TD 3. Produit de convolution

On rappelle la définition du produit de convolution : si g est une fonction telle que l'intégrale $\int_{-\infty}^{+\infty} |g(x)| dx$ converge, et si f est une fonctions bornée, c'est-à-dire qu'il existe un nombre $M_f > 0$ tel que $|f(x)| \le M_f$ pour tout $x \in \mathbb{R}$, alors on pose

$$f * g(x) := \int_{-\infty}^{+\infty} f(x - t)g(t)dt.$$

On vérifie que cette intégrale est bien absolument convergente pour toute valeur donnée de x, car on a la majoration $|f(x-t)g(t)| \le M_f|g(t)|$.

1. RÉGULARITÉ

- **Exercice 1.** (1) On pose $f_1(x) := \chi_{[-1/2,+1/2]}(x)$ (fonction porte). Soit g une fonction bornée, continue par morceaux, mais qui peut avoir des discontinuités. Montrer que $f_1 * g(x)$ est bien définie.
 - (2) Exemple : calculer $f_1 * f_1$.
 - (3) Montrer que pour tout g comme dans la première question,

$$|f_1 * g(x+h) - f_1 * g(x)| \le 2M_g|h|,$$

et donc que la fonction $f_1 * g$ est (uniformément) continue (notez bien que peut-être ni f_1 ni g ne sont continues).

- (4) Pour $\delta > 0$, on pose $f_{\delta}(x) := \frac{1}{\delta} f_1(\frac{x}{\delta})$. Tracer le graphe de f_{δ} et vérifier que $\int_{-\infty}^{+\infty} f_{\delta}(x) dx = 1$. Si g est continue au point x, montrer que $\lim_{\delta \to 0} f_{\delta} * g(x) = g(x)$.
- (5) Si g est continue (partout), montrer que $f_1 * g$ est dérivable (partout) et calculer sa dérivée.

Exercice 2. Soit $h(x) := (1 - |x|)\chi_{[-1,+1]}(x)$. Calculer \hat{h} . Cette fonction est-elle absolument intégrable ? Et que peut-on dire de $\xi \hat{h}(\xi)$? Comparer \hat{h} à la transformée de Fourier du f_1 de l'exercice 1.

2. INCLUSIONS, ESTIMATIONS

Notation : quand les intégrales concernées convergent, on va écrire pour p > 0,

$$||f||_p := \left(\int_{-\infty}^{+\infty} |f(x)|^p dx\right)^{1/p}.$$

Exercice 3. (1) Montrer que si f est une fonction absolument intégrable sur \mathbb{R} (i.e. telle que l'intégrale $\int |f| := \int_{-\infty}^{+\infty} |f(x)| dx$ converge), et si g est une fonction bornée, alors pour tout $x, |f * g(x)| \le \left(\int_{-\infty}^{+\infty} |f|\right) \sup_{\mathbb{R}} |g|$. On peut écrire ceci

$$||f * g||_{\infty} \le ||f||_1 ||g||_{\infty}.$$

(2) Si f et g sont des fonctions absolument intégrables sur \mathbb{R} , alors f * g l'est aussi et

$$\int_{-\infty}^{+\infty} |f * g(x)| dx \le \left(\int_{-\infty}^{+\infty} |f(x)| dx \right) \left(\int_{-\infty}^{+\infty} |g(x)| dx \right).$$

On peut écrire ceci

$$||f * g||_1 \le ||f||_1 ||g||_1.$$

(3) On veut maintenant étudier le cas où f^2 et g sont des fonctions absolument intégrables sur \mathbb{R} (f n'étant pas nécessairement intégrable). On rappelle l'inégalité de Cauchy-Schwarz, valable aussi pour les intégrales impropres :

$$\left| \int f(x)g(x)dx \right|^2 \le \left(\int |f|^2 \right) \left(\int |g|^2 \right).$$

Montrer, en utilisant l'inégalité de Cauchy-Schwarz pour deux fonctions judicieusement choisies, que si g est absolument intégrable, bornée, si f est bornée, et si f^2 est absolument intégrable, alors pour tout x fixé,

$$\left| \int f(x-t)g(t)dt \right|^2 \le \left(\int |f(x-t)|^2 |g(t)|dt \right) \left(\int |g(t)|dt \right)$$

(toutes les intégrales sont prises sur la droite réelle).

En déduire que

$$\int |f * g(x)|^2 dx \le \left(\int |f(x)|^2 dx\right) \left(\int |g(t)| dt\right)^2.$$

On peut écrire ceci

$$||f * g||_2 \le ||f||_2 ||g||_1$$

ou, si on échange les rôles de f et g,

$$||f * g||_2 \le ||f||_1 ||g||_2.$$

- **Exercice 4.** (1) Montrer que si g est une fonction bornée, continue par morceaux, absolument intégrable sur \mathbb{R} , et si f est bornée et à *support borné*, c'est-à-dire qu'il existe A>0 tel que pour tout x tel que $|x|\geq A$, alors f(x)=0, alors la fonction f*g est uniformément continue.
 - (2) Montrer que si f est bornée et absolument intégrable, alors on a toujours le même résultat : la fonction f * g est uniformément continue.

Méthode : étant donné $\varepsilon > 0$, on veut trouver $\delta > 0$ tel que $|h| < \delta$ implique

$$|f * g(x+h) - f * g(x)| \le \varepsilon$$
,

pour tout $x \in \mathbb{R}$.

Décomposer $f = f_A + \tilde{f}_A$, avec $f_A(x) := f(x)\chi_{[-A,+A]}(x)$. En utilisant éventuellement l'exercice 3 (1), choisir A pour que $\tilde{f}_A * g(y)$ soit petit pour toute valeur de $y \in \mathbb{R}$, puis utiliser la continuité de $f_A * g$ obtenue par la question précédente.

Exercice 5. On suppose que $f,g \in \mathcal{S}(\mathbb{R})$. On va montrer que $f * g \in \mathcal{S}(\mathbb{R})$.

- (1) Pourquoi f * g est-elle indéfiniment dérivable ?
- (2) Montrer que pour tout $m \in \mathbb{N}$, il existe $A_m > 0$ tel que pour tout $x, y \in \mathbb{R}$, $|x^m g(x y)| \le A_m (1 + |y|)^m$. On considérera séparément les cas $|x| \le 2|y|$ et $|x| \ge 2|y|$. Dans ce dernier cas, on remarquera que $|x y| \ge \frac{1}{2}|x|$.
- (3) En déduire que $x^m f * g(x)$ est une fonction bornée pour tout $m \in \mathbb{N}$.
- (4) Expliquer pour quoi on peut utiliser la question précédente pour montrer que $x^m \frac{d^k}{dx^k} (f * g)(x)$ est une fonction bornée pour tous $m, k \in \mathbb{N}$.