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Abstract

Sharp maximal inequalities in large and small range are derived for stable
stochastic integrals. In order to control the tail of a stable process, we in-
troduce a truncation level in the support of its Lévy measure: we show that
the contribution of the compound Poisson stochastic integral is negligible as
the truncation level is large, so that the study is reduced to establish maximal
inequalities for the martingale part with a suitable choice of truncation level.
The main problem addressed in this paper is to give upper bounds which remain
bounded as the parameter of stability of the underlying stable process goes to
2. Applications to estimates of first passage times of symmetric stable processes
above positive continuous curves complete this work.
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1 Introduction

Given a filtered probability space Ω = (Ω,F , (F t)t≥0,P), consider on Ω a càdlàg

real stable process Z = (Zt)t≥0 of index α ∈ (0, 2) without Gaussian component

∗ajoulin@univ-lr.fr
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and let H = (Ht)t≥0 be a sufficiently integrable predictable càdlàg process. The

purpose of this paper is to give maximal inequalities for stable stochastic integrals

H · Z = (
∫ t

0
HsdZs)t≥0. We show that their decay in the bilateral case is

P
(

sup
0≤s≤t

∣∣∣∣∫ s

0

HτdZτ

∣∣∣∣ ≥ x

)
≤ K

αxα
‖H‖α

Lα+p(Ω×[0,t]), x ≥ xα, p > 2− α, (1.1)

whereas in the unilateral case, if Z is symmetric and α ∈ (1, 2), it is

P
(

sup
0≤s≤t

∫ s

0

HτdZτ ≥ x

)
≤ Lα exp

(
−Mα

(
x

‖H‖L∞(Ω,Lα([0,t]))

)α/(α−1)
)
, x ≤ x̃α.

(1.2)

Here Lα,Mα, xα and x̃α stand for positive numbers depending explicitly on α, whereas

K is a positive constant independent of α.

It is known since the early 80’s that stable stochastic integrals inherit regularly varying

tails from the underlying stable process. For example, in order to prove the central

limit theorem for stable stochastic integrals in the Skorohod space, Giné and Marcus

established in [12] the maximal inequality

sup
x>0

xα P
(

sup
0≤t≤1

∣∣∣∣∫ t

0

HsdZs

∣∣∣∣ ≥ x

)
≤ D

α(2− α)2
‖H‖α

Lα(Ω×[0,t]), (1.3)

where D is a universal constant independent of α. However, as α tends to 2, the

upper bound in their maximal inequality (1.3) goes to infinity. On the other hand,

the extremal behavior of stochastic integrals driven by multivariate Lévy processes

with regularly varying tails have been studied recently in [14] by Hult and Lindskog,

and by Applebaum, see [3]. In particular, if Z is symmetric and H is square-integrable

and satisfies further the uniform integrability condition E
[
supt∈[0,1] |Ht|α+p

]
< +∞

for some p > 0, then Example 3.2 in [14] yields the extremal behavior

lim
x→+∞

xα P
(

sup
0≤s≤t

∣∣∣∣∫ s

0

HτdZτ

∣∣∣∣ ≥ x

)
= Cα ‖H‖α

Lα(Ω×[0,t]), t ∈ [0, 1], (1.4)

where Cα depends on α and remains bounded as α ∈ (0, 2]. Therefore, as α gets

close to 2, the maximal inequality (1.3) of Giné and Marcus does not recover the

non-explosive asymptotic estimate (1.4).

Our approach to establish maximal inequalities for stable stochastic integrals is based
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on stochastic calculus for jump processes and allows us to avoid the limiting explosion

of the upper bound described above. Following Pruitt in [19] for Lévy processes and

more recently Houdré and Marchal in [13] in the specific case of stable random vectors,

the method relies on the use of the Lévy-Itô decomposition of Z with a truncation

level R in the support of its Lévy measure, in order to control the jump size of

the martingale part: Z is split into the sum of a square-integrable martingale with

infinitely many jumps bounded by R on each compact time interval, and a compound

Poisson process which represents the large jumps of Z, plus a drift part. Constructing

then the stable stochastic integral H · Z with respect to the above semimartingale

decomposition, we show that the contribution of the compound Poisson stochastic

integral in both bilateral and unilateral cases is negligible as the truncation level is

large, reducing the study to the proof of maximal inequalities for the martingale part

of H · Z. Using stochastic calculus for Poisson random measures, sharp estimates

follow by choosing suitably the truncation level R.

Let us describe the content of the paper. In Section 2, some notation and basic

properties of stable processes are introduced. Then we apply a truncation method

somewhat similar to that of Pruitt to derive maximal inequalities for stable stochastic

integrals, and compare them with the corresponding results of Giné and Marcus, and

Hult and Lindskog, see [12] and [14]. In particular, Proposition 2.4 slightly improves

the estimate in [12, Theorem 3.5] when the index of stability α of the underlying stable

process lies in (1, 2) and under some integrability conditions. The main contribution

of this paper is contained in Section 3, Theorem 3.2, where large range inequalities are

given in the bilateral case (1.1), freeing us from the explosion of the upper bound as α

goes to 2. Section 4 is devoted to small range tail estimates in the unilateral case (1.2).

As a result, we recover the classical maximal Gaussian inequality via Theorem 4.2 and

a limiting procedure in the Skorohod space. Finally, we apply in Section 5 the results

of Section 2 and 3 to estimate first passage times of a symmetric stable process above

several positive continuous curves. The method relies on an extension to the stable

case of the results of [1, 18] established for Brownian motions.
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2 Notation and preliminaries

Let Ω = (Ω,F , (F t)t≥0,P) be a filtered probability space and let Z be a càdlàg real

stable process on Ω of index α ∈ (0, 2) without Gaussian component. For the sake of

briefness, by a stable process we will implicitly mean an (F t)t≥0-adapted real càdlàg

stable process in the remainder of this paper. Recall that its characteristic function is

defined by

ϕZt(u) = exp t

(
iub+

∫ +∞

−∞

(
eiuy − 1− iuy 1{|y|≤1}

)
ν(dy)

)
, (2.1)

where ν stands for the stable Lévy measure on R:

ν(dy) =
(
c− 1{y<0} + c+ 1{y>0}

) dy

|y|α+1
, c−, c+ ≥ 0, c− + c+ > 0. (2.2)

As a Lévy process, Z is a semimartingale whose Lévy-Itô decomposition is given by

Zt = bt+

∫ t

0

∫
|y|≤1

y (µ− σ)(dy, ds) +

∫ t

0

∫
|y|>1

y µ(dy, ds), t ≥ 0, (2.3)

where µ is a Poisson random measure on R × [0,+∞) with intensity σ(dy, dt) =

ν(dy) ⊗ dt and b is the drift. In particular, if α < 1, then Z is a finite variation

process whereas when α ≥ 1, we have a.s.∑
s≤t

|∆Zs| = +∞, t > 0,

where ∆Zs denotes the jump size of Z at time s > 0.

