MEASURE CONCENTRATION THROUGH NON-LIPSCHITZ
OBSERVABLES AND FUNCTIONAL INEQUALITIES

ARNAUD GUILLIN AND ALDERIC JOULIN

ABSTRACT. Non-Gaussian concentration estimates are obtained for invariant
probability measures of reversible Markov processes. We show that the func-
tional inequalities approach combined with a suitable Lyapunov condition al-
lows us to circumvent the classical Lipschitz assumption of the observables. Our
method is general and offers an unified treatment of diffusions and pure-jump
Markov processes on unbounded spaces.

1. INTRODUCTION

In the last few decades, the concentration of measure phenomenon has at-
tracted a lot of attention. Given a metric probability space (X, d, u) and a suf-
ficiently large class of functions defined on this space (we call them observables),
the concentration of measure occurs when, observed through these functions, the
space seems to be actually smaller than it is. In other words, there exists a non-
decreasing continuous function « : [0, 00) — [0, 00), null at the origin and tending
to infinity at infinity, such that for a given class C of observables f : X — R,

p({wex:f@) - [ fan>r}) < e (-a(), 720

The concentration is said to be Gaussian when « is quadratic-like. In connection
with isoperimetry theory, the class C is usually taken to be the space of Lipschitz
functions on (X, d, ), say Lip(X). A good review on the subject is the monograph
of Ledoux [35] where the interested reader will find a clear introduction to the topic.
One may mention also the recent progress in the area through mass transportation
techniques. See the survey of Gozlan and Léonard [23].

In this paper, we emphasize a dynamical point of view on concentration of
measure. Given the invariant measure p of an ergodic continuous-time Markov
process (X;)i>o with carré du champ operator I' (see below for the definition),
we provide concentration properties of p through observables which depend on
the dynamics. As it is sometimes the case in previous studies, our starting point
is to assume that the pair (u, ") satisfies a convenient functional inequality such
as Poincaré or the entropic inequality. We refer to the notes of Ledoux [34] for
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precise credit and historical references for this large body of work. Such functional
inequalities, which are verified by a wide variety of examples, are closely related
to the long-time behaviour of the process. In particular, this approach offers an
unified treatment of Markov processes on continuous and discrete space settings
even if, in essence, these two situations are rather different from each other. In
both cases the carré du champ refers to a natural distance related to the dynamics
and, within this notion of distance, the Lipschitz observables under which Gaussian
concentration estimates are obtained are the ones with a bounded carré du champ,
that is to say the space Lipp(X) of functions f such that I'(f, f) is bounded.
However it is quite common in applications to need a control of the concentration
through non-Lipschitz observables. Then a natural question arises: which type of
measure concentration can we obtain beyond the space Lipp(X) 7 In particular in
discrete space settings, such a study basically makes sense on an unbounded state
space X. Using the notion of Ricci curvature for Markov chains (the so-called
Wasserstein curvature in continuous-time), a first result of this kind was given by
Ollivier [37], in which he obtains concentration bounds involving a mixed Gaussian-
exponential regime, i.e. a(r) is quadratic/linear for small/large deviation level r.
In our language, he requires that the carré du champ I'(f, f) belongs to the space
Lip(X). Despite this interesting and new result, which is sufficiently robust to be
extended to additive functionals, see e.g. [30] and [31], it seems to the authors
that there is no satisfactory treatment yet to this question and we hope to give
(the beginning of) an answer to this problem with the present article.

Our idea is to use a Lyapunov condition on the observables. Namely we will
consider the class Ly (a,b) of observables f such that

F(f7f)§_a£‘;/+b7

where a,b are two positive constants and V' is a convenient test function. Our
Lyapunov condition is somewhat different from the classical ones which have been
successfully used for proving various types of functional inequalities, cf. [2, [13]
14 25] and for concentration estimates of additive functionals, see for instance
[12, 22 [17], since it applies directly on the observables. When a vanishes the
class Ly (a, b) reduces to the space Lipp(&') and the classical concentration results
apply, cf. [34]. In particular, the behaviour of the carré du champ T'(f, f) depends
now on the growth of the term —LV/V, which has no reason to be bounded.
Certainly, there is a price to pay for such an improvement: the concentration for
large deviation level r is no longer Gaussian but only of exponential type under
this class of observables.

The paper is organized as follows. In Section [2, we recall some basic material
on Markov processes and functional inequalities. Two types of processes are con-
sidered in our study: diffusions and pure-jump Markov processes. Next we state
in Section [3] our main results of the paper, Theorems and in which some
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mixed Gaussian-exponential concentration properties of u are obtained through
observables satisfying the Lyapunov condition above and under the assumption of
a convenient functional inequality satisfied by the dynamics (u,T"). As a result,
such new concentration inequalities extend the classical estimates obtained when
the observables belong to the space Lipp(&X'), corresponding to the case where a
vanishes. Finally, Section 4| is devoted to numerous examples in continuous and
discrete settings.

2. PRELIMINARIES

2.1. Functional inequalities. Let (X, d, ) be a metric probability space en-
dowed with the corresponding Borel o-field #. Denote Ay a suitable algebra of
real-valued functions defined on X" and let A be an algebra extending Ay, contain-
ing the constants, being stable under the action of smooth multivariate functions
and such that for any f € A, we have fg € Ay for any g € Ay. In the sequel
we denote LP(u) := LP(X, %, ) for p € [1,00]. One of the main protagonists of
the present paper is the carré du champ I', which is a bilinear symmetric operator
defined on A x A by

M(f0) = 5 (£(fo) ~ FLg—9Lf).

where £ is an operator defined on A which is assumed to be symmetric on A
in L?*(1). As mentioned in the Introduction, there is a natural pseudo-distance
associated to the operator I' which can be defined as

dr(z,y) = sup{|f(2) = fW)] : f € A D, Al <1}, 2y € X,

Although this distance can be infinite, it is well-defined in the situations of interest
and carries a lot of information. In the sequel, we denote Lipp(X') the space of
Lipschitz functions with respect to dr. Certainly, there is no reason a priori that
the space Lipp(X) coincides with the usual Lipschitz space Lip(X), i.e. the space
of Lipschitz functions on X with finite Lipschitz seminorm with respect to the
given distance d,

|f(x) = f(y)]

|fllLp = sup———""" < oc.
P TFY d(l’,y)

Consider the pre-Dirichlet form defined on Ay x Ag by
Eulfrg) = / I'(f,9)dp = —/ fLgdpu = —/ g Lfdp.
X X X

We assume in the remainder of the paper that this form is closable, that is, it
can be extended to a true Dirichlet form (still denoted £,) on a domain D(€,,) in
which A is dense for the associated norm

1£lle = /1S 1320 + Eull ).




4 ARNAUD GUILLIN AND ALDERIC JOULIN

In other words, the space Ag is a core of the domain of the Dirichlet form. In
particular, the Donsker-Varadhan information of any probability measure v on X
with respect to the invariant measure p is defined as

1(v]p) :z{fu (VIVT) i dv=fdu, T €D(E,);

00 otherwise.

Denote (£, Ds(L)) the self-adjoint extension of the operator (£, .4y) corresponding
to the generator of a strongly continuous symmetric Markov semigroup (P;);>o on
L*(p).

