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Abstract. Given a birth-death process on N with semigroup (Pt)t≥0 and a dis-
crete gradient ∂u depending on a positive weight u, we establish intertwining
relations of the form ∂uPt = Qt∂u, where (Qt)t≥0 is the Feynman-Kac semigroup
with potential Vu of another birth-death process. We provide applications when
Vu is non-negative and uniformly bounded from below, including Lipschitz con-
traction and Wasserstein curvature, various functional inequalities, and stochastic
orderings. Our analysis is naturally connected to the previous works of Caputo-
Dai Pra-Posta and of Chen on birth-death processes. The proofs are remarkably
simple and rely on interpolation, commutation, and convexity.

1. Introduction

Commutation relations and convexity are useful tools for the fine analysis of
Markov diffusion semigroups [B-E, B, L]. The situation is more delicate on discrete
spaces, due to the lack of a chain rule formula [B-L, A, Che1, J-P, B-T, Cha2,
C-DP-P, Che3]. In this work, we obtain new intertwining and sub-commutation
relations for a class of birth-death processes involving a discrete gradient and an
auxiliary Feynman-Kac semigroup. We also provide various applications of these
relations. Our analysis is naturally related to the curvature condition of Caputo-Dai
Pra-Posta [C-DP-P] and to the Chen exponent of Chen [Che1, Che3]. More precisely,
let us consider a birth-death process (Xt)t≥0 on the state space N := {0, 1, 2, . . .},
i.e. a Markov process with transition probabilities given by

P x
t (y) = Px(Xt = y) =


λxt+ o(t) if y = x+ 1,
νxt+ o(t) if y = x− 1,
1− (λx + νx)t+ o(t) if y = x,

where limt→0 t
−1o(t) = 0. The transition rates λ and ν are respectively called the

birth and death rates of the process (Xt)t≥0. The process is irreducible, positive
recurrent (or ergodic), and non-explosive when the rates satisfy to λ > 0 on N and
ν > 0 on N∗ and ν0 = 0 and

∞∑
x=1

λ0λ1 · · ·λx−1

ν1ν2 · · · νx
<∞ and

∞∑
x=1

(
1
λx

+ νx
λxλx−1

+ · · ·+ νx · · · ν1

λx · · ·λ1λ0

)
=∞,
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respectively. In this case the unique stationary distribution µ of the process is
reversible and is given by

µ(x) = µ(0)
x∏
y=1

λy−1

νy
, x ∈ N with µ(0) :=

(
1 +

∞∑
x=1

λ0λ1 · · ·λx−1

ν1ν2 · · · νx

)−1

. (1.1)

Let us denote by F (respectively F+ and Fd) the space of real-valued (respectively
positive and non-negative non-decreasing) functions f on N. The associated semi-
group (Pt)t≥0 is defined for any bounded or non-negative function f as

Ptf(x) = Ex[f(Xt)] =
∞∑
y=0

f(y)P x
t (y), x ∈ N.

This family of operators is positivity preserving and contractive on Lp(µ), p ∈ [1,∞].
Moreover, the semigroup is also symmetric in L2(µ) since λxµ(x) = ν1+xµ(1 +x) for
any x ∈ N (detailed balance equation). The generator L of the process is given for
any f ∈ F and x ∈ N by

Lf(x) = λx (f(x+ 1)− f(x)) + νx (f(x− 1)− f(x))
= λx ∂f(x) + νx ∂

∗f(x),
where ∂ and ∂∗ are respectively the forward and backward discrete gradients on N:

∂f(x) := f(x+ 1)− f(x) and ∂∗f(x) := f(x− 1)− f(x).
Our approach is inspired from the remarkable properties of two special birth-death
processes: the M/M/1 and the M/M/∞ queues. The M/M/∞ queue has rates
λx = λ and νx = νx for positive constants λ and ν. It is positive recurrent and its
stationary distribution is the Poisson measure µρ with mean ρ = λ/µ. If Bx,p stands
for the binomial distribution of size x ∈ N and parameter p ∈ [0, 1], the M/M/∞
process satisfies for every x ∈ N and t ≥ 0 to the Mehler type formula

L (Xt|X0 = x) = Bx,e−νt ∗ µρ(1−e−νt). (1.2)
The M/M/1 queening process has rates λx = λ and νx = ν1N\{0} where 0 < λ < ν
are constants. It is a positive recurrent random walk on N reflected at 0. Its
stationary distribution µ is the geometric measure with parameter ρ := λ/ν given
by µ(x) = (1 − ρ)ρx for all x ∈ N. A remarkable common property shared by the
M/M/1 and M/M/∞ processes is the intertwining relation

∂L = LV ∂ (1.3)
where LV = L − V is the discrete Schrödinger operator with potential V given by

• V (x) := ν in the case of the M/M/∞ queue
• V (x) := ν1{0}(x) for the M/M/1 queue.

