers f sur $[a, +\infty[$.
- a) Soit a > 0. Montrer que la série $\sum e^{-nx}$ converge normalement sur 3. $[a, +\infty[$ et que sa somme F est une primitive de -f sur $[a, +\infty[$.
 - b) En déduire la valeur de f sur I.

Exercice 6.

Soit $(a_n)_{n\in\mathbb{N}}$ une suite de réels tels que la série $\sum |a_n|$ est convergente. Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$ on pose $f_n(x) = a_n \cos(nx)$.

- 1. Montrer que la série de fonctions $\sum f_n$ converge normalement vers une function f sur \mathbb{R} .
- Montrer que f est une fonction paire et 2π -périodique.
- Soit $m \in \mathbb{N}$. Calculer $\int_0^{2\pi} f(x) \cos(mx) dx$ et $\int_0^{2\pi} f(x) \sin(mx) dx$.

Exercice 7.

- Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}_+$ on note $f_n(x) = \frac{1}{n^2x+n^3}$. 1. Montrer que pour tout $x \in \mathbb{R}^+$ la série $\sum f_n(x)$ est converge. On note f(x) sa somme.
- 2. Montrer que f est une fonction de classe C^{∞} sur \mathbb{R}_+ .

Exercice 8.

Pour tout $n \in \mathbb{N}$ on considère la fonction $f_n : \mathbb{R} \to \mathbb{R}$ définie par $f_n(x) =$

- 1. Montrer que la série $\sum_{n=0}^{+\infty} f_n$ converge simplement sur $]0, +\infty[$. On note $f(x) = \sum_{n=0}^{+\infty} f_n(x)$.
- 2. Montrer que la série $\sum_{n=0}^{+\infty} f_n$ ne converge pas normalement sur $]0, +\infty[$. 3. Montrer que pour tout a > 0 la série $\sum_{n=0}^{+\infty} f_n$ converge normalement sur
- $[a, +\infty[.$
- 4. Montrer que la fonction f est continue et décroissante sur $]0, +\infty[$. Calculer $\lim_{x\to+\infty} f(x)$.
- Calculer $\lim_{x\to 0} f(x)$.

Exercice 9.

Pour $n \ge 1$ et $x \in \mathbb{R}_+$ on note $f_n(x) = \frac{(-1)^n}{n^2x+n}$. Etudier la convergence simple, normale et uniforme de la série de fonctions $\sum f_n$ sur \mathbb{R}_+ .

Exercice 10.

Pour tout $n \in \mathbb{N}$ on considère la fonction f_n définie par :

$$f_n(x) = \begin{cases} \frac{1}{x} & \text{si } x \in]n, n+1] \\ 0 & \text{sinon} \end{cases}$$

Montrer que la série de fonctions $\sum f_n$ converge simplement vers une fonction f à déterminer sur \mathbb{R}_+^* . Y a-t-il convergence uniforme? Convergence normale?

B. Suites de fonctions.

Exercice 11.

Pour tout $n \in \mathbb{N}$ on considère la fonction f_n définie sur [0,1] par :

$$f_n(x) = \begin{cases} 1 - nx & \text{si } x \in \left[0, \frac{1}{n}\right] \\ 0 & \text{sinon} \end{cases}$$

- 1. Montrer que la suite de fonction $(f_n)_{n\in\mathbb{N}}$ converge simplement vers une fonction f que l'on explicitera.
- La convergence est-elle uniforme?

Exercice 12.

Pour $x \in [0,1]$ et $n \in \mathbb{N}$ on note :

$$f_n(x) = \frac{x}{1+nx}$$
 et $g_n(x) = \frac{1}{1+nx}$

Etudier la convergence simple et la convergence uniforme pour les suites de fonctions $(f_n)_{n\in\mathbb{N}}$ et $(g_n)_{n\in\mathbb{N}}$ sur [0,1].

Exercice 13.