In the probabilistic language, we have an X'-valued cadlag ergodic Markov pro-
cess {(X¢)t>0, (Pz)zex } defined on a filtered probability space (2, .#, (F)i>0, P),
with reversible invariant measure (or stationary distribution) pu. A key point in
the forthcoming analysis is that the functional v +— I(v|u) defined above is noth-
ing but the rate function governing the Large Deviation Principle in large time
of the empirical measure of (X;);>o. However in the non-reversible case, it is
given by a contraction form of the Donsker-Varadhan entropy which is different
from the Donsker-Varadhan information, so that our study will not extend to the
non-symmetric case, unfortunately.

Now let us introduce the functional inequalities we will focus on in the paper.
Given an integrable function f € L'(u), we denote u(f) := [y fdu. Let I be an
open interval of R and for a convex function ¢ : I — R we define the ¢-entropy of
a function f: X — I with ¢(f) € L'(u) as

But?(f) == u(6(f)) — & (u(f).

The dynamics (u,I") satisfies a ¢-entropy inequality with constant Cy > 0 if for
any /-valued function f € D(€,) such that ¢'(f) € D(E,),

CoBnt(f) < 5 Eulf, 6(F))

See for instance the work of Chafai [16] for a careful investigation of the properties
of ¢-entropies. The latter inequality is satisfied if and only if the following entropy
dissipation of the semigroup holds: for any I-valued function f such that ¢(f) €
LY(p),

Ent)(P,f) < e ' Ent{(f), t>0.
In this paper we will consider three cases:

(i) the Poincaré inequality: ¢(u) = u* with I = R and the ¢-entropy inequality
rewrites as

AVar, (f) < €, (£, ). (2.1)

where the variance of f under p is given by

Var,(f) == p(f?) — n(f).
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The optimal constant A\; (say) is nothing but the spectral gap in L?(u) of the
operator —L, i.e. its smallest non-zero eigenvalue. Estimating A; allows us to
obtain the optimal rate of convergence of the semigroup in L?(1).

(1) the entropic inequality: ¢(u) = u logu with I = (0,00) and the ¢-entropy
inequality is given by

pEntu(f) <&, (f,log f), (2.2)
where the entropy under p of the smooth positive function f is defined by

Ent,(f) == pu(f log f) — u(f) log u(f).

We have skipped in the inequality the constant 1/2 for convenience in future com-
putations. Once again, the best constant pg in (2.2)) gives the optimal exponential
decay of the entropy along the semigroup.

(7i1) the Beckner-type inequality: ¢(u) = w? with p € (1,2] and I = (0,00). We
have in this case

o (u(f?) = () < SE(F57). (2.3)

Estimating «, gives the optimal rate of convergence of the semigroup in LP(p).

The entropic and Beckner-type inequalities (in the case 1 < p < 2) are stronger
than the Poincaré inequality (apply these inequalities to the function 1+ ¢f and
take the limit as € — 0). Moreover it reduces to the Poincaré inequality if
p = 2, whereas dividing both sides by p — 1 and taking the limit as p — 1 we
obtain the entropic inequality .

In this paper we will mainly consider two general classes of reversible Markov
processes: diffusions and pure jump Markov processes, to which we turn now.

2.2. Diffusion processes. A diffusion process on the Euclidean space X = R?
corresponds to a path continuous Markov process on R? whose generator £ is a
second order differential operator defined initially on A := C*(R?), the space of
infinitely differentiable real-valued functions on R%:

Lf(x)= Z a;;(z) afia];j (x) + Zb,(x) gi (z), z€R%

=1

Here £ is assumed to be symmetric on Ay := C° (Rd) with respect to some proba-
bility measure p, where C3°(R?) is the subspace of C*°(R?) consisting of compactly
supported functions. Moreover a := ooc* is a measurable and locally bounded
function from R? to the space of d x d symmetric positive definite matrices with
smooth entries, ¢* being the transpose of the matrix ¢, and the measurable drift
b: RY — R? is also assumed to be smooth. In this case the carré du champ is
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given by

d af o
F(f7g) = Z ai,j(z%f(%f

,j=1

= <o'Vf,0"Vg >,

where < -,- > stands for the Euclidean scalar product in R? and V is the usual
gradient operator. In particular when o is the identity matrix, the spaces Lip(Rd)
and Lipp(R?) might be identified.

In contrast to the jump case introduced below, I' is a differentiation, i.e. for any
functions (fy)i1<k<n, f in C°(R%) and any smooth enough function ¢ : R” — R,

NUTRBNANIES S-S RS 2.4)

Due to this chain rule derivation formula, the entropic inequality (2.2)) rewrites in
the diffusion case as the famous log-Sobolev inequality

pEnt, (/) < 4E,(/, 1), (2.5)

which is the original inequality (up to the extra factor 4) derived by Gross [24]
to study hypercontractivity of the underlying semigroup. When we will consider
diffusion processes in the sequel, we will use the terminology “log-Sobolev inequal-
ity” instead of “entropic inequality”.

On the other hand, letting p = 2/q for ¢ € [1,2) and f = g%, the Beckner-type
inequality rewrites as the so-called standard Beckner inequality:

assg (1(9%) = 1(g")*?) < (2= 9) €9, 9)- (2.6)

Such an inequality was introduced by Beckner [3] for the Gaussian measure. In
particular, the limiting case ¢ — 2 recovers the classical log-Sobolev inequality.
Note however that the inequality (2.6 is weaker than the log-Sobolev inequality,
cf. [33].

2.3. Markov jump processes. Dealing with a pure-jump Markov process, the
generator L is defined on the space A of real-valued bounded functions on the
discrete space X’ by

Li@) = [ (F) = @) Quldy). @€ X,

where the transition kernel x — (@), is a measurable mapping from X’ to the set of
Radon measures on X endowed with the corresponding Borel o-field, and which
satisfies the following stability assumption:

/X Q(dy) < oo, zelX, (2.7)



CONCENTRATION OF INVARIANT MEASURES 7

so that the process is piecewise constant. If the transition kernel has finite sup-
port then one can take for A the space of all real-valued functions on X. Here,
reversibility means that the following detailed balance condition is satisfied:

Qa(dy) p(dx) = Qy(dx) p(dy). (2.8)
The carré du champ operator I admits an explicit expression given for any f,g € A
by

D70 = 5 [ ()~ F(@) (o) — 9(a)) Quld),
and we have
D@ =5 [ ()~ F@) Quldy).

In particular, the spaces Lip(&X’) and Lipp(X') have no reason to coincide since the
kernel of the generator may be unbounded, i.e.

sup | Q. (dy) = . (2.9)

TEX

Finally the pre-Dirichlet form is defined initially on the space Ay C A of functions
with finite support and after extension the Dirichlet form is given for any f,g €
D(&,) by

Eufio) = 5 [ [ ()~ @) (9(y) ~ 9(e)) Quld)n(ar)
=[] (W= @) (o) - (=) Quldy)pldz).
f(@)>f(y)

where in the last line the reversibility is used. In our jump framework, the entropic
inequality corresponds to one of the so-called modified log-Sobolev inequali-
ties introduced by Bobkov and Ledoux [7]. However, due to the lack of chain rule
for discrete gradients, this inequality is different from the discrete version of the
log-Sobolev inequality , and the same remark holds between the Beckner-type
inequality and the standard Beckner inequality . We refer to [21], [7, [10]
for historical and tutorial references on these discrete functional inequalities, to-
gether with a hierarchy of the various modified log-Sobolev inequalities.