Z is said to be strictly stable if we have the self-similarity property

(Zkt)t≥0
(d)
= (k

1
αZt)t≥0,

where k > 0 and the equality
(d)
= is in the sense of finite dimensional distributions. If

moreover c := c+ = c−, then Z is symmetric and its characteristic function (2.1) is

computed to be

ϕZt(u) = e−tρα |u|α , (2.4)

where

ρα :=

√
πΓ((2− α)/2)

α2αΓ((1 + α)/2)
2c.
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2.1 The truncation method

In order to control the jump size of the martingale part of the stable stochastic integral,

let us introduce the truncation method of the stable Lévy measure (2.2). For some

truncation level R > 1, let Z(R+) and Z(R−) be the independent Lévy processes defined

by

Z
(R−)
t :=

∫ t

0

∫
|y|≤R

y (µ− σ)(dy, ds), Z
(R+)
t :=

∫ t

0

∫
|y|>R

y µ(dy, ds), t ≥ 0.

The first one has a compactly supported Lévy measure and is a square-integrable

martingale with infinitely many jumps bounded by R on each compact time interval,

whereas the second one is a compound Poisson process. The Lévy-Itô decomposition

(2.3) rewrites as

Zt = bRt+ Z
(R−)
t + Z

(R+)
t , t ≥ 0, (2.5)

where bR := b+
∫

1<|y|≤R
y ν(dy) is a drift depending on R.

Given a predictable càdlàg process H, let

‖H‖(p,t) := ‖H‖Lp(Ω×[0,t]) =

(∫ t

0

E [|Hs|p] ds
) 1

p

, t ≥ 0, p > 0,

and define Pp (resp. Bp) as the space of predictable càdlàg process H such that for

all t ≥ 0, ‖H‖(p,t) < +∞ (resp. ‖H‖L∞(Ω,Lp([0,t])) < +∞). In particular, H is said

integrable if H ∈ P1 and square-integrable if H ∈ P2.

Following [2, Chapter 4], we construct the stable stochastic integral of a square-

integrable predictable process H as the sum of L2-type and Lebesgue-Stieltjes stochas-

tic integrals: letting

X
(R−)
t :=

∫ t

0

HsdZ
(R−)
s , X

(R+)
t :=

∫ t

0

HsdZ
(R+)
s , AR

t := bR

∫ t

0

Hsds, t ≥ 0,

the first integral X(R−) = H · Z(R−) is a square-integrable martingale, whereas the

integrals X(R+) = H · Z(R+) and AR are constructed in the Lebesgue-Stieltjes sense,

and we define the stable stochastic integral as

Xt :=

∫ t

0

HsdZs = AR
t +X

(R−)
t +X

(R+)
t , t ≥ 0. (2.6)
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We denote respectively by a ∨ b and a ∧ b the maximum and the minimum between

two real numbers a and b.

We finish by making two remarks on the maximal inequalities of type (1.1) or (1.2)

we will establish in the remainder of this paper:

Remark 2.1 The truncation level R is related to the deviation level x and to some

Lp-norm of the process H, and is chosen each time equal to its optimal value.

Remark 2.2 Although they can be computed, the constants appearing in the upper

bounds are not given explicitly in general, since their numerical value is not of crucial

importance in our study.

2.2 A first maximal inequality

In order to study the rates of growth of Lévy processes, Pruitt established in [19] some

maximal inequalities whose proofs are based on a truncation method for general Lévy

measures, with a particular choice of truncation level.

Inspired by this work, we derive in this part a first maximal inequality for stable

stochastic integrals by using the semimartingale decomposition (2.6).

Fix t ≥ 0 and x > ‖H‖(2,t). Using the above notation, we have by (2.6):

P
(

sup
0≤s≤t

|Xs| ≥ x

)
≤ P

(
sup

0≤s≤t

∣∣AR
s

∣∣+ sup
0≤s≤t

∣∣X(R−)
s

∣∣+ sup
0≤s≤t

∣∣X(R+)
s

∣∣ ≥ x

)
≤ P

(
sup

0≤s≤t

∣∣AR
s

∣∣ ≥ x

2

)
+ P

(
sup

0≤s≤t
|X(R−)

s | ≥ x

2

)
+ P

(
sup

0≤s≤t
|X(R+)

s | > 0

)
.

(2.7)

First, we investigate the absolutely continuous part AR. By Chebychev’s inequality,

P
(

sup
0≤s≤t

∣∣AR
s

∣∣ ≥ x

2

)
≤ P

(∫ t

0

|Hτ | dτ ≥
x

2|bR|

)
≤ 4bR

2

x2
E

[(∫ t

0

|Hτ | dτ
)2
]
.
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Using the elementary inequality (a + b)2 ≤ 2 (a2 + b2) , a, b ∈ R, and then Cauchy-

Schwarz’ inequality,

bR
2 =

(
b+

∫
1<|y|≤R

y ν(dy)

)2

≤ 2b2 + 2

(∫
1<|y|≤R

y ν(dy)

)2

≤ 2b2 + 2ν ({y ∈ R : 1 < |y| ≤ R})
∫

1<|y|≤R

y2 ν(dy)

≤ 2b2 + 2ν ({y ∈ R : |y| > 1})
∫
|y|≤R

y2 ν(dy)

= 2

(
b2 +

(c− + c+)2

α(2− α)
R2−α

)
.

By Cauchy-Schwarz’ inequality again and since x > ‖H‖(2,t), we have

P
(

sup
0≤s≤t

∣∣AR
s

∣∣ ≥ x

2

)
≤ 8t

x2

(
b2 +

(c− + c+)2

α(2− α)
R2−α

)
‖H‖2

(2,t)

<
8tb2‖H‖α

(2,t)

xα
+

8t(c− + c+)2R2−α‖H‖2
(2,t)

α(2− α)x2
. (2.8)

Now, we show that the contribution of the compound Poisson stochastic integralX(R+)

is negligible as the truncation level R is sufficiently large. Recall that the integral

X(R+), and so its supremum process (sup0≤s≤t |X
(R+)
s |)t≥0, has piecewise constant

sample paths and its distribution at any time has an atom at 0. Now, denote by TR
1

the first jump time of the Poisson process (µ ({y ∈ R : |y| > R} × [0, t]))t≥0 on the

set {y ∈ R : |y| > R}. If a.s. TR
1 occurs after time t, then the compound Poisson

stochastic integral X(R+) (and so its supremum process) is identically 0 on the interval

[0, t]. Thus we have

P
(

sup
0≤s≤t

|X(R+)
s | > 0

)
= 1− P

(
sup

0≤s≤t
|X(R+)

s | = 0

)
≤ 1− P

(
TR

1 > t
)

= 1− exp (−tν ({y ∈ R : |y| > R}))

≤ tν ({y ∈ R : |y| > R})

=
(c− + c+)t

αRα
, (2.9)
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where we used in the second equality above that TR
1 is exponentially distributed with

parameter ν ({y ∈ R : |y| > R}), see e.g. [22, Theorem 21.3].