1. Pour $x \in \mathbb{R}_+$ et $n \in \mathbb{N}$ on note :

$$f_n(x) = \frac{\ln(1+nx)}{1+nx}$$

Etudier la convergence simple et la convergence uniforme pour la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ sur \mathbb{R}_+ .

2. Même question avec la suite de fonctions $(g_n)_{n\in\mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}_+, \quad g_n(x) = nx^2 e^{-nx}$$

Exercice 14.

Etudier les limites suivantes :

- 1. $\lim_{n\to\infty} \int_0^1 \frac{ne^x}{n+x} dx$ 2. $\lim_{n\to\infty} \int_0^\pi \frac{x^5}{(1+x^2)^n} dx$

C. Normes.

Exercice 15.

Pour tout $X = (x_1, x_2) \in \mathbb{R}^2$ on note :

$$||X||_1 = |x_1| + |x_2|$$
 ; $||X||_2 = \sqrt{|x_1|^2 + |x_2|^2}$; $||X||_{\infty} = \max(|x_1|, |x_2|)$

- 1. Montrer que les applications $\|\cdot\|_1$, $\|\cdot\|_2$ et $\|\cdot\|_{\infty}$ sont des normes sur \mathbb{R}^2 .
- Montrer que pour tout $X \in \mathbb{R}^2$ on a :

$$||X||_{\infty} \leq ||X||_{2} \leq ||X||_{1} \leq 2 ||X||_{\infty}$$

Soit $(X_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathbb{R}^2 et $Y\in\mathbb{R}^2$. Montrer que :

$$||X_n - Y||_1 \xrightarrow[n \to \infty]{} 0 \iff ||X_n - Y||_2 \xrightarrow[n \to \infty]{} 0 \iff ||X_n - Y||_\infty \xrightarrow[n \to \infty]{} 0$$

Exercice 16.

Pour tout $n \in \mathbb{N}$ on considère les fonctions suivantes :

$$f_n: x \mapsto \begin{cases} x - (n-1) & \text{si } x \in [n-1, n[\\ n+1-x & \text{si } x \in [n, n+1]\\ 0 & \text{sinon} \end{cases}; \quad g_n: x \mapsto \begin{cases} \frac{1}{n^2}(x+n) & \text{si } x \in [-n, 0[\\ \frac{1}{n^2}(n-x) & \text{si } x \in [0, n]\\ 0 & \text{sinon} \end{cases}$$

$$h_n: x \mapsto \begin{cases} n^{\frac{3}{2}}x & \text{si } x \in \left[0, \frac{1}{n}\right[\\ 2\sqrt{n} - n^{\frac{3}{2}}x & \text{si } x \in \left[\frac{1}{n}, \frac{2}{n}\right]\\ 0 & \text{sinon} \end{cases}$$

- 1. Montrer que les suites de fonctions $(f_n)_{n\in\mathbb{N}}$, $(g_n)_{n\in\mathbb{N}}$ et $(h_n)_{n\in\mathbb{N}}$ convergent simplement vers des fonctions f, g et h respectivement.
- 2. On note E l'espace vectoriel des fonctions continues dont l'intégrale sur \mathbb{R} converge absolument. Pour une fonction $u \in E$ on note :

$$||u||_1 = \int_{\mathbb{R}} |u(x)| \ dx$$

- Montrer que l'application $u \mapsto ||u||_1$ est une norme sur E. **3.** A-t-on : $||f_n f||_{\infty} \xrightarrow[n \to \infty]{} 0$? $||f_n f||_1 \xrightarrow[n \to \infty]{} 0$?
- **4.** Même questions pour les suites $(g_n)_{n\in\mathbb{N}}$ et $(h_n)_{n\in\mathbb{N}}$.
- 5. Construire des fonctions v_n continues, bornées et d'intégrales absolument convergences sur \mathbb{R} telles que la suite $(v_n)_{n\in\mathbb{N}}$ converge simplement vers une function v sur \mathbb{R} avec :

$$||v_n - v||_1 \xrightarrow[n \to \infty]{} +\infty$$
 et $||v_n - v||_{\infty} \xrightarrow[n \to \infty]{} 0$