3. MAIN RESULTS

In this paper, we emphasize a dynamical point of view on the concentration of
measure phenomenon. As announced in the Introduction, we obtain concentration
properties of the invariant measure p through observables which are not required to
belong to the spaces Lip(X) nor Lipy(X'), but which satisfy a Lyapunov condition.
In order to state this condition properly, let us introduce first the extended domain
of the generator. Denote the probability measure P,(-) := [y P.(-) v(dz) where
v is an arbitrary initial probability distribution. Recall that if X’ is discrete then
any function from X to R is continuous. A continuous function f is said to belong
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to the extended domain D, (L) of the generator L if there exists some measurable
function g : X — R such that for any t > 0, [;|g9(X,)|ds < oo, P,-a.s. and the
process

M = f(X) ~ f(%0) — [ g(X.)ds, 120,

is a local P,-martingale. In this case we write f € D.(L£) and Lf = g.

The first result on which our analysis is based is closely related to the theory of
large deviations, see for instance [25], Lemma 5.6 for a proof in the general case
of reversible Markov processes.

Lemma 3.1. For any continuous function 1 <V € D (L) such that —LV/V is
bounded from below p-a.s., we have for any probability measure v on X,

j&f——liffciy < I(v|p). (3.1)

Now we are able to state the Lyapunov condition we will focus on along this
paper.

Definition 3.2. Let a,b be two positive constants and let V' € D.(L) be a test
function with values in [1,00). A function f € Dy(L) belongs to the class Ly (a,b)
if the following inequality is satisfied pi-a.s.:

FUJ)g—aﬁY+b (3.2)

Remark 3.3. In the examples of Section [4 the test function V will always be
chosen sufficiently smooth and close to be non-integrable with respect to . Indeed
it allows us in general to consider the largest possible ratio —£V/V and thus the
largest possible class Ly (a,b) of observables for which our concentration results
will be available.

Remark 3.4. The Poincaré inequality can be seen as a minimal assumption in
our study of concentration by means of the Lyapunov condition . Indeed,
if there exists a function f € Ly (a,b) such that T'(f, f) is lower bounded by a
positive constant at infinity, and this the case in the main examples of interest
(except in the Cauchy-like case appearing briefly in Section , then the Poincaré
inequality is satisfied, cf. [I5]. Moreover, integrating with respect to u both sides
of the inequality and using the Poincaré inequality yield Var,(f) < b/A;. In
other words the constant b/A; plays the role of the variance of the observable f in
our work.

Before stating our first main result, let us provide a key lemma. In the remainder
of this paper, we only give the proofs in the jump case since the diffusion framework
requires no additional difficulties and is even simpler, according to the chain rule
derivation formula satisfied by the carré du champ.
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Lemma 3.5. Let [ belong to the class Ly (a,b). Given X € (0,2/+/a), let py be
the probability measure with density fy = e /Z\ with respect to u, where Zy is
the appropriate normalization constant, which is assumed to be finite. We assume
moreover that \/fx € D(€,). Then we have the inequality

2

2D 2
I < — A< —.

Proof. Since f € Ly(a, b) we have for any A € (0,2/+/a):

Tl = 5 | / = W) Q dy)(da)
fl@)>f(y
_ // (1—e )f(y”/2) (@) Q.(dy)u(dz)
f@)y>f(y
)\2
<5 /X T(f, ) dps

A2 LV
< M (a2 n) g
= 4/;c(av+>‘“

2

< 7 (al(malp) +0),
where in the last line we used Lemma Finally rearranging the terms allows us
to obtain the desired inequality. [ ]

We turn now to our first main and new result which exhibits a non-Gaussian
concentration estimate through observables belonging to the class Ly (a,b). Due
to the approach we will use, the numerical constants in the estimates below have
no reason to be sharp.

Theorem 3.6. Assume that the pair (1, ) satisfies the entropic inequality .
Let f € Ly(a,b) and let
8b
Tmax ‘=
3pov/a
be the size of the Gaussian window. Then the invariant measure pu has the following

concentration property: for any deviation level 0 < r < ryn., the deviation is of
Gaussian-type:

W({e € X fl@) - p(f) > 1)) < exp (—3ng2) , (33)

and for any r > Tmax, the decay is exponential:

W({r e X f(e) — ulf) > r}) < exp (—

2\%) , (3.4)
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Remark 3.7. In the sequel, a concentration property such as (3.3)-(3.4) will be

called Gaussian-exponential concentration.

Proof. Denote Ly := A\~!log Zy, where Zy := [y e du, with A € (0,1/y/a), and
let sz, be the absolutely continuous probability measure with density fy := e /Z,
with respect to . Using a standard approximation procedure one may assume
that the observable f € Ly (a,b) is bounded so that Z, < oo and /f\ € D(E,).
The following proof is a modification of the famous Herbst method popularized by
Ledoux. Using the entropic inequality (2.2)),

d 1

aL,\ = )\2ZAEntu(e’\f)
1
< poz; 5 V)
_1//(ﬂ _ 1 — oM@ =F®) du)uld
- = 2~ Jy) (1-e ) (@) Quldy)p(dr)
PO b5 tw)
1
< pO/X/XF(f,f)dm
1 LV

< 2 [ (=22 @d
T Po X<QV+ i
1
< — (al(palp) +0),
Po

where we used that f € Ly (a,b) and then Lemma (3.1 in the two last lines. Thus
Lemma [3.5] entails the inequality

A\ T 3p, Ja

and therefore the following log-Laplace estimate is available for any 0 < \ < ﬁ:
4b)\?

1 / Modu < A . 35

og | e du< Mﬁ+3m (3.5)

Finally using Chebyshev’s inequality and optimizing in A € (0,1/y/a) yields the
tail estimates (3.3) and (3.4). The proof of Theorem is thus complete. O

Remark 3.8. Two deviation regimes appear, Gaussian and exponential, with
continuous transition from one to the other. In contrast to the classical Herbst
method where the observables belong to Lipp(X), i.e. @ = 0 in the Lyapunov
condition , our assumption allows us to go beyond this Lipschitz property.
Although the Gaussian concentration is preserved for small deviation levels, this
feature is lost for large r and is replaced by an exponential tail which reveals to
be sharp, as it will be developed in the examples of Section 4.
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Remark 3.9. By the Central Limit Theorem, the order of magnitude in the
Gaussian regime is correct in terms of all the parameters of interest. Since the
entropic inequality entails a Poincaré inequality, we have py < A; and thus for any
observable f € Ly (a,b), we get Var,(f) < b/po. Therefore, if X is a product space
and the process (X;);>0 has independent and identically distributed coordinates,
then under the observable f(z) := Y¢_, ¢(z1), v = (1,...,74) € X, we obtain
the following concentration

3p0r2> ’ 0 < 86\/8

,u({xe)(:f(az)—u(f) >r\/;l}) < exp (— T <

r
~ T 3peva’
which is sharp for large d. Here the important point is that the positive parameter
b, given by the Lyapunov condition on the univariate function ¢, is independent
of d.

Remark 3.10. The most naive approach to obtain concentration of measure un-
der a given non-Lipschitz observable f is controlling f by a monotone function of
a Lipschitz function and then making a change of variable of the deviation level
in the concentration estimates. For instance if the concentration under Lipschitz
observables is Gaussian then it is of exponential type under quadratic like ob-
servables. However this naive approach is not always feasible since this method
requires monotony, and when it is, one obtains the correct order of magnitude for
large deviation levels but without the sharp dependence with respect to the impor-
tant parameters, in particular if the expectation of f is not explicitly computable.
Therefore one deduces that in most of the cases of interest such an approach is
not convenient.