Since V ≥ 0 in these two cases, the operator LV is the generator of a birth-death
process with killing rate V and the associated Feynman-Kac semigroup (P V

t )t≥0 is
given by

P V
t f(x) = Ex

[
f(Xt) exp

(
−
∫ t

0
V (Xs)ds

)]
.

The intertwining relation (1.3) is the infinitesimal version at time t = 0 of the
semigroup intertwining

∂Ptf(x) = P V
t ∂f(x) = Ex

[
∂f(Xt) exp

(
−
∫ t

0
V (Xs) ds

)]
. (1.4)
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Conversely, one may deduce (1.4) from (1.3) by using a semigroup interpolation.
Namely, if we consider s ∈ [0, t] 7→ J(s) := P V

s ∂Pt−sf with V as above, then (1.4)
rewrites as J(0) = J(t) and (1.4) follows from (1.3) since

J ′(s) = P V
s

(
LV ∂Pt−sf − ∂LPt−sf

)
= 0.

In section 2, we obtain by using semigroup interpolation an intertwining relation
similar to (1.4) for more general birth-death processes. By using convexity as an
additional ingredient, we also obtain sub-commutation relations. These results are
new and have several applications explored in section 3, including Lipschitz con-
traction and Wasserstein curvature (section 3.1), functional inequalities including
Poincaré, entropic, isoperimetric and transportation-information inequalities (sec-
tion 3.2), hitting time of the origin for the M/M/1 queue (section 3.3), convex
domination and stochastic orderings (section 3.4).

2. Intertwining relations and sub-commutations

Let us fix some u ∈ F+. The u-modification of the original process (Xt)t≥0 is a
birth-death process (Xu,t)t≥0 with semigroup (Pu,t)t≥0 and generator Lu given by

Luf(x) = λux ∂f(x) + νux ∂
∗f(x),

where the birth and death rates are respectively given by

λux := ux+1

ux
λx+1 and νux := ux−1

ux
νx.

One can check that the measure λu2µ is symmetric for (Xu,t)t≥0. As consequence,
the process (Xu,t)t≥0 is positive recurrent if and only if λu2 is µ-integrable. From now
on, we restrict to the minimal solution corresponding to the forward and backward
Kolmogorov equations given as follows: for any function f ∈ F with finite support
and t ≥ 0,

d

dt
Pu,tf = Pu,tLuf = LuPu,tf,

cf. [Che2, th. 2.21]. In order to justify in all circumstances the computations present
in these notes, we need to extend these identities to bounded functions f . Although
it is not restrictive for the backward equation, the forward equation is more subtle
and requires an additional integrability assumption. From now on, we always assume
that the transition rates λu and νu and also the potential Vu are Pu,t integrable.

We define the discrete gradient ∂u and the potential Vu by

∂u := (1/u)∂ and Vu(x) := νx+1 − νux + λx − λux.

Let ϕ : R→ R be a smooth convex function such that for some constant c > 0, and
for all r ∈ R,

ϕ′(r)r ≥ cϕ(r). (2.1)
In particular, the behavior at infinity is at least polynomial of degree c.

Let us state our first main result about intertwining and sub-commutation rela-
tions between the original process (Xt)t≥0 and its u-modification (Xu,t)t≥0. To the
knowledge of the authors, this result was not known. A connection to Chen’s results
on birth-death processes [Che2] is given in section 3 in the sequel.
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Theorem 2.1 (Intertwining and sub-commutation). Assume that the process is
irreducible, non-explosive and that the potential Vu is lower bounded. Let f ∈ F
be such that supy∈N |∂uf(y)| < ∞, and let x ∈ N and t ≥ 0. Then the following
intertwining relation holds:

∂uPtf(x) = P Vu
u,t∂uf(x) = Ex

[
∂uf(Xu,t) exp

(
−
∫ t

0
Vu(Xu,s) ds

)]
. (2.2)

Moreover, if Vu ≥ 0 then we have the sub-commutation relation

ϕ (∂uPtf) (x) ≤ Ex
[
ϕ(∂uf)(Xu,t) exp

(
−
∫ t

0
cVu(Xu,s) ds

)]
. (2.3)

