Topologie-Extrema-Intégrales

TD 1 : Borne Supérieure. Suites réelles. Continuité.

Exercice 1.1 (Mille Bornes). Déterminer si les parties de \mathbb{R} suivantes admettent une borne supérieure, une borne inférieure, un maximum et/ou un minimum et les expliciter.

1.
$$]-\sqrt{2},2]$$

$$[2,]-1,0]\cup]1,2]$$

3.
$$[6,47[\cup \{2\} \cup [100,+\infty[$$

4.
$$\{\sin(x), x \in]0, \pi[\}$$

5.
$$\left\{ \sin\left(\frac{1}{x}\right), x \in]0, \pi] \right\}$$

6.
$$\left\{ (-1)^n + \frac{1}{n}, n \in \mathbb{N}^* \right\}$$

Exercice 1.2 (Mieux vaut être dernier des premiers que premier des derniers). Soient A et B deux parties non vides de \mathbb{R} telles que :

$$\forall a \in A, \forall b \in B, \quad a \leq b$$

- 1. Montrer que A admet une borne supérieure, que B admet une borne inférieure, et que sup $A \leq \inf B$.
- 2. (Question Bonus) Que peut-on dire si on suppose de plus que :

$$\forall a \in A, \forall b \in B, \quad a < b$$

Exercice 1.3 (Pour jouer un peu avec ε). En revenant à la définition d'une limite, montrer que : $\frac{1}{n^2} \underset{n \to \infty}{\longrightarrow} 0$.

Exercice 1.4. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles telles que $(u_n)_{n\in\mathbb{N}}$ est bornée et $v_n \underset{n\to\infty}{\longrightarrow} 0$. Montrer que : $u_n v_n \underset{n\to\infty}{\longrightarrow} 0$.

Exercice 1.5 (Calcul de limites, Acte I). Déterminer la convergence de la suite $(u_n)_{n\in\mathbb{N}}$ et préciser la limite éventuelle lorsque, pour tout $n\in\mathbb{N}$:

a.
$$u_n = \frac{n + (-1)^n}{n - (-1)^n}$$

b.
$$u_n = \frac{2^n + 3^n}{2^n - 3^n}$$

$$c . u_n = \frac{\sin n}{n^{\alpha}} \quad (\alpha > 0)$$

$$d \cdot u_n = \frac{E[nx]}{n}$$
 où $x \in \mathbb{R}$.

Exercice 1.6 (Pour jouer beaucoup avec ε). Soient $(u_n)_{n\in\mathbb{N}}$ une suite réelle et f une fonction de \mathbb{R} dans \mathbb{R} . Traduire les assertions suivantes en termes de quantificateurs :

a.
$$\lim_{n\to\infty} u_n = -\infty$$

c.
$$\lim_{x \to +\infty} f(x) = +\infty$$

d. f est continue en π .

b.
$$\lim_{x \to -\infty} f(x) = 3$$

e. f n'est pas continue en 0.

Exercice 1.7 (Quelle est la probabilité d'avoir tout juste à cet exercice?). Préciser si les affirmations suivantes sont vraies ou fausses. On justifiera les réponses par une preuve ou un contre-exemple (Toutes les suites considérées sont réelles).

- a. Si $(u_n)_{n\in\mathbb{N}}$ est une suite telle que $(u_n^2)_{n\in\mathbb{N}}$ converge, alors la suite $(u_n)_{n\in\mathbb{N}}$ converge.
- b. Si $(u_n)_{n\in\mathbb{N}}$ converge alors la suite de terme général $u_{n+1}-u_n$ tend vers 0.
- c. Si $(u_n)_{n\in\mathbb{N}}$ est une suite telle que : $u_{n+1} u_n \xrightarrow[n\to\infty]{} 0$, alors elle converge.
- d. Si $|u_n| \underset{n \to \infty}{\longrightarrow} +\infty$, alors $u_n \underset{n \to \infty}{\longrightarrow} +\infty$ ou $u_n \underset{n \to \infty}{\longrightarrow} -\infty$.
- e. Si $u_n^2 + v_n^2 \underset{n \to \infty}{\longrightarrow} 0$, alors $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ convergent.
- f. Si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont deux suites convergentes et si $u_n \leq w_n \leq v_n$ pour tout $n \in \mathbb{N}$, alors la suite $(w_n)_{n\in\mathbb{N}}$ est convergente.
- g. Si $(u_n)_{n\in\mathbb{N}}$ est une suite de réels strictement positifs qui tend vers zéro, alors elle est décroissante à partir d'un certain rang.