Remark 3.11. The method is sufficiently robust to get, for large deviation level r,
other regimes than exponential under particular observables. For example, assume
that we consider f € Ly (a,b) such that T'(f, f) < —aLV/V + b but that there
exists two functions ¢, : (0,00) — (0, 00) such that for all € > 0,

L(f, f) < é(e) (—a EVV + b) + 9(e).

Then plugging this estimate in the previous proofs of Lemma and Theorem
one has for all € > 0,

2

A
I(ualn) < - (ag(e)I(palpe) + 09 (e) + (e)) .-
Optimizing in € > 0 enables to get for some function @ : [0,00) — [0, 00] and all
A>0,
I(palp) < @(N),

leading then to super-exponential regime for large r. We will illustrate this on an
example in Section 4.
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Inspired by the method of Otto and Villani [38], who studied the links between
log-Sobolev and transportation inequalities on continuous spaces (see also Sammer
[40] in the finite state space case), let us recover Theorem [3.6]by using a semigroup
proof. Once again we focus our attention on the jump case. Let h be a smooth
density with respect to p. Given ¢ > 0, denote 1, the probability measure with
density P;h with respect to . We assume that the Donsker-Varadhan information
I(v|p) is well-defined, i.e. \/B,h € D(E,). Using Cauchy-Schwarz’s inequality and
then reversibility,

EuPh ) = 5 [ [ (Ph(e) - Ph) ()~ 1) Quldy)n(ar)

< I(nlp) ﬁ /X /X (JPth(x) + \/Pth(y))2 (f(x) = (1) Qu(dy)p(d)

< 2VU%WM/ L(f, f) dwy

< \/Tm\// a+b> dv,

< 2\/[ (e|pe) \/a[(l/t]u)—i—b,

where in the two last lines we used that f € Ly (a,b) and then Lemma [3.1] Using
now the elementary inequality 2(a — b)? < (a* — b?)log(a/b) available for any
a,b > 0 and then the entropic inequality (2.2)), we get

Vva b
P, < Pih,log P, —
Eu(Beh f) < Eu(Bih,log Fih) ( 2 T\ E(Pilog Pih)
va |0
< Pih,log Ph) | —— = o |-
< gu( vh, log Pih) ( 9 + poEntu(Pth)
Integrating time between 0 and infinity entails the covariance inequality:
Cov,(f,h) == pu(fh) —p(f) uh)
_ / J(Poh, f) dt
Va b
< (Pih,log Pih) | o+ \| =57~ | dt
— / t Og t ) ( 2 + pOEntu<Pth)
_ £ nt,(h) + M
Po ’

which in turn yields the inequality
a(Cov,(f,h)) < Ent,(h),
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where « is the function

por’
= > 0.
a(r) 4b + 2pgr/ar’ "
Finally using Theorem 3.2 in [23], we obtain the following concentration estimate
through the observable f € Ly (a,b):

p{zed: flx) —plf) >r)) < exp(=a(r)), r=0

One deduces that, up to numerical constants, this result is similar to that empha-
sized in Theorem since for small deviation level, a(r) = O(por?/b) whereas
a(r) = O(r//a) for large r.

As we have seen above, the entropic inequality entails on the one hand
a concentration property for the invariant measure p through observables f &€
Ly (a,b). On the other hand and as announced in Remark the Poincaré in-
equality can be seen as a minimal assumption in our study. Hence one may won-
der if the Beckner-type inequality , which interpolates between both, provides
qualitative concentration estimates through observables in Ly (a,b). Our second
main result, Theorem [3.12] goes in this way.

Theorem 3.12. Assume that there exists p € (1,2] such that the pair (u,I")
satisfies the Beckner-type inequality . Moreover, assume that the observable
f € Ly(a,b) with the restriction o, < 2b(p — 1)/(3pa) and let

32bp
27(p — Doy,

Tmax L

Then the following tail estimates hold: for any deviation level 0 < r < rpax,

W({e € X fl@) - p(f) > 1)) < exp (—93‘;;“2) , (3.6)
whereas for any v > ryax,
ulle € 2510~ uth) = ) <o (—r ).

Proof. The proof is adapted from the method of Aida and Stroock introduced in
[1]. Assume without loss of generality that f is centered and bounded and for any

A € (0,)\g), where
3pa 1
Ay 1= 4 — 2P <«
V-1 T Ve’

denote once again 7, := [, e du which is finite and let u, be the probability
measure with density f := e* /Z, with respect to u, which satisfies \/fx € D(E,.).
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We have by the Beckner-type inequality (2.3)) applied to the function e*/?,

7\ —Zf/p < QLSH( MNP A1) )
— Af(&? “Af@)=fW)/p) (1 —
2ap // )(
f(@)>f(y)
Np-1)Z
< A0 V5 T r(r
Py, X
)\Q(p—l)Z,\ LV
< —= —a——+0b) d
- 2pay, /X( V i ) Ha
N(p—-1)Z
< 20=DD ) +b)

2poy,

A 2
< |— | Z
>~ <)\0> As

e~ 1=1/p)(f ()~

O)) Q. (dy)p(dx)

where we used that f € Ly (a,b) and Lemmas in the last three lines. Hence
rearranging the terms above and iterating the procedure yields for every n > 1,

k

n—1 )\g p .
S H(A%—A?/p”“) Do)’

Since f is centered, the quantity Zf;pn goes to 1 as n — oo and from the latter

inequality we obtain after taking logarithm,

log Z, < Zp log (1 — ()\/AO) )
p**
00 p2k+1 ()\/)\O)Q(k—f—l)
S pHl ] k+1
S —

S (2))

In the last inequality we used the trivial inequality p?*+!

< () 07 -

p—1

)

available for any integer k because p € (1,2]. We thus obtain for any 0 < A < \g/2,

A2 p/(p—1)
7y < 14+ ———
s ( *Aa—A2>

50—

IN
D
"
e}
/N
=
=
W
|3
=15
S~—
>~
[\
~—
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Finally using the exponential Chebyshev inequality and optimizing in A entails the
desired result. [ ]

Remark 3.13. Taking r = ry., in the inequality above entails the upper
bound exp(—p/3(p — 1)) which is independent of all the parameters of interest. In
other words there is essentially no Gaussian window since we obtain 7., = O(v/D)
instead of the correct order of magnitude O(b). But this issue was expected:
our proof is adapted from the method of Aida and Stroock, which is known in
the classical case of Lipschitz observables (i.e. the case a = 0 in our Lyapunov
condition) to capture the optimal concentration behaviour only for large deviation
levels. Although we worked quite a bit to obtain the expected Gaussian decay
for small deviation levels (through a modified entropic inequality in the spirit
of Section 3 of Bobkov and Ledoux [6]), it seems that Theorem still leaves
room for improvement, in particular the assumption relying a,, to the parameters
a, b which is technical but cannot be avoided for the moment (however it will be
satisfied as soon as b is taken sufficiently large, or a small enough).

Remark 3.14. As already mentioned, the Beckner-type inequality is stronger
than the Poincaré inequality, i.e. a;, < A;. However Theorem does not entail
a better concentration estimate than that obtained under the Poincaré inequality,
except maybe when focusing on the constants depending on p (this is clearly not
our interest here). The reason is due to the approach emphasized above which is
exactly the same for any p € (1,2], in contrast to Theorem where the Herbst
method is used.