Proof. The key point is the following intertwining relation
∂uL = LVuu ∂u, (2.4)

where Lu is the generator of the u-modification process (Xu,t)t≥0 and LVuu := Lu−Vu
is the discrete Schrödinger operator with potential Vu. Note that the relation (2.4)
is somewhat similar to (1.3) and follows by simple computations. To prove (2.2)
from (2.4), we proceed as we did to obtain (1.4) from (1.3). If we define

s ∈ [0, t] 7→ J(s) := P Vu
u,s∂uPt−sf,

then (2.2) rewrites as J(0) = J(t). Hence it suffices to show that J is constant. By
[Che1] we know that if ∂uf is bounded then ∂uPt−sf is also bounded. Hence using
the Kolmogorov equations and (2.4), we obtain

J ′(s) = P Vu
u,s

(
LVuu ∂uPt−sf − ∂uLPt−sf

)
= 0,

yielding to the intertwining relation (2.2).
Now let us prove the sub-commutation relation (2.3) by adapting the previous in-
terpolation method, under the additional assumption Vu ≥ 0. Denoting

s ∈ [0, t] 7→ Jc(s) := P cVu
u,s ϕ(∂uPt−sf),

then (2.3) rewrites as Jc(0) ≤ Jc(t). Hence let us show that Jc is a non-decreasing
function. Since ϕ(∂uPt−sf) is bounded, we have by the Kolmogorov equations:

J ′c(s) = P cVu
u,s (T ) where T = LcVuu ϕ(∂uPt−sf)− ϕ′(∂uPt−sf) ∂uLPt−sf.

Letting gu = ∂uPt−sf , we obtain, by using (2.4),
T = LcVuu ϕ(gu)− ϕ′(gu)LVuu gu

= λu (∂ϕ(gu)− ϕ′(gu)∂gu) + νu (∂∗ϕ(gu)− ϕ′(gu)∂∗gu) + Vu (ϕ′(gu)gu − cϕ(gu))
= λuAϕ(gu, ∂gu) + νuAϕ(gu, ∂∗gu) + Vu (ϕ′(gu)gu − cϕ(gu))

where Aϕ(r, s) = ϕ(r + s)− ϕ(r)− ϕ′(r)s is the so-called A-transform of ϕ studied
in [Cha2] also known in convex analysis as the Bregman divergence associated to ϕ
[Br]. Note that gu+∂gu = gu(·+1) and gu+∂∗gu = gu(·−1). Now, since ϕ is convex,
we have Aϕ ≥ 0. Moreover, using (2.1) and Vu ≥ 0 we obtain that T ≥ 0. Finally,
we get the desired result since the Feynman-Kac semigroup (P cVu

u,t )t≥0 is positivity
preserving. �

Remark 2.2 (Ergodic condition). The potential Vu in theorem 2.1 is assumed to
be lower bounded. When it is positive, the so-called Chen exponent infy∈N Vu(y)
is related to the exponential ergodicity of the original process (Xt)t≥0, cf. [Che1].
However identity (2.2) does not require such an ergodic assumption. A nice study
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of the exponential decay of birth-death processes was recently studied by Chen in
[Che3], with special emphasis on non-ergodic situations including transient and non-
irreducible cases.

Remark 2.3 (Case of equality). According to the proof of theorem 2.1, the assump-
tion Vu ≥ 0 can be dropped if the convex function ϕ realizes the equality in (2.1).
Such an observation was expected since in this case the use of Hölder’s inequality in
(2.2) entails the desired result.

Remark 2.4 (Propagation of monotonicity). The identity (2.2) provides a new
proof of the propagation of monotonicity [S, prop. 4.2.10]: if f ∈ Fd then Ptf ∈ Fd
for all t ≥ 0. See section 3.4 for an interpretation in terms of stochastic ordering.

Remark 2.5 (Other gradients). Theorem 2.1 possesses a natural analogue for the
discrete backward gradient ∂∗. We ignore if there exists a useful “balanced” inter-
twining relation involving a combination of both forward and backward gradients.

Remark 2.6 (Higher dimensional spaces). The extension of theorem 2.1 to higher
dimensional discrete processes such as queuing networks or interacting particles sys-
tems arising in statistical mechanics is a very natural question, but seems to be
technically difficult. However a first step has been emphasized by Wu in his study of
functional inequalities for Gibbs measures through the Dobrushin uniqueness condi-
tion: see step 1 in the proof of proposition 2.5 in [W].