Recall now that X(R−) is a square-integrable martingale involving the small jumps of

Z. By Doob’s inequality together with the isometry formula for Poisson stochastic

integrals,

P
(

sup
0≤s≤t

|X(R−)
s | ≥ x

2

)
≤ 4

x2
E

[∣∣∣∣∫ t

0

∫
|y|≤R

Hτy (µ− σ)(dy, dτ)

∣∣∣∣2
]

=
4

x2
E
[∫ t

0

∫
|y|≤R

H2
τ y

2 ν(dy)dτ

]
=

4

x2

∫
|y|≤R

y2 ν(dy)

∫ t

0

E
[
H2

τ

]
dτ,

that is to say

P
(

sup
0≤s≤t

|X(R−)
s | ≥ x

2

)
≤

4(c− + c+)‖H‖2
(2,t)R

2−α

(2− α)x2
. (2.10)

Finally, using (2.7) and choosing the truncation level

R =
x

‖H‖(2,t)

> 1

in (2.8), (2.9) and (2.10) show that there exists K := K(b, c−, c+, t) > 0, independent

of α, such that

P
(

sup
0≤s≤t

∣∣∣∣∫ s

0

HτdZτ

∣∣∣∣ ≥ x

)
≤

K‖H‖α
(2,t)

α(2− α)xα
, x > ‖H‖(2,t). (2.11)

Let us comment the estimate (2.11).

If Z is symmetric with Lévy measure ν(dy) = c|y|−α−1dy, c > 0, and H satisfies

further the uniform integrability condition E
[
sup0≤t≤1 |Ht|α+p

]
< +∞, p > 0, then

Example 3.2 in [14] entails the asymptotic estimate

lim
x→+∞

xα P
(

sup
0≤s≤t

∣∣∣∣∫ s

0

HτdZτ

∣∣∣∣ ≥ x

)
=
Kα,c

α

∫ t

0

|Hτ |α dτ, t ∈ [0, 1], (2.12)

where

Kα,c :=

{
2c
√

π(1−α)Γ((2−α)/2)
2α+1Γ(2−α)Γ((1+α)/2) cos(πα/2)

if α 6= 1,

c if α = 1,
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which remains bounded as α ∈ [0, 2]. It shows that (2.11) is sharp for α ∈ (0, 2)

and also as α converges to 0, but goes to infinity as α tends to 2, in contrast to

(2.12). On the other hand, assuming H ∈ Pα, then a combination of Theorem 3.5

and Example 3.7 in [12] implies the maximal inequality

sup
x>0

xα P
(

sup
0≤t≤1

∣∣∣∣∫ t

0

HsdZs

∣∣∣∣ ≥ x

)
≤ D

α(2− α)2

∫ 1

0

E [|Ht|α] dt, (2.13)

where D is a universal constant independent of α. Therefore, the speed of explosion

in (2.11) is better than in (2.13) since it is linear in α and not quadratic, but it is

worse in terms of Lp-norm of H, since the L2-norm is involved instead of the optimal

Lα-norm. Before avoiding in Section 3 the explosion of its upper bound as α gets

close to 2, let us now improve (2.11) in terms of Lp-norm of H.

2.3 A maximal inequality in optimal Lα-norm

First, we quote [4, Proposition 2.1], up to a minor modification related to the inte-

grability property of H:

Lemma 2.3 Consider a stable stochastic integral X := H ·Z, where Z is a symmetric

stable process of index α ∈ (1, 2) with generator L , and H is square-integrable. Let f

be a C2(R)-function with bounded first and second derivatives. Then the process M f

given by

M f
t := f(Xt)− f(X0)−

∫ t

0

|Hs|αL f(Xs−)ds, t ≥ 0,

is a martingale.

Now, we improve the upper bound in (2.11) in terms of Lp-norm of H. Actually, the

estimate in Proposition 2.4 below recovers via a different proof the inequality (2.13)

of Giné and Marcus, and slightly improves it as α tends to 2, since the speed of the

explosion of the upper bound is not quadratic but only linear in α:

Proposition 2.4 Let Z be a symmetric stable process of index α ∈ (1, 2) and Lévy

measure ν(dz) = c|z|−α−1dz, c > 0, and let H be square-integrable. Then there exists

Kα,c > 0, finite as α tends to 2, such that

sup
x>0

xα P
(

sup
0≤t≤1

∣∣∣∣∫ t

0

HsdZs

∣∣∣∣ ≥ x

)
≤ Kα,c

2− α

∫ 1

0

E [|Ht|α] dt.
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Proof. The present proof is an adaptation to the case of stable stochastic integrals

of that of Bass in [5, Proposition 3.1]. Denote by L the infinitesimal generator of Z.

Let f be a non-negative C2(R)-function such that f(0) = 0, f(y) = 1 if |y| ≥ 1 and

whose first and second derivatives are bounded above in absolute value respectively

by c1 > 0 and c2 > 0. Let x > 0, fx(y) := f(y/x) and let

τx := inf{t ≥ 0 : |Xt| ≥ x}

be the first exit time of the stable stochastic integral X = H · Z of the centered ball

of radius x. If the process exits the ball before time 1, then fx(X1∧τx) = 1 and by

Lemma 2.3 and a conditioning argument,

P
(

sup
0≤t≤1

|Xt| ≥ x

)
= P (τx ≤ 1)

≤ E [fx(X1∧τx)]

= E
[∫ 1∧τx

0

|Ht|αL fx(Xt−)dt

]
≤

∫ 1

0

E [|Ht|α |L fx(Xt−)|] dt.

Therefore,

P
(

sup
0≤t≤1

|Xt| ≥ x

)
≤ ‖L fx‖L∞(R )

∫ 1

0

E [|Ht|α] dt. (2.14)

By the symmetry of ν,

L fx(y) =

∫
R

(fx(y + z)− fx(y)− zf ′x(y)) ν(dz)

≤
∫
|z|≤R

c2z
2

2x2
ν(dz) +

∫
|z|>R

2c1|z|
x

ν(dz)

=
c2cR

2−α

(2− α)x2
+

4c1cR
1−α

(α− 1)x
.

If we choose the truncation level R = x, then denotingKα,c := c2c+4c1c(2−α)/(α−1),

the calculus above implies the bound

‖L fx‖L∞(R ) ≤
Kα,c

(2− α)xα
.

Finally, plugging this into (2.14), the proof is complete.
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3 Large range estimates for α close to 2

The purpose of the present part is to control the upper bound in (2.11), freeing us

from its explosion as α tends to 2. The price to pay is to require stronger integrability

conditions on the process H and to reduce the range interval of the deviation level x.

First, we recall Bihari’s inequality, which is a Gronwall-type inequality. See e.g. [11,

Chapter 1] for a proof of such an inequality.