4. EXAMPLES

4.1. Diffusion processes. Let us apply now Theorems [3.6] and to diffusion
processes. In this part, the function U is a smooth potential such that e~V is
Lebesgue integrable, and denote p the Boltzmann probability measure with den-
sity eV /Z with respect to the Lebesgue measure, where Z is the appropriate
normalization factor.

The first example of interest is the so-called Kolmogorov process with generator
given for any f € C*(R%) by
Lf=Af—<VUVf>.
One easily checks that p is reversible for this process and the carré du champ
is T'(f, ) = |Vf||> where || - || stands for the Euclidean norm in R%. Hence by

Rademacher’s theorem, the spaces Lip(R?) and Lipp(R?) coincide. Moreover the
domain D(E,,) of the Dirichlet form is H'(u).

4.1.1. Ornstein-Uhlenbeck process and the standard Gaussian distribution. Let us
consider first the Ornstein-Uhlenbeck process which is a special case of the Kol-
mogorov process with potential U(x) = |[z]|?/2. It has the standard Gaussian



16 ARNAUD GUILLIN AND ALDERIC JOULIN

distribution as invariant measure. By the famous Gross theorem [24], the pair
(u,T') satisfies the log-Sobolev inequality, i.e. the entropic inequality with (opti-
mal) constant py = 2. Hence Theorem will apply for observables in Ly (a,b)
for some good test function V. For instance if f(z) = ||=||?, then choose the test
function V = eV with ¢ € (0,1), i.e. V is at the boundary of non-integrability.
Then we have

LV (z)

V(x)
Thus with the choice ¢ = 1/2 we get f € Ly(a,b) with a = 16 and b = 8d and by
Theorem [3.6] we obtain for any 0 < r < 8d/3,

2
p({zeR: 2> >d+r}) < exp <_3T> :

—cd +c(1 —¢) |||

which is sharp up to a numerical constant since in this case Var,(f) = 2d. In the
exponential regime we get for any r > 8d/3,

n({z €RY: ol > d4r)) < exp (‘2) .

Actually, such a behaviour is expected since under pu, the variable f(z) is dis-
tributed as a chi-squared random variable with d degrees of freedom, for which
the decay is known to be only exponential for large deviation levels. Moreover
we mention that we are in the (rare) cases where the naive approach discussed in
Remark [3.10]is convenient. Denoting the expectation m := [pa ||z|| u(dz), we have

p({reR: z?>d+r}) = p({z eR: |z —m > Vd+r—m})

(L)

< exp ;
an estimate which can be transformed into a similar Gaussian-exponential con-
centration as above. Here we used Cauchy-Schwartz’ inequality to get m < v/d
and then the classical Gaussian deviation estimate satisfied by Lipschitz functions.
The reason for which this naive method is sharp resides in the following facts: on
the one hand the observable z + ||z]|? can be written as an increasing function of
a (non-negative) Lipschitz function and on the other hand replacing the mean m
by v/d is optimal in large dimension since standard computations yield
_ a2 I'((d+ 1)/2)’
I(d/2)

which behaves like v/d for large d (together with Cauchy-Schwartz, an alterna-
tive proof is to apply the Poincaré inequality to the function x — ||z|| to obtain
m > +/d —1). Despite its simplicity, it reveals that the naive approach requires
restrictive arguments which are hardly satisfied in the cases of interest.



CONCENTRATION OF INVARIANT MEASURES 17

Let us come back to the example announced in Remark As observed above,
our concentration result is convenient as soon as f is close to realizing the equality
in the Lyapunov condition (3.2)). However what happens for a function g such that
Vgl < IV S| at infinity ? For instance if f(z) = ||z||* as above then how does
the invariant measure concentrate through the observable g(x) = ||z||*/? ? Let us
investigate this point in detail now. Although the method we use below applies in
the Gaussian case, we mention that it works in a more general framework. Assume
that f € Ly (a,b) and that there exists an observable g satisfying for any ¢ > 0,

1
IVgll* < EIIVf||2+g- (4.1)

Denote a. := ae and b, := be + 1/e. Using the argument given in the proof of
Lemma (3.5, we have for any A > 0,
2

e A
](MA’M> < égg Z (ae](/bxllu) + bs)

)\2
= 5V al (palp) + b,

where in the definition of I(uy|u) we replaced f by g. Hence we obtain
A2 [a)l?
I(lp) < B <2+\/l_7> :

Now the same argument as in the proof of Theorem together with the latter
inequality entail

d o1
JL)\ < ;gg % (aal(u,\m) + ba)

2
= —Jal(palp) +b
Po
2 A2
< 2 (“ + \/6> ,
po \ 2
since y/z(z +y) + y? < x +y for any x,y > 0. Hence we get for any A > 0,

Ag 2 [a\* )
log/Xe du < Au(g) + — ?+)\\/5

Po
4 A4

< Au(g) + — max (a’ )\2\/1_9> .
Po 6

Finally using the exponential Chebyshev inequality and optimizing in A entails for
small deviations the Gaussian-type estimate

2 3/4
u({e € R g(a) - ulg) > 7)) < exp(—pO ) ogg%,
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whereas for large deviations,

p({reR: g(z) —p(g) >r}) < exp (— (6[)0

a

1/3 7,4/3) 8/6 13/4
R L

4 pov/a

Hence we have improved the decay in the concentration estimate for large deviation
level r since it is no longer of order exp(—cr) but of order exp(—cr®/3). In terms of
small deviations, the parameter v/b appears in the exponential at the denominator
instead of b. But this is expected since by Poincaré inequality, the inequality
and the assumption f € Ly (a,b), we obtain the following estimate on the variance
of g¢:

e>0

2
< = 24
< L eI

2vb
S
Coming back to our example, if f(z) = ||z||> and g(z) is proportional to ||z||*/?,
then as observed before we have f € Ly/(16,8d) with V(z) = el*I*/* and moreover

(4.1)) is satisfied. Then we obtain the following inequalities: for small deviations
0 <r<+6(8d)%1,

2
reRY: x3/2—/ z|>? u(dz >r) < e <— ! ),
(e B a2 = [ el ) > 1) < e (T

1 /. 1
Vary(g) < (infe [ IVt )

<

and for large deviations r > /6 (8d)%/4,

4/3
p(f € R ol = [ 2 i) > r}) < e (—31/3 () )
R

Now let us consider another type of observables. Take f as a quadratic form
on Rd, i.e. there exists a positive definite symmetric matrix A = (a;;); j=1,..4 of
size d such f(z) =< Az,z >, x € R?. Then in the Gaussian regime we expect the
variance of f in the denominator,

d d
Var,(f) = 2 Z a?’j =2 Z/\?,
ij=1 i=1

where ()\;) are the real eigenvalues of the symmetric matrix A. In other words
Var,(f) is nothing but 2 times the square of the Hilbert-Schmidt norm |[|A|us
of the matrix A. Using the same test function V as before would entail that
f € Ly(a,b) with a = 16]|A||Z, and b = 8d||A[]2,. Here ||Allo, denotes the
(Euclidean) operator norm of the matrix A, i.e. its spectral radius, max; A;. With
this choice of parameters the inequality Var,(f) < b/p is too weak to provide