Our second new result below complements the previous one for the case u = 1.
Let I be an open interval of R and let ϕ : I → R be a smooth convex function
such that ϕ′′ > 0 and −1/ϕ′′ is convex on I. Following the notations of [Cha2], we
define on the convex subset AI := {(r, s) ∈ R2 : (r, r+ s) ∈ I ×I} the non-negative
function Bϕ on AI by

Bϕ(r, s) := (ϕ′(r + s)− ϕ′(r)) s, (r, s) ∈ AI .

By theorem 4.4 in [Cha2], Bϕ is convex on AI . Some interesting examples of such
functionals will be given in section 3.2 below.

Theorem 2.7 (Sub-commutation for 1-modification). Assume that the process is
irreducible. If the transition rate λ is non-increasing and ν is non-decreasing then
for any function f ∈ F such that supy∈N |∂f(y)| <∞ and for any t ≥ 0,

Bϕ (Ptf, ∂Ptf) ≤ P V1
1,tB

ϕ(f, ∂f) (2.5)

where the non-negative potential is V1 := ∂(ν − λ).

Proof. Under our assumption, the two processes (Xt)t≥0 and (X1,t)t≥0 are non-
explosive. By using standard approximation procedures, one may assume that f
has finite support. If we define s ∈ [0, t] 7→ J(s) := P V1

1,sB
ϕ(Pt−sf, ∂Pt−sf) we see

that (2.5) rewrites as J(0) ≤ J(t). Denote F = Pt−sf and G = ∂Pt−sf = ∂F . Since
Bϕ(F,G) is bounded, the Kolmogorov equations are available and using (2.4) with
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the constant function u = 1, we have J ′(s) = P V1
1,s(T ) with

T = LV1
1 B

ϕ(F,G)− ∂

∂x
Bϕ(F,G)LF − ∂

∂y
Bϕ(F,G)LV1

1 G

= λ1∂Bϕ(F,G)− λ ∂
∂x
Bϕ(F,G) ∂F − λ1 ∂

∂y
Bϕ(F,G) ∂G

+ ν1∂∗Bϕ(F,G)− ν ∂
∂x
Bϕ(F,G) ∂∗F − ν1 ∂

∂y
Bϕ(F,G) ∂∗G

+ ∂(ν − λ)
(
∂

∂y
Bϕ(F,G)G−Bϕ(F,G)

)

≥ ∂ν

(
∂

∂y
Bϕ(F,G)G−Bϕ(F,G)

)

− ∂λ
(
∂

∂y
Bϕ(F,G)G− ∂

∂x
Bϕ(F,G)G−Bϕ(F,G)

)
,

and where in the last line we used the convexity of the bivariate function Bϕ. More-
over, since the birth and death rates λ and ν are respectively non-increasing and
non-decreasing on the one hand, and using once again convexity on the other hand,
we get

∂

∂y
Bϕ(F,G)G ≥


∂
∂x
Bϕ(F,G)G+Bϕ(F,G)

Bϕ(F,G)
from which we deduce that T is non-negative and thus J is non-decreasing. �

Remark 2.8 (Diffusion case). Actually, the intertwining relations above have their
counterpart in continuous state space, as suggested by the so-called Witten Laplacian
method used for the analysis of Langevin-type diffusion processes, see for instance
Helffer’s book [H]. Let A be the generator of a one-dimensional real-valued diffusion
(Xt)t≥0 of the type

Af = σ2f ′′ + bf ′,

where f and the two functions σ, b are sufficiently smooth. Given a smooth positive
function a on R, the gradient of interest is ∇af = a f ′. Denote (Pt)t≥0 the associated
diffusion semigroup. Then it is not hard to adapt to the continuous case the argument
of theorem 2.1 to show that the following intertwining relation holds:

∇aPtf(x) = Ex
[
∇af(Xa,t) exp

(
−
∫ t

0
Va(Xa,s) ds

)]
.

Here (Xa,t)t≥0 is a new diffusion process with generator
Aaf = σ2f ′′ + baf

′

and drift ba and potential Va given by

ba := 2σσ′ + b− 2σ2 a
′

a
and Va := σ2 a

′′

a
− b′ + a′

a
ba.

In particular, if the weight a = σ, where σ is assumed to be positive, then the two
processes above have the same distribution and by Jensen’s inequality, we obtain

|∇σPtf(x)| ≤ Ex
[
|∇σf(Xt)| exp

(
−
∫ t

0

(
σσ′′ − b′ + b

σ′

σ

)
(Xs) ds

)]
.
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Hence under the assumption that there exists a constant ρ such that

inf σσ′′ − b′ + b
σ′

σ
≥ ρ,

then we get |∇σPtf | ≤ e−ρt Pt|∇σf |. This type of sub-commutation relation is at the
heart of the Bakry-Émery calculus [B-E, B, L]. See also [M-T] for a nice study of
functional inequalities for the invariant measure under the condition ρ = 0. How-
ever, as we will see in remark 3.6 below, such a choice of the weight is not really
adapted when studying the optimal constant in the Poincaré inequality.

