Feuille TD 6

Exercice 1. Soient $\varphi_1, \varphi_2 \colon [0,1] \to \mathbb{C}$ des lacets de classe C^1 par morceaux tels que $|\varphi_1(t)| < |\varphi_2(t)|$ pour tout $t \in [0,1]$. Si $0 \le t \le 1$, on pose $\varphi(t) = \varphi_1(t) + \varphi_2(t)$. Prouver que $0 \notin \varphi_2^* \cup \varphi^*$. Montrer que, s'il existe $t_0 \in [0,1]$ tel que $\varphi_1(t_0) = 0$, alors $\operatorname{ind}_{\varphi}(0) = \operatorname{ind}_{\varphi_2}(0)$.

Exercice 2. Pour $t \in [0,1]$, on pose $\Gamma(t) = \sqrt{2}e^{2\pi it}$ et

$$\gamma(t) = \begin{cases} 1 + i(8t - 1) & \text{si} \quad 0 \le t \le \frac{1}{4} \\ 3 - 8t + i & \text{si} \quad \frac{1}{4} \le t \le \frac{1}{2} \\ -1 + i(5 - 8t) & \text{si} \quad \frac{1}{2} \le t \le \frac{3}{4} \\ 8t - 7 - i & \text{si} \quad \frac{3}{4} \le t \le 1 \end{cases}$$

- (1) Vérifier que γ est un lacet de classe C^1 par morceaux, et calculer ind $_{\gamma}(0)$.
- (2) Retrouver ce résultat en utilisant une homotopie dans \mathbb{C}^* de γ sur Γ .

Exercice 3. Soient $\Omega \subseteq \mathbb{C}$ un ouvert contenant $\overline{\mathbb{D}} = \overline{D(0,1)}$ et $f : \Omega \to \mathbb{C}$ une application de classe C^1 vérifiant $f(\overline{\mathbb{D}}) \subset \overline{\mathbb{D}}$. Si $0 \le s \le 1$, on définit des lacets γ_s et Γ_s en posant, pour $0 \le t \le 1$:

$$\gamma_s(t) = f(se^{2\pi it}) - se^{2\pi it}, \quad \Gamma_s(t) = sf(e^{2\pi it}) - e^{2\pi it}$$

On suppose que $f(z) \neq z$ pour tout $z \in \overline{\mathbb{D}}$.

- (1) Pour $s \in [0, 1]$, déterminer $\operatorname{Ind}_{\gamma_s}(0)$ et $\operatorname{Ind}_{\Gamma_s}(0)$.
- (2) En déduire une contradiction, et prouver ainsi que f a au moins un point fixe dans $\overline{\mathbb{D}}$.

Exercice 4. Soient $\Omega \subseteq \mathbb{C}$ un ouvert connexe et $K \subset \Omega$ un compact. Soit $f : \Omega \to \mathbb{C}$ une fonction holomorphe dans Ω qui ne s'annule pas sur le bord orienté Γ de K.

- (1) Montrer que f n'a qu'un nombre fini des zéros p_1, \ldots, p_n dans $\overset{\circ}{K}$.
- (2) Montrer que si n = 1, alors

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f'(z)}{f(z)} dz = m_1,$$

où $m_1 \ge 1$ est la multiplicité de p_1 comme zéro de f.

(3) Montrer qu'en général on a

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f'(z)}{f(z)} dz = m_1 + \dots + m_n,$$

où m_1, \ldots, m_n sont les multiplicités des zéros p_1, \ldots, p_n de f dans K.