CONCENTRATION OF INVARIANT MEASURES 19

a reasonable variance estimate since b behaves badly in terms of dimension. To
obtain a qualitative concentration estimate, the idea is to change the test function
and choose V (z) = el4#I* with ¢ > 0 to be fixed later to ensure the integrability
of V with respect to the Gaussian measure p. Then we have f € Ly (a,b) for some
constants a and b if and only if for any y € R?, the following inequality holds:

d
4a022)\ y? < 2(ac—2 Z)\Q Z4+b—2ac Y N

i=1

After a bit of analysis, choosing ¢ := 1/4||A||3,, the same a as before and

d d
= 2ac Z)\f = 82/\?,
i=1 i=1

we get f € Ly(a,b) and applying then Theorem [3.6| we obtain the following
concentration estimate: for any 0 < r < 8||A||%g/3]|Allop,

3r?
1 ({:1: eRY:< Az, z > —/ < Az,x > p(dx) > r}) < exp <—> ,
R 64| Al

whereas for any r > 8|| Al|&s/3]| Allops

u({x € R :< Az, x> —/ < Az,x > p(dr) >7“}> < exp (_r) :
R 8[| Allop

This example emphasizes the importance of the choice of the function V' in the
condition Ly (a,b). See also for instance [26, B32] for some nice studies on the
concentration properties of Gaussian-like quadratic forms and Gaussian chaoses.

4.1.2. Kolmogorov process and the Boltzmann invariant measure. Recall that the
Boltzmann probability measure ;. has density proportional to e~V with respect to
the Lebesgue measure and is reversible for the Kolmogorov process with generator

Lf =Af—<VUVf>.

To begin, assume that the measure p is spherically log-concave, i.e. there exists
a C? function ¢ : R, — R, convex non-decreasing with ¢(0) = 0 and such that
U(z) = ¢(]|z||) for any z € R By a famous result of Bobkov [5], the dynamics
(1, ') satisfy (at least) a Poincaré inequality. Let us consider the potential U as
an observable and also the test function V' = eV which belongs to L'(u) for any
c € (0,1) since ¢ is convex. Assume that there exists a truncation level R > 0 and

M = M(R) € (0,1 — ¢) such that
AU()  (d=1) ¢ ([lz]) + ll=ll " (llz]])
VU (2)]]? ]l ¢ (ll[])

< M, |Jz||>R
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Since we have

—EV(x) = —C i C —C T 2
) = AU el - 9 [TV )]
et = 1) S e el + 1 - ) e,

one deduces that U belongs to the class Ly (a,b) with a = 1/¢(1 — ¢ — M), the
parameter b = b(R) being chosen conveniently on Bpg, the centered ball of radius

R in R% Actually one can take b as the maximum between 3a); (a quantity
appearing in the restriction of Theorem [3.12)) and

’(EV

0 SE +IVUIR) 1,
As a result, one can apply Theorem [3.12| to obtain the following concentration
estimate: for any 0 <r < \/646/27)\1,

Lo (p) '

i ({x eRY: U(z) — pu(U) > 7"}) < exp (_9)\1r > :
whereas for any r > 1/64b/27\;,
u({xERd: U(x) — u(U) >r}) < exp (—r\/?g\;) :

As mentioned in Remark [3.13] only the exponential decay is interesting since we
do not obtain the correct order of magnitude in terms of the variance of U in the
Gaussian window. See also the recent and elegant article of Bobkov and Madiman
[9] where a somewhat similar tail estimate is established via a different approach,
but with the sharp Gaussian regime.

Actually, spherically log-concave probability measures include the case of a po-
tential U such that U(x) = ||z]|® with 8 > 1. Since the case 3 = 2 has already
been considered, three different situations arise:

(1) the case = 1, for which only the Poincaré inequality is satisfied.

(17) the case B € (1,2): the standard Beckner inequality holds, cf. [33].

(i7i) the case f > 2: using Wang’s criterion [41], the log-Sobolev inequality is
then verified.

In these three cases, one may choose the following parameters:

1 1 d+8—2\"°
ci==, M:=>, a:=8 and R:=4YF 7+5 )
2 4 6]
provided the restriction d + 3 — 2 > 0 holds. Finally, if 5 > 2 then the parameter
b can be easily computed according to the previous choice, in contrast to the case

B € [1,2) for which U is not C? at 0. Therefore, an approximation procedure is
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required to obtain a convenient constant b in this non-smooth situation. To do so,
we apply the proof above with an increasing sequence of test functions V,, = eUr
converging pointwise to V', where U, is C? on R?. Then we use an easy perturbation
argument to get the standard Beckner inequality (or the Poincaré inequality in the
case § = 1) for the Boltzmann probability measure defined with respect to the
potential U,, and finally, we apply Fatou’s lemma in the concentration estimate
obtained for the observable U,,.

One may also extend the result to the case of a general potential U, when for
example a logarithmic Sobolev inequality holds. Let us assume for example that
the potential U is such that its Hessian matrix, denoted Hess U, is lower bounded
and that the following Lyapunov condition holds:

LV(2) < (—ei 2]* + &) V(z), z€RY

where ¢,¢o > 0 and V > 1 is C?. Then a logarithmic Sobolev inequality holds,
cf. [13], and one can apply Theorem for observables f such that the norm
of Vf(x) is controlled by ||z||, since in this case f € Ly (a,b) with a = 1/¢; and
b = ¢y/cy. For instance, the Lyapunov condition above will be verified if at least
one of the two conditions below is satisfied: there exist o € (0,1) and § > 0 such
that for sufficiently large x,

1-a)[[VU@)|* = AU(z) > Bll=[I* or <z, VU(z)>2> Blz|*

4.1.3. Log-Sobolev inequality for modified dynamics. Our last example concerns
the case where a log-Sobolev inequality does not hold for the classical dynamics
but for a slightly modified dynamics, both with the same Boltzmann invariant
probability measure p. We will focus here on the simple case U(z) = ||z||* for
1 < a < 2, so that the standard Beckner inequality (thus the Poincaré inequality)
holds for the classical dynamics (u, ), but not a log-Sobolev inequality. However
according to [I4], the following weighted log-Sobolev inequality holds:

Ent,(f2) < C [, (1+[l2*°) [V £(@)) u(de),

where C' > 0 is some constant depending on dimension d. Now consider the process
with the following generator:

L7 f =0 Af+ < V(0®) — 0*VU,Vf >,

where ¢ is some smooth function from R? to R. Once again the measure p is
reversible for this process, but the notable difference relies on the weight o2 in the
carré du champ, i.e. T9°(f, f) := o2 ||Vf||%, so that a Lipschitz function f may
have an unbounded carré du champ F"Q( f, f), in contrast to the example of the
Kolmogorov process studied above. In particular, the domain of the Dirichlet form
is a weighted H'! space, i.e.