3. Applications

This section is devoted to applications of theorems 2.1 and 2.7.

3.1. Lipschitz contraction and Wasserstein curvature. Theorem 2.1 allows to
recover a result of Chen [Che1] on the contraction property of the semigroup on the
space of Lipschitz functions. Indeed, the intertwining (2.2) can be used to derive
bounds on the Wasserstein curvature of the birth-death process, without using the
coupling technique emphasized by Chen. For a distance d on N, we denote by Pd(N)
the set of probability measures ξ on N such that ∑x∈N d(x, x0)ξ(x) < ∞ for some
(or equivalently for all) x0 ∈ N. We recall that the Wasserstein distance between
two probability measures µ1, µ2 ∈ Pd(N) is defined by

Wd(µ1, µ2) = inf
γ∈Marg(µ1,µ2)

∫
N

∫
N
d(x, y)γ(dx, dy), (3.1)

where Marg(µ1, µ2) is the set of probability measures on N2 such that the marginal
distributions are µ1 and µ2, respectively. The Kantorovich-Rubinstein duality [V,
th. 5.10] gives

Wd(µ1, µ2) = sup
g∈Lip1(d)

∫
N
g d(µ1 − µ2), (3.2)

where Lip(d) is the set of Lipschitz function g with respect to the distance d, i.e.

‖g‖Lip(d) := sup
x,y∈N
x 6=y

|g(x)− g(y)|
d(x, y) <∞,

and Lip1(d) consists of 1-Lipschitz functions. We assume that the kernel P x
t ∈ Pd(N)

for every x ∈ N and t ≥ 0 so that the semigroup is well-defined on Lip(d). The
Wasserstein curvature of (Xt)t≥0 with respect to a given distance d is the optimal
(largest) constant σ in the following contraction inequality:

‖Pt‖Lip(d)→Lip(d) ≤ e−σt, t ≥ 0. (3.3)
Here ‖Pt‖Lip(d)→Lip(d) denotes the supremum of ‖Ptf‖Lip(d) when f runs over Lip1(d).
It is actually equivalent to the property that

Wd(P x
t , P

y
t ) ≤ e−σt d(x, y), x, y ∈ N, t ≥ 0.

If the optimal constant is positive, then the process is positive recurrent and the
semigroup converges exponentially fast in Wasserstein distanceWd to the stationary
distribution µ [Che2, th. 5.23].

Let ρ ∈ F+ be an increasing function and define u ∈ F+ as ux := ρ(x+ 1)− ρ(x).
The metric under consideration in the forthcoming analysis is

du(x, y) = |ρ(x)− ρ(y)|.
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Hence u remains for the distance between two consecutive points. In particular the
space of functions f for which the intertwining relation of theorem 2.1 is available
is actually Lip(du). Then it is shown in [Che1, J] by coupling arguments that
the Wasserstein curvature σu with respect to the distance du is given by the Chen
exponent, i.e.

σu = inf
x∈N

νx+1 − νx
ux−1

ux
+ λx − λx+1

ux+1

ux
.

The following corollary of theorem 2.1 allows to recover this result via an intertwining
relation.
Corollary 3.1 (Contraction and curvature). Assume that the potential Vu is lower
bounded. Then with the notations of theorem 2.1, for any t ≥ 0,

‖Pt‖Lip(du)→Lip(du) = ‖Ptρ‖Lip(du) = sup
x∈N

Ex
[
exp

(
−
∫ t

0
Vu(Xu,s) ds

)]
. (3.4)

In particular, the contraction inequality (3.3) is satisfied with the optimal constant
σu = inf

y∈N
Vu(y). (3.5)

Proof. Let f ∈ Lip1(du) be a 1-Lipschitz function with respect to the distance du.
For any y, z ∈ N such that y < z (without loss of generality), we have by the
intertwining identity (2.2) of theorem 2.1 and Jensen’s inequality,

|Ptf(z)− Ptf(y)| ≤
z−1∑
x=y

ux |∂uPtf(x)|

≤
z−1∑
x=y

ux Ex
[
|∂uf(Xu,t)| exp

(
−
∫ t

0
Vu(Xu,s) ds

)]

≤ du(z, y) sup
x∈N

Ex
[
exp

(
−
∫ t

0
Vu(Xu,s) ds

)]
,

so that dividing by du(z, y) and taking suprema entail the inequality:

‖Pt‖Lip(du)→Lip(du) ≤ sup
x∈N

Ex
[
exp

(
−
∫ t

0
Vu(Xu,s) ds

)]
.