Exercice 1.8 (Critère de D'Alembert). Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que : $\left|\frac{u_{n+1}}{u_n}\right| \underset{n\to\infty}{\longrightarrow} l \in [0,1[. \text{ Montrer que } u_n \text{ tend vers } 0.$

Exercice 1.9 (Moyenne de Césaro). Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Pour tout $n\in\mathbb{N}$, on note : $S_n = \frac{1}{n}\sum_{k=0}^{n-1}u_k$.

- 1. On suppose que u_n tend vers $l \in \mathbb{R}$. Montrer que S_n tend également vers l.
- 2. Et si $u_n \xrightarrow[n\to\infty]{} \pm \infty$?
- 3. Montrer que si $u_{n+1} u_n$ tend vers $l \in \mathbb{R}$, alors $\frac{u_n}{n}$ tend également vers l.

Exercice 1.10 (Suites extraites). Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

1. Soit $l \in \mathbb{R}$. Montrer que :

$$u_n \xrightarrow[n \to \infty]{} l \iff \left(u_{2n} \xrightarrow[n \to \infty]{} l \text{ et } u_{2n+1} \xrightarrow[n \to \infty]{} l\right)$$

2. On suppose que les suites extraites $(u_{2n})_{n\in\mathbb{N}}$, $(u_{2n+1})_{n\in\mathbb{N}}$ et $(u_{3n})_{n\in\mathbb{N}}$ sont convergentes. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente.

Exercice 1.11 (Exercice monotone). Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

- 1. On suppose que $(u_n)_{n\in\mathbb{N}}$ est bornée. Pour tout $n\in\mathbb{N}$, on pose $v_n=\sup\{u_p,p\geqslant n\}$ (justifier). Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ est convergente.
- 2. On suppose que $(u_n)_{n\in\mathbb{N}}$ est monotone et que $(u_{2n})_{n\in\mathbb{N}}$ converge. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge.
- 3. (Question à un Carambar) Montrer que toute suite réelle admet une suite extraite monotone.

Exercice 1.12 (Calcul de limites, Acte II). Étudier les limites de :

a.
$$f: x \mapsto \frac{x+1}{x-247}$$
 quand $x \to +\infty$.

b.
$$f: x \mapsto \frac{x-4}{x^2-x-12}$$
 quand $x \to 4$.

c.
$$f: x \mapsto \frac{2x-3}{\sqrt{x^2-1}}$$
 quand $x \to -\infty$.

d.
$$f: x \mapsto \frac{x^2 - 4x + 3}{(x - 1)^2}$$
 quand $x \to 1$.

e.
$$f: x \mapsto x(\sqrt{1+x^2}-x)$$
 quand $x \to +\infty$.

f.
$$f: x \mapsto \frac{1}{x} - \frac{1}{\sin x}$$
 quand $x \to 0$.

g.
$$f: x \mapsto xE\left[\frac{1}{x}\right]$$
 quand $x \to 0$.

Exercice 1.13 (Limites et oscillations). 1. Montrer que la fonction $x \mapsto \cos\left(\frac{1}{x}\right)$ définie sur $]0, +\infty[$ n'admet pas de limite en 0.