D) = {f € L2(): [ o* IV AP dyn < oo}
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Letting now o(z)? := 1 + ||z||*~%, one observes that the weighted log-Sobolev in-
equality above rewrites as the log-Sobolev inequality for the new dynamics (u, F”Q).
Choosing the test function V (z) = e°I#I®  which belongs to L!(u) for any ¢ € (0, 1),
we have for any x outside a neighborhood of 0,

£02V(I) —a a— —a a—
TV —ca(d+a—2) (L+[|lz**)e)*7? + ae(L — ) (L + >~ ]~V

—ca(2 — a),

which behaves like a?c(1—c)||z]|* at infinity. Hence using the same reasoning as in
the case of the Kolmogorov process above, one deduces that observables f having
a gradient ||V f(z)|| controlled by [|z|*~! satisfy Theorem [3.6 In particular, the
observable f(z) = ||z||* belongs to this class, as expected: according to a result
of Latala and Oleszkiewicz [33], the measure p concentrates like exp(—cr®) for
large deviation level 7 through Lipschitz observables in Lip(R%). We point out
that our results might be made more precise by following the approach provided
in Remark . To that aim, one has to consider the functional inequality /,(a)
involved in Latala and Oleszkiewicz’s work [33], which is more general than the
standard Beckner inequality emphasized above.

In fact using the modified dynamics (u, F"2), one can even consider interesting
cases for which even the Poincaré inequality does not hold for the original dynam-
ics (u,I"). For instance consider the generalized Cauchy measure p with density
proportional to (1 + [|«]|*)7#, 3 > d/2. Such a measure satisfies some weighted
Poincaré inequality [§] as well as the following weighted log-Sobolev inequality
[14]:

Ent,(f2) < C [, (1+]l2]?) 1og (e + [l2]%) VS @)|* u(dz),  (42)

where C' is some positive constant depending on  and d. Letting
o(z)* == (1+ [[]*) log (e + [l]?) ,

then the weighted inequality (4.2]) rewrites as the log-Sobolev inequality for the
dynamics (p,7°°). Now let V(z) = 1 + ||z||* for some 0 < k < 23 — d, so that V
lies in L'(x). Then we have for any z outside a neighborhood of 0,

LTV (@) _ 2+ Jll)
V) e+ [l

1+ ||z|)?
i tog (e L)

+2k(8 — 1) log (e + [|z]*) ,

which is of order k(28 — d — k) log (e + ||z||*) for large ||z||. Then we obtain by
Theorem a Gaussian-exponential concentration estimate through observables
f having their gradient ||V f(z)| dominated by 1/||z||. Note that the function
f(z) = log (||z]|) belongs to this class of observables, leading to the well-known
heavy tail phenomenon satisfied by Cauchy-type measures, cf. [8]. Finally, we

= —k(d+k—2)
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mention that one can take profit of Remark to get intermediate concentration
regime for observables not saturating the Lyapunov condition.

4.2. Birth-death processes. Let us begin the study of jump processes by con-
sidering a simple but however non trivial example, namely birth-death processes.
Here (X:):>0 is a Markov process on the state space N := {0,1,2,...} endowed
with the classical metric d(z,y) = |v — y|, x,y € N. The transition probabilities
are given by

At + o(t) ify=x+1,
P, (X: =y) = S vut + 0o(t) ify=x-1,
11—\ +v)t+o(t) ify=x,
where limy ot 'o(t) = 0. The transition rates A and v are respectively called the
birth and death rates and satisfy to A > 0 on Nand v > 0 on N*:= {1,2,...} and

vy = 0, so that the process is irreducible. Although we assume that the stability
condition (2.7), which rewrites as

Ae +Vp <00, x€N,
is satisfied, the generator might be unbounded in the sense of (2.9), i.e.

sup A, + v, = oo.
zeN

The process is positive recurrent and non-explosive when the rates satisfy to

> )\0)\1"')\95_1 e 1 Vg Vg1
< d _ _— o e B — _=
2y, oo ad ) (e ) T

respectively. In this case the detailed balance condition ([2.8]) rewrites as
Arp{z}) = vep p({r +1}), x €N,

where p is the unique stationary distribution of the process given by

u({x}) = p({0y) T 2

y=1 Y

, T €N, (4.3)

1({0}) being the normalization constant. In the situations of interest, the death
rate v has to be bigger than A to ensure such criteria.

For any function f : N — R, the generator £ of the process is given by
Lf(z) = X (flz+1) = f@)+ve (flz 1) = f(z)), zeN,
and the carré du champ is

DA = 5 Do (a4 1) = f@) 4 (f 1)~ f@)P}, zeN

In particular, the Dirichlet form is given by

Eulf9) =2 A (fx+1) = f(2)) (9(z +1) — g(x)) n({z}),

zeN
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where f, g belong to the space D(E,,) of functions u : N — R such that £, (u,u) is
finite.

Let us recall two recent results on the concentration of invariant measures of
birth-death processes under Lipschitz observables in Lip(N). On the one hand,
under a convenient ergodic condition (a positive Wasserstein - or Ricci - curvature
of the process, both definitions referring more or less to the same object), Joulin
[29] gives some concentration estimates of Poisson-type (i.e. similar to the tail of
the Poisson measure) for processes with bounded rates A and v. On the other
hand, when we apply Ollivier’s result [37] to birth-death processes with positive
Ricci curvature, his Gaussian-exponential concentration property is available for
processes having (at most) linear rates A and v. As we will see below, Theorems|3.6|
and apply for observables f such that the associated carré du champ T'(f, f)
has a growth comparable to that of v. In particular when focusing on Lipschitz
observables in Lip(N), our concentration estimates hold without restriction on the
growth of the rates (except that induced by the functional inequalities assumed in
these two theorems), in contrast to the two aforementioned results of Joulin and
Ollivier. Note however that our results are not directly comparable to theirs since
the assumptions are not the same.

First let us provide some basic conditions which ensure an entropic or Poincaré
inequality. The following condition is due to Caputo, Dai Pra and Posta [11]
and has been recently recovered by Chafai and Joulin [I7] by using a semigroup
approach: if A\ is non-increasing and v is non-decreasing and there exists a > 0
such that

irellg Ao — g1+ Ver1 — Ve > @ (4.4)

then the entropic inequality is satisfied with constant «, or equivalently
po > «a. Such an assumption exhibits very asymmetric rates. More precisely, it
enforces the rates A and v to be bounded and super-linear, respectively, excluding
some interesting cases which can be however considered for the Poincaré inequality.
Indeed, Miclo [36] states that the spectral gap \; is positive if and only if

x—1
0= {i}) < , 4.5
ii?ém{k} lgxu{} 00 (4.5)

and in this case we have 1/0 > A\ > 1/46, i.e. Ay is of order 1/4. In particular, in
contrast to the entropic inequality, one may find examples satisfying the Poincaré
inequality with an unbounded birth rate A\. Now assume that the test function
V(z) := k% is in L'(u) for some constant x > 1 depending on A,v. Then an
observable f belongs to Ly (a,b) if and only if

a(k — 1)

F(fvf) < (V—I{)\)—f-b,
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showing that on a large scale the behaviour of I'(f, f) is controlled by the growth
of the death rate v. Certainly, the parameters a,b cannot be specified explicitly
without any other information on the observable f. According to this observation
and to make the link with the results of Joulin and Ollivier mentioned previously,
assume that the observable f € Lip(N). Then two extreme situations may appear
when the death rate v is unbounded:

(7) a small birth rate A, i.e. A is bounded. In this case one may choose the
following parameters to ensure that f € Ly (a,b):

o (1) g
2(k — 1) 2

(7i) a birth rate A\ of the order of v. Let g € N* and assume that A\, < cv, for
all x > xy, where ¢ € (0, 1) is some parameter. Then in order to get f € Ly(a,b),
one can choose for k € (1,1/c),

k(1 +¢)
2(1 —ck)(k — 1)’

A
and b:= H( v —i—ac‘;/) 110,20]

a =

14+ &k
1—cm H

1 0,20 .
e ool
In both cases (i) and (ii) there exist plenty of examples satisfying Poincaré in-
equality and thus Theorem m, whereas only the case (i) may satisfy the entropic
inequality and so Theorem [3.6] Of course b has also to be at least 3a); if only the
Poincaré inequality is satisfied (due to the restriction appearing in the statement of
Theorem [3.12)). For instance in the case (i), the desired Gaussian-exponential con-
centration result obtained from Theorem is the following: if the rates A and v
are respectively non-increasing and non-decreasing and satisfy the inequality ,
then for any observable f € Lip(N) and any deviation level r > 0,

p({z €N f(@) —plf) >r}) < exp (— min{g(f’j‘_l)%, ’{2;170}) . (4.6)

Here the parameter x > 1 is free and an optimization could be done to improve
the constants in the estimate.