Lemma 3.1 Let T be a positive time horizon and let ρ, ψ and g be positive measurable

functions such that ρ is monotone-increasing, s 7→ ψ(s)ρ (g(s)) is integrable on [0, T ]

and

g(s) ≤ KT +

∫ s

0

ψ(τ) ρ(g(τ)) dτ, s ∈ [0, T ], (3.1)

where KT ≥ 0. Then the Bihari inequality

g(T ) ≤ φ−1

(
φ(KT ) +

∫ T

0

ψ(s)ds

)
holds, where φ(x) :=

∫ x

0
dy

ρ(y)
.

We can now state the main result of this paper:

Theorem 3.2 Let Z be a stable process of index α ∈ (1, 2) and Lévy measure ν given

by (2.2). Let p > 2 − α, ε > 0 and let H ∈ Pα+p. Then for all t ≥ 0, there exists

K := K(b, c−, c+, t, p, ε) > 0, independent of α, such that for all

xα > ‖H‖α
(α+p,t) max

1,

(
(2p)

2
α+p

ε(2− α)(α+ p)
2

α+p

) α+p
α+p−2 (

2
α+p−4

2 ∨ 1
)

(c− + c+)t

 ,

we have the maximal inequality

P
(

sup
0≤s≤t

∣∣∣∣∫ s

0

HτdZτ

∣∣∣∣ ≥ x

)
≤
K‖H‖α

(α+p,t)

xα
. (3.2)

Proof. We proceed as in the proof of inequality (2.11) and investigate first the

absolutely continuous part AR analogously to (2.8). Fix t ≥ 0 and x > ‖H‖(α+p,t). By

the elementary inequality (a + b)q ≤ 2q−1 (|a|q + |b|q) , a, b ∈ R, q ≥ 1, applied with

q = α+ p, together with Hölder’s inequality, we get

P
(

sup
0≤s≤t

∣∣AR
s

∣∣ ≥ x

2

)
11



≤
22α+2p−1tα+p−1‖H‖α+p

(α+p,t)

xα+p

(
|b|α+p + ν ({y ∈ R : |y| > 1})α+p−1

∫
|y|≤R

yα+pν(dy)

)
=

22α+2p−1tα+p−1‖H‖α+p
(α+p,t)

xα+p

(
|b|α+p +

(c− + c+)α+pRp

pαα+p−1

)
≤

22α+2p−1tα+p−1‖H‖α
(α+p,t)

xα

(
|b|α+p +

(c− + c+)α+pRp‖H‖p
(α+p,t)

pαα+p−1xp

)
, (3.3)

where we used in the last inequality x > ‖H‖(α+p,t).

Now, let us control the martingale partX(R−) = H·Z(R−). By Doob’s and Burkholder’s

inequalities for martingales with jumps, see e.g. pp. 303-4 in [10], we have

P
(

sup
0≤s≤t

|X(R−)
s | ≥ x

2

)
≤ 2α+p

xα+p
E

[∣∣∣∣∫ t

0

HsdZ
(R−)
s

∣∣∣∣α+p
]

≤ 2α+pCα+p

xα+p
E

[[∫ ·

0

HsdZ
(R−)
s ,

∫ ·

0

HsdZ
(R−)
s

]α+p
2

t

]

=
2α+pCα+p

xα+p
E

[(∫ t

0

∫
|y|≤R

H2
s y

2 µ(dy, ds)

)α+p
2

]
. (3.4)

Let (Ys)s∈[0,t] be the finite variation process defined by

Ys :=

∫ s

0

∫
|y|≤R

H2
τ y

2 µ(dy, dτ), 0 ≤ s ≤ t.

By Itô’s formula for jump processes and the inequality (a+b)q−aq ≤ qb(a+b)q−1, 0 ≤
a ≤ b, q ≥ 1, applied with q = (α+ p)/2, we have

Y
α+p

2
s =

∫ s

0

∫
|y|≤R

((
Yτ− +H2

τ y
2
)α+p

2 − Y
α+p

2
τ−

)
µ(dy, dτ)

≤ α+ p

2

∫ s

0

∫
|y|≤R

H2
τ y

2
(
Yτ− +H2

τ y
2
)α+p−2

2 µ(dy, dτ)

≤ α+ p

2
(2

α+p−4
2 ∨ 1)

∫ s

0

∫
|y|≤R

H2
τ y

2
(
Y

α+p−2
2

τ− + |Hτ |α+p−2 |y|α+p−2
)
µ(dy, dτ).

where we used in the last inequality the elementary bound (a + b)q ≤ (2q−1 ∨
1) (aq + bq) , a, b ≥ 0, q ≥ 0, applied with q = (α+p−2)/2. Denote Dα,p = 2

α+p−4
2 ∨1.

Taking expectations and using Hölder’s inequality, we get

E
[
Y

α+p
2

s

]
12



≤ Dα,p
(α+ p)(c− + c+)

2

(
R2−α

2− α

∫ s

0

E
[
H2

τ Y
α+p−2

2
τ

]
dτ +

Rp

p
‖H‖α+p

(α+p,s)

)
≤ Dα,p

(α+ p)(c− + c+)

2

(
R2−α

2− α

∫ s

0

E
[
|Hτ |α+p

] 2
α+p E

[
Y

α+p
2

τ

]α+p−2
α+p

dτ +
Rp

p
‖H‖α+p

(α+p,t)

)
.

Applying Lemma 3.1 with T = t,

g(s) := E
[
Y

α+p
2

s

]
, ψ(τ) := E

[
|Hτ |α+p

] 2
α+p , Kt := Dα,p

(α+ p)(c− + c+)Rp

2p
‖H‖α+p

(α+p,t)

and

ρ(x) := Dα,p
(α+ p)(c− + c+)R2−α

2(2− α)
x

α+p−2
α+p ,

and by using Hölder’s inequality to estimate
∫ t

0
ψ(τ)dτ , we obtain

g(t) ≤ Φ−1

(
Φ

(
Dα,p

(α+ p)(c− + c+)Rp

2p
‖H‖α+p

(α+p,t)

)
+ t

α+p−2
α+p ‖H‖2

(α+p,t)

)
,

where

Φ(x) :=

∫ x

0

dy

ρ(y)

=
2− α

Dα,p(c− + c+)R2−α
x

2
α+p .

Hence we have

E
[
Y

α+p
2

t

]
≤

D
α+p

2
α,p (c− + c+)

α+p
2 R

(2−α)(α+p)
2

(2− α)
α+p

2

 (2− α)(α+ p)
2

α+pR
α(α+p−2)

α+p

D
α+p−2

α+p
α,p (c− + c+)

α+p−2
α+p (2p)

2
α+p

+ t
α+p−2

α+p


α+p

2

‖H‖α+p
(α+p,t).

Now, choose the truncation level

R =
x

‖H‖(α+p,t)

> 1.

Since the assumption on x claims that

x
α(α+p−2)

α+p >
‖H‖

α(α+p−2)
α+p

(α+p,t) t
α+p−2

α+p D
α+p−2

α+p
α,p (c− + c+)

α+p−2
α+p (2p)

2
α+p

ε(2− α)(α+ p)
2

α+p

,

13



we establish the following bound on moments

E
[
Y

α+p
2

t

]
≤

Dα,p(c− + c+)(α+ p)(1 + ε)
α+p

2 ‖H‖α
(α+p,t)

2p
xp.

