FEUILLE 3: Suites de fonctions

Exercice 1 : Etudier la convergence simple et la convergence uniforme des suites de fonctions définies sur [0, 1] et déterminer la fonction limite si elle existe.

1.
$$f_n(x) = \frac{nx + x^3}{n^2}$$

1.
$$f_n(x) = \frac{nx + x^3}{n^2}$$
 2. $f_n(x) = \frac{(-1)^n x}{(1 + x^2)^n}$ 3. $f_n(x) = x^n$

$$3. f_n(x) = x^n$$

4.
$$f_n(x) = n^{\alpha} x e^{-2nx}$$
 avec $\alpha \ge 0$ 5. $f_n(x) = \frac{ne^{-x} + x^2}{n+x}$ 6. $f_n(x) = \frac{n}{1+nx}$

5.
$$f_n(x) = \frac{ne^{-x} + x^2}{n+x}$$

6.
$$f_n(x) = \frac{n}{1 + nx}$$

7.
$$f_n(x) = \left(1 + \frac{x}{n}\right)^{-x}$$

8.
$$f_n(x) = \frac{\sin(nx^2 + 3)}{\sqrt{n+2}}$$

7.
$$f_n(x) = \left(1 + \frac{x}{n}\right)^{-x}$$
 8. $f_n(x) = \frac{\sin(nx^2 + 3)}{\sqrt{n+2}}$ 9. $f_n(x) = n(1-x)^n \sin(\frac{\pi x}{2})$

Exercice 2 : Convergence et dérivation

- 1. Soit la suite de fonctions $f_n(x) = \frac{\cos(nx)}{\sqrt{n}}$ sur $[0, \frac{\pi}{2}]$. Montrer que la suite $(f_n)_{n \in \mathbb{N}^*}$ converge uniformément vers une fonction f dérivable et constater que la suite $(f'_n)_{n\in\mathbb{N}^*}$ ne converge pas simplement sur $[0, \frac{\pi}{2}]$.
- 2. Soit $f_n: \mathbb{R} \to \mathbb{R}$ définie par $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$. Montrer que chaque f_n est de classe C^1 et que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur \mathbb{R} vers une fonction f qui n'est pas de classe C^1 .

Exercice 3 : Convergence uniforme et intégration

Soit $f_n:[0,1]\to\mathbb{R}$ définie par

$$f_n(x) = \begin{cases} n^2 x (1 - nx) & \text{si } x \in [0, \frac{1}{n}] \\ 0 & \text{sinon} \end{cases}$$

- 1. Etudier la limite simple de la suite $(f_n)_{n\in\mathbb{N}}$.
- 2. Calculer

$$\int_0^1 f_n(t)dt$$

Y a-t-il convergence uniforme de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$?

3. Etudier la convergence uniforme sur [a, 1] avec a > 0.

Exercice 4 : Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies par

$$f_n(x) = \begin{cases} 0 & \text{si } x < 0\\ nx^2 & \text{si } 0 \le x \le \frac{1}{\sqrt{n}}\\ 1 & \text{si } x > \frac{1}{\sqrt{n}} \end{cases}$$

- 1. Faire une figure pour quelques valeurs de n.
- 2. Déterminer la limite de $(f_n(x))_{n\in\mathbb{N}}$ quand n tend vers l'infini.
- 3. Préciser si la convergence est uniforme dans les trois cas suivants
 - $-\sin \left[-\infty,0\right]$.
 - sur un segment contenant l'origine.
 - sur $[a, +\infty[$ avec a > 0.

Exercise 5: *Fonction
$$\Gamma$$
Soit $f_n(x) = \frac{n^x}{(1+x)(1+x/2)\cdots(1+x/n)}$.

- 1. Etudier la convergence simple des fonctions f_n sur $[0, +\infty[$.
- 2. On note $f = \lim_{n \to \infty} f_n$. Calculer f(x+1) en fonction de f(x) sur $[0, +\infty[$.
- 3. Montrer que f est de classe C^1 sur $[0, +\infty[$. (on calculera $f'_n(x)/f_n(x))$

Exercice 6 : *Considérer la suite de fonctions définies sur $[0, +\infty[$ par :

$$f(x) = \begin{cases} \left(1 - \frac{x^2}{n}\right)^n & \text{si } x \in [0, \sqrt{n}[\\ 0 & \text{si } x > \sqrt{n} \end{cases}$$

- 1. Montrer que la suite des fonctions f_n converge simplement $[0, +\infty[$ vers la fonction f;
- 2. A l'aide de la suite des fonctions f_n , calculer l'intégrale de Gauss $\int_0^{+\infty} e^{-x^2} dx$ (Indication : utiliser le fait que l'intégrale de Wallis $\int_0^{\pi/2} \sin^{2n+1}t \ dt$ est équivalente à $\sqrt{\frac{\pi}{2n}}$).

Exercice 7 : Soit $f \in C^{\infty}(\mathbb{R})$. On définit la suite $(f_n)_{n \in \mathbb{N}^*}$ par $f_n = f^{(n)}$ (dérivée n-ème). On suppose que $(f_n)_{n\in\mathbb{N}^*}$ converge uniformément vers φ . Que peut-on dire de φ ?