To conclude with the birth-death example, let us focus our attention on a model
which mimics the diffusion case, namely ultra log-concave distributions on N, see
for instance [28, 11]. We say that a probability measure 1 on N is ultra log-concave
(resp. log-concave) if it satisfies for any x € N¥,

zu({z})? > (z+1) p({z+1}) p({z—=1})  (resp.  p({z})* > p({z+1}) p({z—1})).

For instance the Poisson distribution is ultra log-concave whereas the geometric
measure is only log-concave. Assume that the measure u has density e~V /Z with
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respect to the counting measure on N, where U is some nice function and Z is the
normalization constant. Denote AU the discrete Laplacian of the potential U, i.e.

AU(z) =U(x+1)—-2U(z)+U(zx—1), xe€N"-
Then p is ultra log-concave (resp. log-concave) if and only if AU(z) > log(1+1/z)
for any integer = € N* (resp. AU is non-negative).

From a dynamical point of view, measure p is the stationary distribution of the
birth-death process with rates

A, =1 and v, =/@- VD Lzz0y, x €N,

Then under the ultra log-concavity assumption, we have for any integer x > 2,

Ao — App1 + Vg1 — Uy = ( AU(z) _ ) ety AU(RHU(1)-U(0)
z—1 1\ VM=)
11 (1 + ) S
Pl k T
= eU(l)fU(O)
Vr.

One deduces that the rate v is non-decreasing and moreover is satisfied with
a = v (the cases © € {0,1} being straightforward). Hence the concentration
estimate applies. Finally, note that the log-concavity assumption only is
not sufficient to ensure an entropic inequality since one obtains in this case the
inequality

inf >\x - )\:(:+1 + Vg1 — Vo > 0.

zeN

However, as in the diffusion case, one may find examples of log-concave distri-
butions on N satisfying the Poincaré inequality by using condition (4.5)), which
simply rewrites as

sup Z e O 00,

zeN™ g<p<g—1<1

so that Theorem [3.12] can be used.

4.3. Glauber dynamics for unbounded particles. We consider the situation
where X is the unbounded configuration space N*, where A is a bounded subset
of Z¢. For each site z € A, denote 7, the number of particles located at z. Given
the activity z > 0, let = be the Poisson measure on N* given by

2l
() = e 12, e,
zeA 1T
where |A| denotes the cardinality of A. We equip N* with the total variation
distance, i.e. if n and 7 are two Conﬁgurations in N*, then

= > | —

zEA
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Our definition is a straightforward generalization of the classical notion of total
variation distance between probability measures, since it coincides with the usual
definition when the configurations are normalized by their total masses. For any
function f: N* — R, the discrete gradient operators are defined by

Dif(n) = fn+0)=f(n), Dif(n) = fln—0)—f(n), neN
where 0, is the Dirac mass at point 2 € A and by convention D} f(0) := 0. Note
that by [20], a given function f belongs to the space Lip(N*) if and only if

sup  [D] f(n)] < o0.
(n,z)eENA XA

Now let ¢ : Z% — [0,00) be an even function, null at the origin and satisfying
S pezd d(z) < 00. We define the Hamiltonian H : N* — R, as

1
H(n) = 35 > o@—y)nn,
z,yEN
Then the Gibbs measure p at inverse temperature 5 > 0 is the probability measure
on N given by

p{m) = et "0 x({n)),

where Z is the normalization constant. As observed below, our study is based
on the configuration space N* since our model exhibits free boundary condition,
that is to say A is, in some sense, disconnected from the lattice Z%. However the
aforementioned model might be extended outside A by introducing an appropriate
boundary condition.

Now, let us introduce the Glauber dynamics associated to the Gibbs measure
above, which can be seen as a spatial birth-death process, cf. Preston [39]. If n
is the configuration of the system at time ¢, then a particle appears or disappears
at site z € A with rates ze #PFHM gt and dt, respectively. In particular, the
case H = 0 corresponds to the non-interacting case. The generator £ is thus of
birth-death type and defined for any function f : N* — R by

L) = Y (c(.2) Dy f(n) +c (n.x) DF f(m)), e N,

where the rates of the dynamics ¢ and ¢~ are given by

{ C+(77; LU) == Ze_ﬁD;rH(n) — 267'8 Zye[\ d(z—y) Wy;

c(n,x) = N,

In particular, the stability condition ({2.7)) is clearly satisfied since A is finite and
moreover, according to the detailed balance condition (2.8)) which in our context
rewrites as

Fma)p{n}) = Fmtdr)p{ntd}), n.>0, (nz) e N*xA,
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the Gibbs measure u is reversible for these dynamics. Finally, the carré du champ
of an observable f is given by

DD = 5 X (e 0.0) D7 )P + ¢ . ) IDEFP) . me N

TEA

Recently, the problem of finding the speed of convergence to equilibrium of this
model has been addressed in several articles, cf. for instance [4] or Wu’s paper
[42] for a spectral method (i.e. related to Poincaré inequality) in the continuum
RY, and also [I8] for an approach through the entropic inequality. In all these
papers, the objective is to find constants which are independent of A and of the
boundary condition. In a recent work [19], Dai Pra and Posta established the
entropic inequality with constant pg > 1 — z£(f3), under the following Dobrushin-
type uniqueness condition:

e(B) == > (1—6_B¢($)) < l (4.7)

z
zeZ?

Note that assumption (4.7) will be verified as soon as (3 is small enough, i.e. the
temperature of the system is sufficiently high. If we choose for some x > 1 the
test function V(n) := K2=wer" which is in L'(p), then an observable f belongs to
the class Ly (a,b) if and only if

T(f, f)(n) < alk —1) 3 (7790 _ ,izefﬁDiH(n)) b, peN

k TEA

as in the context of birth-death processes above. Thus if the Dobrushin-type
uniqueness condition is satisfied, then the Gaussian-exponential concentra-
tion estimate of Theorem applies under these observables. Finally, we have
D} H(n) > 0 because ¢ is non-negative and if we consider an observable f in the
space Lip(N*), then the parameters a, b are chosen independently of f by taking

K (1+ k)

a = m and b =

z|A,

and we obtain the following Gaussian-exponential concentration estimate: for any
r >0,

p({ne N fo) = (1) > 7)) < exp (—mm{?’“ b o/ g e }) .

8(1+r)z|Al "V 2k

Once again an optimization in terms of the free parameter x > 1 can be done
to refine the estimate. Note however that we do not recover the Poisson-type
behaviour expected when comparing to the non-interacting case, for which pu is
nothing but the Poisson distribution 7.
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