Finally, plugging the latter inequality into (3.4) yields

P
(

sup
0≤s≤t

|X(R−)
s | ≥ x

2

)
≤

2α+pCα+pDα,p(c− + c+)(α+ p)(1 + ε)
α+p

2 ‖H‖α
(α+p,t)

2pxα
,

and together with (2.7) and the choice of truncation level R = x/‖H‖(α+p,t) in (2.9)

and (3.3), Theorem 3.2 is proved.

Under further assumptions on Z and H, the process H · Z is a time-changed stable

process and we get the following maximal inequality, which is asymptotically optimal

in terms of Lα-norm when ‖H‖Lα([0,t]) is bounded on Ω for all t ≥ 0:

Corollary 3.3 Let Z be a symmetric stable process of index α ∈ (1, 2) and Lévy

measure ν(dy) = c|y|−α−1dy, c > 0. Let H ∈ Bα with a.s. limt→+∞
∫ t

0
|Hs|αds = +∞.

Let p > 2 − α and ε > 0. Then there exists K := K(c, p, ε) > 0, independent of α,

such that for all t ≥ 0 and for all

xα >

∥∥∥∥∫ t

0

|Hs|α ds
∥∥∥∥

L∞(Ω)

(
2p

2
α+p

ε(2− α)(α+ p)
2

α+p

) α+p
α+p−2 (

2
α+p−4

2 ∨ 1
)
c,

we have the estimate

P
(

sup
0≤s≤t

∣∣∣∣∫ s

0

HτdZτ

∣∣∣∣ ≥ x

)
≤ K

xα

∥∥∥∥∫ t

0

|Hs|α ds
∥∥∥∥

L∞(Ω)

. (3.5)

Proof. By [21, Theorem 3.1], the process H · Z is a time-changed process of Z, i.e.

we have the identity a.s. ∫ t

0

HsdZs = Ẑτt , t ≥ 0,

where τ = (τt)t≥0 given by τt :=
∫ t

0
|Hs|αds is a time change process, and Ẑ is a

symmetric stable process defined on Ω and having the same distribution as Z. Since

the symmetry of Ẑ implies it is self-similar of index α, then so is the supremum

process: (
sup

0≤s≤kt
Ẑs

)
t≥0

(d)
=

(
k

1
α sup

0≤s≤t
Ẑs

)
t≥0

, k > 0.

14



Thus, denoting β(t) := ‖τt‖1/α
L∞(Ω), we have

P
(

sup
0≤s≤t

∣∣∣∣∫ s

0

HτdZτ

∣∣∣∣ ≥ x

)
= P

(
sup

0≤s≤t
|Ẑτs | ≥ x

)
≤ P

(
sup

0≤s≤τt

|Ẑs| ≥ x

)
≤ P

(
sup

0≤s≤β(t)α

|Ẑs| ≥ x

)

= P
(

sup
0≤s≤1

|Ẑs| ≥
x

β(t)

)
.

Finally, applying Theorem 3.2 with Hs = 1 for all 0 ≤ s ≤ t = 1, the proof is

complete.

Remark 3.4 If Z is a non-symmetric strictly stable process and H is positive and

satisfies further the hypothesis of Corollary 3.3 (resp. that of Theorem 4.2 below),

then the stable stochastic integral H · Z is still a time-changed process of Z. Thus,

applying in the proof above (resp. in the proof of Theorem 4.2) Theorem 3 in [17]

instead of Theorem 3.1 in [21], an estimate somewhat similar to that of Corollary 3.3

(resp. Theorem 4.2) can be established.

4 Small range maximal inequalities

In this part, we derive small range estimates in the unilateral case (1.2). Recently,

Breton and Houdré investigated in [8] small and intermediate range concentration

for stable random vectors. In particular, the small range behavior is covered by

their Theorem 1, whose small deviation rate is of order exp
(
−cαxα/(α−1)

)
for some

positive cα depending on α. Before proving a similar rate for suprema of stable

stochastic integrals, let us establish first the result for symmetric stable processes via

Proposition 4.1 below. We point out that using the scaling property, it is sufficient to

get the result on the time interval [0, 1].

Proposition 4.1 Let Z be a symmetric stable process of index α ∈ (1, 2) and Lévy

measure ν(dy) = c|y|−α−1dy, c > 0. Then for all λ > λ0(α), where λ0(α) is the unique

15



solution of the equation

λ log

(
1 +

(2− α)λ

2c

)
=

4c

α
,

there exists x0(α, λ) > 0 such that for all 0 ≤ x ≤ x0(α, λ),

P
(

sup
0≤t≤1

Zs ≥ x

)
≤ 2c

α

(x
λ

) α
α−1

+ exp

−λ log
(
1 + (2−α)λ

2c

)
2

(x
λ

) α
α−1

 . (4.1)

Proof. As in the proof of inequality (2.9), we have

P
(

sup
0≤t≤1

Zs ≥ x

)
≤ P

(
sup

0≤t≤1
Z(R+)

s > 0

)
+ P

(
sup

0≤t≤1
Z(R−)

s ≥ x

)
≤ 2c

αRα
+ P

(
sup

0≤t≤1
Z(R−)

s ≥ x

)
. (4.2)

The Lévy process Z(R−) is a martingale with jumps bounded by R, hence has expo-

nential moments, see e.g. [9, Proposition 3.14]. Moreover, the angle bracket process

< Z(R−), Z(R−) > is computed to be

< Z(R−), Z(R−) >t =

∫ t

0

∫
|y|≤R

y2 ν(dy)ds

=
2ct

2− α
R2−α

= vt(R)2.

Let φ(z) := z−2 (ez − z − 1) , z > 0, and define for all β > 0 the process S(β,R) by

S
(β,R)
t = exp

(
βZ

(R−)
t − β2φ(βR) < Z(R−), Z(R−) >t

)
, t ≥ 0.