Finally, since by remark 2.4 the semigroup (Pt)t≥0 propagates monotonicity, the
right-hand-side of the latter inequality is nothing but ‖Ptρ‖Lip(du), showing that the
supremum over Lip1(du) is attained for the function ρ. The proof of equation (3.4)
is achieved.

To establish (3.5), note that it suffices to get part ≤ since the other inequality
follows from (3.4). Applying (2.2) to the function ρ which is trivially in Lip1(du),
we have for all x ∈ N,

σu ≤ −
1
t

log Ex
[
exp

(
−
∫ t

0
Vu(Xu,s) ds

)]
, t ≥ 0,

and taking the limit as t → 0 entails the inequality σu ≤ Vu(x), available for all
x ∈ N. The proof of (3.5) is now complete. �

Remark 3.2 (Pointwise gradient estimates for the Poisson equation). The argument
used in the proof of corollary 3.1 allows also to obtain pointwise gradient estimates
for the solution of the Poisson equation at the heart of Chen-Stein methods [B-H-J,
Br-X, B-X, Sch]. More precisely, let us assume that du is such that ρ ∈ L1(µ). For
any centered function f ∈ Lip1(du), let us consider the Poisson equation −Lg = f ,
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where the unknown is g. Then under the assumption σu > 0, there exists a unique
centered solution gf ∈ Lip(du) to this equation given by the formula gf =

∫∞
0 Ptf dt.

We have for any x ∈ N the following estimate (compare with [L-M, th. 2.1]):

sup
f∈Lip1(du)

|∂gf (x)| = sup
f∈Lip1(du)

ux

∫ ∞
0
|∂uPtf(x)| dt

= ux

∫ ∞
0

∂uPtρ(x) dt

= ux

∫ ∞
0

Ex
[
exp

(
−
∫ t

0
Vu(Xu,s) ds

)]
dt

≤ ux
σu
.

3.2. Functional inequalities. Theorems 2.1 and 2.7 allow to establish a whole
family of discrete functional inequalities. We define the bilinear symmetric form Γ
on F by

Γ(f, g) := 1
2 (L(fg)− fLg − gLf) = 1

2 (λ ∂f ∂g + ν ∂∗f ∂∗g).

Under the positive recurrence assumption, the associated Dirichlet form acting on
its domain D(Eµ)×D(Eµ) is given by

Eµ(f, g) := 1
2

∫
N
Γ(f, g) dµ =

∫
N
λ ∂f ∂g dµ

where the second equality comes from the reversibility of the process. Here the
domain D(Eµ) corresponds to the subspace of functions f ∈ L2(µ) such that Eµ(f, f)
is finite. The stationary distribution µ is said to satisfy the Poincaré inequality with
constant c if for any function f ∈ D(Eµ),

cVarµ(f) ≤ Eµ(f, f), (3.6)

where Varµ(f) := µ(f 2)−µ(f)2 and µ(f) :=
∫
N f dµ. The optimal (largest) constant

cP is the spectral gap of L, i.e. the first non-trivial eigenvalue of the operator −L.
The constant cP governs the L2(µ) exponential decay to the equilibrium of the
semigroup: for all f ∈ L2(µ) and t ≥ 0,

‖Ptf − µ(f)‖L2(µ) ≤ e−cPt ‖f − µ(f)‖L2(µ).

Several years ago, Chen used a coupling method which provides the following formula
for the spectral gap:

cP = sup
u∈F+

σu

where σu is the Wasserstein curvature of section 3.1 or, in other words, the Chen
exponent. It corresponds to theorem 1.1 in [Che1], equation (1.4). The following
corollary of theorem 2.1 allows to recover the ≥ part of Chen’s formula.

