Examen Partiel du 1 mars 2016

(14h-17h)

documents, calculatrice, téléphone interdits

Note: Toute réponse doit être justifiée. Il est conseillé de soigner votre présentation. Aucun document n'est autorisé. Les téléphones portables et calculatrices doivent être éteints et rangés.

Exercice 1. Le plan complexe \mathbb{C} est identifié à \mathbb{R}^2 par z = x + iy. Soit $\Omega \subseteq \mathbb{C}$ un ouvert connexe non vide.

- (1) Montrer que les seules fonctions analytiques définies sur Ω et à valeurs dans \mathbb{R} sont les constantes.
- (2) Soit f et g deux fonctions analytiques définies sur Ω telles que $f(z) + \overline{g(z)} \in \mathbb{R}$ pour tout $z \in \Omega$. Prouver qu'il existe une constante $c \in \mathbb{R}$ telle que f(z) = c + g(z) pour tout $z \in \Omega$. Indication : on pourra appliquer (1) à une fonction bien choisie.

Exercice 2. Soient $a, b \in \mathbb{R}$. Pour $x, y \in \mathbb{R}$, on pose

$$P(x,y) = ax^2 + 2bxy - ay^2.$$

Trouver toutes les fonctions holomorphes f telles que P = Re(f).

Exercice 3. Soient $\mathbb{D} \subset \mathbb{C}$ le disque unité, $r \in]0,1[$, M > 0 et $f : \mathbb{D} \to \mathbb{C}$ une fonction analytique sur \mathbb{D} telle que $|f(z)| \leq M$ si |z| = r. On suppose que $f(0) = a_0 \neq 0$ et qu'il existe $z_0 \in D(0,r)$ tel que $f(z_0) = 0$.

- (1) Donner l'expression locale de f au voisinage du point z_0 .
- (2) Montrer que

$$|a_0|r \le |z_0|(M + |a_0|).$$

Indication : considérer la fonction $h(z) = f(z)/(z-z_0)$.

Exercice 4. Soit $\mathbb{D} \subset \mathbb{C}$ le disque unité et $f: \mathbb{D} \to \overline{\mathbb{D}}$ une fonction analytique telle que $|f(z)| \to 1$ lorsque $|z| \to 1$.

- (1) Montrer qu'ou bien f est constante ou bien il existe $z_0 \in \mathbb{D}$ tel que $f(z_0) = 0$. Indication: considérer la fonction 1/f.
- (2) Prouver que si f n'est pas constante, alors elle n'a qu'un nombre fini de zéros $a_1, \ldots, a_N \in \mathbb{D}$.
- (3) Soient $a_1, \ldots, a_N \in \mathbb{D}$ les zéros de f et soient m_1, \ldots, m_N leurs multiplicités respectives. Montrer qu'il existe une constante $\lambda \in \mathbb{C}$ de module 1 telle que $f = \lambda \prod_{1 \leq j \leq N} \varphi_{a_j}^{m_j}$,

οù

$$\varphi_a(z) = \frac{z - a}{1 - \bar{a}z}.$$

Indication: on pourra appliquer (1) à une une fonction bien choisie.

Exercice 5. (1) Soit r > 0. On pose $\Gamma(t) = re^{it}$ pour $t \in [0, 2\pi]$. Calculer:

$$\int_{\Gamma} \frac{dz}{z}$$
.

(2) Soient a>0 et b>0. On pose $\gamma(t)=a\cos(t)+ib\sin(t)$ pour $t\in[0,2\pi]$. Reconnaître la courbe γ^* et calculer

$$I = \int_{\gamma} \frac{dz}{z}$$

en fonction de $\int_{\Gamma} \frac{dz}{z}$.

(3) Exprimer I en fonction de

$$J = \int_0^{2\pi} \frac{dt}{a^2 \cos^2(t) + b^2 \sin^2(t)}.$$

En déduire la formule

$$\int_0^{2\pi} \frac{\mathrm{d}t}{a^2 \cos^2(t) + b^2 \sin^2(t)} = \frac{2\pi}{ab}.$$