By [16, Lemma 23.19], S(β,R) is a supermartingale for all β > 0. Thus, the exponential

Markov’s inequality yields

P
(

sup
0≤t≤1

Z(R−)
s ≥ x

)
≤ inf

β>0
P
(

sup
0≤t≤1

S
(β,R)
t ≥ exp

(
βx− β2v1(R)2φ(βR)

))
≤ inf

β>0
exp

(
−βx+ β2v1(R)2φ(βR)

)
= exp

(
x

R
−
(
x

R
+
v1(R)2

R2

)
log

(
1 +

Rx

v1(R)2

))
≤ exp

(
− x

2R
log

(
1 +

Rx

v1(R)2

))
16



= exp

(
− x

2R
log

(
1 +

(2− α)Rα−1x

2c

))
,

where in the latter inequality we used (1 + u) log(1 + u) − u ≥ u
2
log(1 + u), u ≥ 0,

which is equivalent to (1 + u/2) log(1 + u) ≥ u, u ≥ 0, established by a standard

convexity argument. Now, let the truncation level R be such that x = λR1−α for

some λ > 0. Plugging the last inequality into (4.2), we get

P
(

sup
0≤t≤1

Zs ≥ x

)
≤ 2c

α

(x
λ

) α
α−1

+ exp

−λ log
(
1 + (2−α)λ

2c

)
2

(x
λ

) α
α−1


=: F

((x
λ

) α
α−1

)
. (4.3)

A necessary condition for the upper bound in (4.3) to make sense is that the real

number F
(
(x/λ)α/(α−1)

)
has to be smaller than 1, which is the case in a neighborhood

of 0+ if λ > λ0(α). Finally, choose x0(α, λ) > 0 such that F
(
(x0(α, λ)/λ)α/(α−1)

)
= 1

to obtain the maximum range of validity for the result.

Now, we can establish a small range maximal inequality for stable stochastic integrals:

Theorem 4.2 Let Z be a symmetric stable process of index α ∈ (1, 2) and Lévy

measure ν(dy) = c|y|−α−1dy, c > 0, and let H ∈ Bα with a.s. limt→+∞
∫ t

0
|Hs|α ds =

+∞. Then for all λ > λ0(α), where λ0(α) is the unique solution of the equation

λ log

(
1 +

(2− α)λ

2c

)
=

4c

α
,

there exists x1(α, λ) > 0 such that for all 0 ≤ x ≤ x1(α, λ) and all t ≥ 0,

P
(

sup
0≤s≤t

∫ s

0

HτdZτ ≥ x

)

≤ 2c

α

(
x

λ‖H‖L∞(Ω,Lα([0,t]))

) α
α−1

+ exp

−λ log
(
1 + (2−α)λ

2c

)
2

(
x

λ‖H‖L∞(Ω,Lα([0,t]))

) α
α−1

 .

(4.4)

Proof. Following the proof of Corollary 3.3, we have by time change and scaling

P
(

sup
0≤s≤t

∫ s

0

HτdZτ ≥ x

)
≤ P

(
sup

0≤s≤1
Ẑs ≥

x

‖H‖L∞(Ω,Lα([0,t]))

)
,

where Ẑ is a symmetric stable process defined on Ω and having the same law as Z.

Finally, Proposition 4.1 applied to Ẑ achieves the proof.
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Remark 4.3 For all ε > 0, let xε be the unique solution of the equation

2c

α

(
x

λ‖H‖L∞(Ω,Lα([0,t]))

) α
α−1

= ε exp

−λ log
(
1 + (2−α)λ

2c

)
2

(
x

λ‖H‖L∞(Ω,Lα([0,t]))

) α
α−1

 .

Then for all 0 ≤ x ≤ xε, the inequality (4.4) implies

P
(

sup
0≤s≤t

∫ s

0

HτdZτ ≥ x

)
≤ (1+ε) exp

−λ log
(
1 + (2−α)λ

2c

)
2

(
x

λ‖H‖L∞(Ω,Lα([0,t]))

) α
α−1

 .

Thus, the order of the upper bound in (4.4) is exp
(
−cα

(
x/‖H‖L∞(Ω,Lα([0,t]))

)α/(α−1)
)
,

and is comparable to that in [8, Theorem 1] for Lipschitz functions of stable random

vectors.

Remark 4.4 The quantity x1(α, λ) in Theorem 4.2 can be given explicitly. Indeed,

let x∗0(α, λ) > 0 be the real number where the function F in (4.3) reaches its unique

minimum, i.e.

x∗0(α, λ)
α

α−1 =
2λ

1
α−1

log
(
1 + (2−α)λ

2c

) log

αλ log
(
1 + (2−α)λ

2c

)
4c

 < x0(α, λ)
α

α−1 ,

then choose x1(α, λ) = ‖H‖L∞(Ω,Lα([0,t])) x
∗
0(α, λ).

Remark 4.5 There is no optimal choice for the parameter λ in Theorem 4.2: on

the one hand, λ = λ0(α) achieves the best maximal inequality (4.4) but in this case

the domain for the deviation level x is empty; on the other hand, as λ increases, the

domain expands but in this case the maximal inequality (4.4) is the worst.

As an application of Theorem 4.2, let us recover the classical maximal inequality in

the Gaussian case, cf. Proposition 1.8 p.55 in [20].

Corollary 4.6 Let (Bt)t≥0 be a standard Brownian motion. Then the following max-

imal inequality holds

P
(

sup
0≤s≤t

Bs ≥ x

)
≤ exp

(
−x

2

2t

)
, x > 0, t ≥ 0.
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Proof. Let (Xn)n≥2 be a sequence of symmetric stable processes of index αn = 2−1/n

and Lévy measure νn(dy) = (2n)−1dy/|y|αn+1. Applying Theorem 4.2 to Xn, n ≥ 2,

the inequality (4.4) becomes for all 0 ≤ x ≤ x1(αn, λ), all λ > λ0(αn) and all t ≥ 0

P
(

sup
0≤s≤t

Xn
s ≥ x

)
≤ 1

2n− 1

(
x

λt
n

2n−1

) 2n−1
n−1

+ exp

(
−λ log (1 + λ)

2

(
x

λt
n

2n−1

) 2n−1
n−1

)
,

(4.5)

where

x1(α, λ)
2n−1
n−1 =

2(tλ)
n

n−1

log (1 + λ)
log

(
(n− 1

2
)λ log(1 + λ)

)
,

and λ0(αn) is the unique solution of the equation

λ log (1 + λ) =
2

2n− 1
.

Note that λ0(αn) converges to 0 and x1(αn, λ) to infinity as n goes to infinity. Denoting

D[0,+∞) the Skorohod space of real-valued càdlàg functions on [0,+∞) equipped

with the Skorohod topology, the sequence of processes (Xn)n≥2 converges weakly in

D[0,+∞) as n→ +∞ to a standard Brownian motion (Bt)t≥0 (say), see e.g. Section 3

of Chapter VII in [15]. Since the supremum functional is continuous on D[0,+∞),

then the Continuous Mapping Theorem p.20 in [7] implies

lim
n→+∞

P
(

sup
0≤s≤t

Xn
s ≥ x

)
= P

(
sup

0≤s≤t
Bs ≥ x

)
, x > 0, t ≥ 0.

Finally, letting n going to infinity and then λ to 0 in the right-hand-side of (4.5) yield

the result.

5 Estimates of first passage times of symmetric

stable processes above positive continuous curves

In [1, 18], the authors investigate functional transformations related to first crossing

problems for self-similar diffusions. More precisely, they show via a time change trans-

formation how the distribution of the first passage time of a Gauss-Markov process of

Ornstein-Uhlenbeck type can be deduced from the law of the first crossing time of a
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continuous curve by a Brownian motion. In this part, we adapt this method in order

to estimate the first passage time of a symmetric stable process above several positive

continuous curves, by using the maximal inequalities of Section 2 and 3.