Corollary 3.3 (Spectral gap and Wasserstein curvatures). Assume that there exists
some function u ∈ F+ such that the associated Wasserstein curvature σu is positive.
Then the Poincaré inequality (3.6) holds with constant supu∈F+ σu, or in other words

cP ≥ sup
u∈F+

σu.
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Proof. Since there exists some function u ∈ F+ such that the Wasserstein curvature
σu is positive, the process is positive recurrent. By proposition 6.59 in [Che2], the
subspace of D(Eµ) consisting of functions with finite support is a core of the Dirichlet
form and thus we can assume without loss of generality that f has finite support.
We have

Varµ(f) = −
∫
N

∫ ∞
0

d

dt
(Ptf)2 dt dµ

= −2
∫
N

∫ ∞
0

Ptf LPtf dt dµ

= 2
∫ ∞

0

∫
N
λu2 (∂uPtf)2 dµ dt

≤ 2
∫ ∞

0
e−2σut

∫
N
λu2 Pu,t(∂uf)2 dµ dt,

where in the last line we used theorem 2.1 with the convex function ϕ(x) = x2. Now
the measure λu2µ is invariant for the semigroup (Pu,t)t≥0, so that we have

Varµ(f) ≤ 2
∫ ∞

0
e−2σut

∫
N
λu2 (∂uf)2 dµ dt

= 1
σu

∫
N
λ (∂f)2 dµ

= 1
σu
Eµ(f, f),

where in the second line we used σu > 0. The proof of the Poincaré inequality is
complete. �

Remark 3.4 (M/M/∞ andM/M/1). The spectral gap of the M/M/∞ and M/M/1
processes is well-known [Che1]. Corollary 3.3 allows to recover it easily. Indeed, in
the M/M/∞ case, the value cP = ν can be obtained as follows: choose the constant
weight u = 1 to get cP ≥ ν, and notice that the equality holds for affine functions.
For a positive recurrent M/M/1 process, i.e. λ < ν, we obtain cP ≥ (

√
λ −
√
ν)2

by choosing the weight ux := (ν/λ)x/2, whereas the equality asymptotically holds in
(3.6) as κ→

√
ν/λ for the functions κx, x ∈ N. We conclude that cP = (

√
λ−
√
ν)2.

Remark 3.5 (Alternative method for M/M/1). In the M/M/1 case, let us recover
the bound cP ≥ (

√
λ−
√
ν)2 by using a different method. Letting ρ(x) := x for x ∈ N

and g = f − f(0) for a given function f ∈ D(Eµ), we have∫
N
g2 dµ = 1

ν − λ

∫
N
g2 (−Lρ) dµ

= 1
ν − λ

Eµ(g2, ρ)

= λ

ν − λ

∫
N
∂(g2) ∂ρ dµ

= λ

ν − λ

∫
N

(
2g ∂f + (∂f)2

)
dµ

≤ λ

ν − λ

(
2
√∫

N
g2 dµ

√∫
N
(∂f)2 dµ+

∫
N
(∂f)2 dµ

)
,
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where in the last inequality we used Cauchy-Schwarz’ inequality. Solving this poly-
nomial of degree 2 entails the inequality

∫
N
g2 dµ ≤ λ

(
√
λ−
√
ν)2

∫
N
(∂f)2 dµ.

Finally using the inequality Varµ(f) ≤
∫
N g

2 dµ, we get the result.

Remark 3.6 (Diffusion case). As mentioned in remark 2.8, the argument above
leading to the Poincaré inequality might be extended to the positive recurrent diffusion
case. In particular, under the same notation we obtain the following lower bound on
the Poincaré constant

cP ≥ sup
a

inf
x∈R

Va(x),

where the supremum is taken over all positive C 2 function a on R. Note that up to
the transformation a→ 1/a, such a formula was already obtained by Chen and Wang
in [C-W] through their theorem 3.1, equation (3.4), by using a coupling approach
somewhat similar to that emphasized by Chen in the discrete case.

Theorem 2.7 allows to derive functional inequalities more general than the Poincaré
inequality. Let I be an open interval of R and for a smooth convex function
ϕ : I → R such that ϕ′′ > 0 and −1/ϕ′′ is convex on I, we define the ϕ-entropy of
a sufficiently integrable function f : N→ I as

Entϕµ(f) = µ (ϕ(f))− ϕ (µ(f)) .

Following [Cha1], we say that the stationary distribution µ satisfies a ϕ-entropy
inequality with constant c > 0 if for any I-valued function f ∈ D(Eµ) such that
ϕ′(f) ∈ D(Eµ),

cEntϕµ(f) ≤ Eµ (f, ϕ′(f)) . (3.7)

See for instance [Cha2] for an investigation of the properties of ϕ-entropies. The
ϕ-entropy inequality (3.7) is satisfied if and only if the following entropy dissipation
of the semigroup holds: for any sufficiently integrable I-valued function f and every
t ≥ 0,

Entϕµ(Ptf) ≤ e−ct Entϕµ(f).