2. Montrer que la fonction $x\mapsto x\cos\left(\frac{1}{x}\right)$ définie sur $]0,+\infty[$ admet une limite en 0.

Exercice 1.14 (Petit Brower). Soit f une fonction de [0,1] dans [0,1]. Montrer que f admet un point fixe (ie. il existe $x \in [0,1]$ tel que f(x) = x).

Réponses des exercices 1.1 et 1.2

Exercice 1.1. Tout d'abord chacun des ensembles considérés est non vide.

- 1. $A =]-\sqrt{2}, 2]: A$ est borné donc admet une borne supérieure et une borne inférieure. On a sup A = 2 et inf $A = -\sqrt{2}$. En outre $2 \in A$, donc 2 est un maximum. Par contre $-\sqrt{2} \notin A$, donc A n'admet pas de minimum.
- 2. $B =]-1,0] \cup [1,2]$: sup $B = \max B = 2$ et inf B = -1. B n'admet pas de minimum.
- 3. $C = [6,47[\cup\{2\} \cup [100,+\infty[: C \text{ n'est pas majoré, donc n'admet pas de borne supérieure (et en particulier pas de maximum). Par contre <math>C$ est minoré et inf $C = \min C = 2$.
- 4. $D = \{(-1)^n + \frac{1}{n}, n \in \mathbb{N}^*\}$: Pour tout $n \in \mathbb{N}^*$, on a:

$$\underbrace{(-1)^n}_{\geqslant -1} + \underbrace{\frac{1}{n}}_{>0} > -1$$

Ainsi D est minoré et inf $D \ge -1$. Comme $(-1)^{2n+1} + \frac{1}{2n+1} \xrightarrow{n \to \infty} -1$, on obtient en fait : inf D = -1. Par contre $-1 \notin D$, donc D n'admet pas de minimum. Pour $n \ge 2$, on a :

$$\underbrace{(-1)^n}_{\leqslant (-1)^2} + \underbrace{\frac{1}{n}}_{\leqslant \frac{1}{2}} \leqslant (-1)^2 + \frac{1}{2}$$

et $(-1)^1 + \frac{1}{1} = 0 \le (-1)^2 + \frac{1}{2}$, donc D est majoré et : $\sup D = \max D = \frac{3}{2}$.

- 5. $E = \{\sin(x), x \in]0, \pi[\}$: Pour tout $x \in]0, \pi[$, on a : $0 < \sin x \le 1$. En outre $\sin \frac{\pi}{2} = 1$, donc $\sup E = \max E = 1$. Comme $\sin x \xrightarrow[x \to 0]{} 0$, on a $\inf E = 0$. Mais $0 \notin E$, donc E n'admet pas de minimum.
- 6. $F = \left\{ \sin\left(\frac{1}{x}\right), x \in]0, \pi] \right\}$: Pour tout $x \in]0, \pi]$, on a : $-1 \leqslant \sin\frac{1}{x} \leqslant 1$. En outre $\sin\left(\frac{1}{\frac{2}{\pi}}\right) = 1$ et $\sin\left(\frac{1}{\frac{2}{3\pi}}\right) = -1$, donc $\inf F = \min F = -1$ et $\sup F = \max F = 1$.

Exercice 1.2. 1. Soit $b \in B$. On a :

$$\forall a \in A, \quad a \leqslant b$$

donc b est un majorant de A. On en déduit que A est majorée et : $\sup A \leq b$. De même pour $a \in A$, on a :

$$\forall b \in B, \quad b \geqslant a$$

donc a est un minorant de B. On en déduit que B est minorée et : inf $B\geqslant a$. Ainsi on a prouvé :

$$\forall a \in A, \quad a \leq \inf B$$

Cela signifie que inf B est un majorant de A, et donc que : sup $A \leq \inf B$.

2. Attention, on ne peut pas conclure que sup A est strictement inférieur à inf B. Prendre par exemple A = [-1, 0] et B = [0, 1].