To do so, let Xφ be a stable-Markov process of Ornstein-Uhlenbeck type of index

α ∈ (0, 2) and parameter φ, i.e. Xφ has the integral representation

Xφ
t := φ(t)

∫ t

0

dZs

φ(s)
, t ∈ [0, T ), T ∈ (0,+∞],

where Z is a symmetric stable process of index α and Lévy measure ν(dy) = c|y|−α−1dy,

c > 0, and φ is a positive C∞([0, T ))-function. Let also

T φ
x := inf{t ∈ [0, T ) : |Xφ

t | ≥ x}

be its first exit time of the centered ball of radius x. Given a positive continuous

function f such that f(0) 6= 0, define

T (f) := inf{t ≥ 0 : |Zt| ≥ f(t)}

as the first passage time of |Z| above f . Let us give a first lemma which states an

identity in law between first passage times:

Lemma 5.1 Let Xφ be a stable-Markov process of Ornstein-Uhlenbeck type of index

α ∈ (0, 2) and parameter φ. Assume that τt :=
∫ t

0
ds

φ(s)α < +∞ for all t ∈ [0, T ) and

that limt→T τt = +∞. Denote by τ−1 the inverse of τ and let hφ,τ be the function

defined on (0,+∞) by hφ,τ (t) = 1/(φ ◦ τ−1(t)). Then for all x > 0, we have the

identity in distribution

P
(
T φ

x ∈ dr
)

= P
(
τ−1

(
T (xhφ,τ )

)
∈ dr

)
, r ∈ [0, T ).

Proof. By [21, Theorem 3.1], the process Xφ rewrites as a time-changed symmetric

stable process, i.e. we have a.s.

Xφ
t = φ(t)Ẑτt , t ∈ [0, T ),

where Ẑ is a symmetric stable process defined on the same probability space as Z and

having the same distribution. Thus, we have for all r ∈ [0, T )

P
(
T φ

x ≤ r
)

= P
(
inf{t ∈ [0, T ) : |Xφ

t | ≥ x} ≤ r
)
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= P
(

inf

{
t ∈ [0, T ) : |Ẑτt| ≥

x

φ(t)

}
≤ r

)
= P

(
τ−1

(
T (xhφ,τ )

)
≤ r
)
.

Now, we establish via an integration by parts formula several maximal inequalities

for stable-Markov processes of Ornstein-Uhlenbeck type:

Lemma 5.2 Let Xφ be a stable-Markov process of Ornstein-Uhlenbeck type of index

α ∈ (0, 2) and parameter φ. Let t ∈ [0, T ). Then we have the support estimate

P
(

sup
0≤s≤t

|Xφ
s | < y

)
≤ exp

(
− ct

α2α−1yα

)
, y > 0. (5.1)

If α ∈ (0, 1], then we have the maximal inequality

P
(

sup
0≤s≤t

|Xφ
s | ≥ x

)
≤ 4ct

αxα

(
1 +

∥∥∥∥φ(·)
∫ ·

0

φ′(τ)

φ(τ)2
dτ

∥∥∥∥
L∞([0,t])

)α

, x > 0, (5.2)

whereas if α ∈ (1, 2), then for all

xα >
tc

(2− α)
α+1
α−1

(
1 +

∥∥∥∥φ(·)
∫ ·

0

φ′(τ)

φ(τ)2
dτ

∥∥∥∥
L∞([0,t])

)
,

we have

P
(

sup
0≤s≤t

|Xφ
s | ≥ x

)
≤ Kct

xα

(
1 +

∥∥∥∥φ(·)
∫ ·

0

φ′(τ)

φ(τ)2
dτ

∥∥∥∥
L∞([0,t])

)α

, (5.3)

where Kc > 0 only depends on c.

Proof. Fix t ∈ [0, T ) and y > 0. If a.s. the path of the process Xφ lies in the interval

(−y, y) up to time t, then there are no jumps of magnitude larger than 2y before time

t, so that we have the set inclusion
{
sup0≤s≤t |Xφ

s | < y
}
⊂
{
sup0≤s≤t |∆Xφ

s | < 2y
}
.

Moreover, the process Xφ has the same jumps as the process Z by definition. Thus, if

T 2y
1 denotes the first jump time on the set {z ∈ R : |z| > 2y} of the Poisson process

(µ ({z ∈ R : |z| > 2y} × [0, t]))t∈[0,T ), then we have

P
(

sup
0≤s≤t

|Xφ
s | < y

)
≤ P

(
sup

0≤s≤t
|∆Xφ

s | < 2y

)
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= P
(

sup
0≤s≤t

|∆Zs| < 2y

)
≤ P

(
T 2y

1 > t
)

= exp (−tν ({z ∈ R : |z| ≥ 2y}))

= exp

(
− 2ct

α(2y)α

)
,

where in the second equality we used that T 2y
1 is exponentially distributed with pa-

rameter ν ({z ∈ R : |z| > 2y}). The support estimate (5.1) is proved.

Now, we establish (5.2) and (5.3). By the classical integration by parts formula for

semimartingales, cf. [9, Proposition 8.11], we have∫ t

0

dZs

φ(s)
=

Zt

φ(t)
−
∫ t

0

Zs−d

(
1

φ

)
(s)

=
Zt

φ(t)
+

∫ t

0

φ′(s)Zs

φ(s)2
ds.

Hence, the process Xφ rewrites as

Xφ
t = Zt + φ(t)

∫ t

0

φ′(s)

φ(s)2
Zs ds, t ∈ [0, T ). (5.4)

Denote At :=
∥∥∥φ(·)

∫ ·
0

φ′(τ)
φ(τ)2

dτ
∥∥∥

L∞([0,t])
and let us distinguish two cases:

• if α ∈ (0, 1], then following the proof of inequality (2.11) but restricted to

the symmetric stable process Z yields the inequality

P
(

sup
0≤s≤t

|Zs| ≥ x

)
≤ 4ct

αxα
.

Thus, together with (5.4), we have

P
(

sup
0≤s≤t

|Xφ
s | ≥ x

)
≤ P

(
sup

0≤s≤t
|Zs| ≥

x

1 + At

)
≤ 4ct(1 + At)

α

αxα
;

• if α ∈ (1, 2), then Corollary 3.3 applied with e.g. p = 1 and ε = 2(α−1)/(α+1),

together with (5.4) show that there exists Kc > 0, which only depends of c, such that

P
(

sup
0≤s≤t

|Xφ
s | ≥ x

)
≤ P

(
sup

0≤s≤t
|Zs| ≥

x

1 + At

)
≤ Kct(1 + At)

α

xα

for all xα > (tc(1 + At)
α)/((2− α)(α+1)/(α−1)).
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Remark 5.3 The support estimate (5.1) is independent of φ and thus is similar to

that of a symmetric stable process.

Remark 5.4 No time change techniques are required in the proof of Lemma 5.2 but

just the integration by parts formula which entails (5.4). However, if we assume

τt :=
∫ t

0
ds

φ(s)α < +∞, t ∈ [0, T ), with τt → +∞ as t→ T and that φ is non-decreasing

on [0, T ), then time change, scaling and Corollary 3.3 entail for sufficiently large x

P
(

sup
0≤s≤t

|Xφ
s | ≥ x

)
≤ P

(
sup

0≤s≤t
|Ẑτs | ≥

x

φ(t)

)
≤ P

(
sup

0≤s≤1
|Ẑs| ≥

x

φ(t)τ
1
α
t

)

≤ Kc

xα
φ(t)α

∫ t

0

ds

φ(s)α
.

Now, we are able to state the main result of this part:

Theorem 5.5 Let Z be a symmetric stable process of index α ∈ (0, 2) and Lévy

measure ν(dy) = c|y|−α−1dy, c > 0. Let φ be a positive C∞ ([0, T ))-function such that

τt :=
∫ t

0
ds

φ(s)α < +∞ for all t ∈ [0, T ) and that limt→T τt = +∞. Denote by τ−1 the

inverse of τ and by hφ,τ the function defined on (0,+∞) by hφ,τ (t) := 1/(φ ◦ τ−1(t)).

Then for all x > 0,

P
(
T (xhφ,τ ) > r

)
≤ exp

(
− 2cτ−1

r

α(2x)α

)
, r > 0. (5.5)

If α ∈ (0, 1], then for all x > 0, we have

P
(
T (xhφ,τ ) ≤ r

)
≤ 4cτ−1

r

αxα

(
1 +

∥∥∥∥φ(·)
∫ ·

0

φ′(t)

φ(t)2
dt

∥∥∥∥
L∞([0,τ−1

r ])

)α

, r > 0, (5.6)

whereas if α ∈ (1, 2), then there exists Kc > 0, which only depends of c, such that for

all x > 0 and for all 0 ≤ r < r0(α, x), we have

P
(
T (xhφ,τ ) ≤ r

)
≤ Kcτ

−1
r

xα

(
1 +

∥∥∥∥φ(·)
∫ ·

0

φ′(t)

φ(t)2
dt

∥∥∥∥
L∞([0,τ−1

r ])

)α

, (5.7)

where r0(α, x) is the unique solution of the equation

(2− α)
α+1
α−1xα = cτ−1

r

(
1 +

∥∥∥∥φ(·)
∫ ·

0

φ′(t)

φ(t)2
dt

∥∥∥∥
L∞([0,τ−1

r ])

)α

.

Proof. It is sufficient to apply Lemma 5.1 and Lemma 5.2.
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Thus, given φ, the quantity in the right-hand-side of the inequalities (5.5), (5.6) and

(5.7) can be computed explicitly. Let us give two applications of Theorem 5.5.

If φ(t) := e−λt for λ > 0 and T = +∞, then Xφ is the stable Ornstein-Uhlenbeck

process of index α. Therefore, a direct computation in Theorem 5.5 implies the

Corollary 5.6 Let Z be a symmetric stable process of index α ∈ (0, 2) and Lévy

measure ν(dy) = c|y|−α−1dy, c > 0. Letting fα,x,λ(t) := x(1 + λαt)1/α, t ≥ 0, λ > 0,

we have for all x > 0

P (inf{t ≥ 0 : |Zt| ≥ fα,x,λ(t)} > r) ≤ 1

(1 + λαr)
c

λα22α−1xα
, r > 0.

If α ∈ (0, 1], then for all x > 0 and all r > 0,

P (inf{t ≥ 0 : |Zt| ≥ fα,x,λ(t)} ≤ r) ≤ 4c(2− (1 + λαr)−
1
α )α log(1 + λαr)

λα2xα

≤ 16cr

αxα
.

Finally, if α ∈ (1, 2), then for all x > 0 and for all 0 ≤ r < r0(α, x, λ), we have the

estimate

P (inf{t ≥ 0 : |Zt| ≥ fα,x,λ(t)} ≤ r) ≤ (2− (1 + λαr)−
1
α )α log(1 + λαr)Kc

λαxα

≤ 4rKc

xα
,

where Kc is the constant of Theorem 5.5 and r0(α, x, λ) is the unique solution of the

equation

λαxα =
c(2− (1 + λαr)−

1
α )α (log(1 + λαr))

(2− α)
α+1
α−1

.

Now, we present the case of the stable bridge. Given a symmetric stable process

Z = (Zt)t≥0 of index α ∈ (0, 2), there exists a Markov process X(br) = (X
(br)
t )0≤t≤T

starting from 0 and ending in 0 at a finite time horizon T , such that its distribution

Q is given by

dQ|F t
=
pT−t(−Xt)

pT (0)
dP|F t , t ∈ (0, T ),

where pt is a version everywhere positive of the distribution of the stable random

variable Zt, see [6, Chapter VIII]. The process X(br) is called a stable bridge. By e.g.
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Exercise 12.2 in [23], X(br) is the unique solution of the linear equation

X
(br)
t = Zt −

∫ t

0

X
(br)
s

T − s
ds, t ∈ (0, T ),

which rewrites by the integration by parts formula of Proposition 8.11 in [9] as

X
(br)
t = (T − t)

∫ t

0

dZs

T − s
ds, t ∈ (0, T ).

Hence, the stable bridge X(br) is a stable-Markov process of Ornstein-Uhlenbeck type

with parameter φ given by φ(t) = T − t, t ∈ [0, T ]. Thus, using Theorem 5.5, we get

the

Corollary 5.7 Let Z be a symmetric stable process of index α ∈ (1, 2) and Lévy

measure ν(dy) = c|y|−α−1dy, c > 0. Letting gα,x,T (t) := x(T 1−α + (α − 1)t)1/(α−1),

t ≥ 0, we have for all x > 0 and all r > 0

P (inf{t ≥ 0 : |Zt| ≥ gα,x,λ(t)} > r) ≤ exp
(
− c

α2α−1xα

(
T − (T 1−α + (α− 1)r)

1
1−α

))
= exp

(
−c(Tgα,x,T (r)− x)

α2α−1gα,x,T (r)xα

)
,

whereas for all x > 0 and for all 0 ≤ r < r0(α, x, T ), we have

P (inf{t ≥ 0 : |Zt| ≥ gα,x,T (t)} ≤ r) ≤ Kc(Tgα,x,T (r)− x)(2Tgα,x,T (r)− x)α

Tαgα,x,T (r)α+1xα

≤ 4TKc

xα
,

where Kc is the constant of Theorem 5.5 and r0(α, x, λ) is the unique solution of the

equation

(2− α)
α+1
α−1Tαgα,x,T (r)α+1xα = c(Tgα,x,T (r)− x)(2Tgα,x,T (r)− x)α.

Remark 5.8 In the latter corollary, only the case α ∈ (1, 2) is considered, since the

time change techniques we use in the proof of Theorem 5.5 are not satisfied when

α ∈ (0, 1).
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