We have the following corollary of theorem 2.7.

Corollary 3.7 (Entropic inequalities and Wasserstein curvature). If the birth rate λ
is non-increasing and the Wasserstein curvature σ1 (with the constant weight u = 1)
is positive, then the ϕ-entropy inequality (3.7) holds with constant σ1.

Proof. As in the proof of corollary 3.3 the assertion σ1 > 0 entails the positive re-
currence of the process. Moreover, we assume once again that the I-valued function
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f has finite support. By reversibility, we have

Entϕµ(f) =
∫
N

(ϕ(P0f)− ϕ(µ(f))) dµ

= −
∫
N

∫ ∞
0

d

dt
ϕ(Ptf) dt dµ

= −
∫ ∞

0

∫
N
ϕ′(Ptf)LPtf dµ dt

=
∫ ∞

0

∫
N
λ ∂Ptf ∂ϕ

′(Ptf) dµ dt

=
∫ ∞

0

∫
N
λBϕ (Ptf, ∂Ptf) dµ dt,

where Bϕ is as in theorem 2.7 (the identity ∂g ∂ϕ′(g) = Bϕ(g, ∂g) comes from
g + ∂g = g(· + 1)). Using now theorem 2.7 together with the invariance of the
measure λµ for the 1-modification semigroup (P1,t)t≥0, we obtain

Entϕµ(f) ≤
∫ ∞

0

∫
N
e−σ1t λP1,tB

ϕ (f, ∂f) dµ dt

=
∫ ∞

0

∫
N
e−σ1t λBϕ (f, ∂f) dµ dt

= 1
σ1

∫
N
λBϕ (f, ∂f) dµ

= 1
σ1
Eµ (f, ϕ′(f)) .

�

Remark 3.8 (Examples of entropic inequalities). The constant in the ϕ-entropy
inequality provided by corollary 3.7 is not optimal in general (compare for instance
with the Poincaré inequality of corollary 3.3 when ϕ(r) = r2 with I = R). The choice
ϕ(r) = r log r with I = (0,∞) allows us to recover the modified log-Sobolev inequality
of [C-DP-P, th. 3.1]: for any positive function f ∈ D(Eµ) such that log f ∈ D(Eµ),

σ1 Entϕµ(f) ≤ Eµ(f, log f). (3.8)

Note that beyond this entropic inequality, it is proved in [C-DP-P] that the entropy
is convex along the semigroup (a careful reading of the proof in [C-DP-P] suggests
that it simply boils down to commutation and convexity of A transforms!). For the
M/M/∞ process, the estimate of corollary 3.7 is sharp since σ1 = ν and the equality
in (3.8) holds as α → ∞ for the function x ∈ N 7→ eαx. Note that the M/M/1
process and its invariant distribution, which is geometric, do not satisfy a modified
log-Sobolev inequality. Another ϕ-entropy inequality of interest is that obtained when
considering the convex function φ(r) := rp, p ∈ (1, 2], with I = (0,∞): for any
positive function f ∈ D(Eµ) such that fp−1 ∈ D(Eµ),

µ(fp)− µ(f)p ≤ p

σ1
Eµ(f, fp−1). (3.9)

Such an inequality has been studied in [B-T] in the case of Markov processes on a
finite state space and also in [Cha2] for the M/M/∞ queuing process. In partic-
ular, it can be seen as an interpolation between Poincaré and modified log-Sobolev
inequalities.
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Under the positive recurrence assumption, theorem 2.1 implies also other type of
functional inequalities such as discrete isoperimetry and transportation-information
inequalities. Given a positive function u, we focus on the distance du constructed
in section 3.1, where we assume moreover that ρ ∈ D(Eµ), i.e. λu2 is µ-integrable
or, in other words, the u-modification process (Xu,t)t≥0 is positive recurrent. The
invariant measure µ is said to satisfy a weighted isoperimetric inequality with weight
u and constant hu > 0 if for any absolutely continuous probability measure π with
density f ∈ D(Eµ) with respect to µ,

huWdu(π, µ) ≤
∫
N
λu |∂f | dµ, (3.10)

where the Wasserstein distance Wdu is defined in (3.1) with respect to the distance
du. The terminology of isoperimetry is employed here because it is a generalization
of the classical isoperimetry, which states that the centered L1-norm is dominated
by an energy of L1-type. Indeed, if the weight u is identically 1, then the distance
d1 between two different points is at least 1, so that (3.10) entails

2h1

∫
N
|f − 1| dµ = h1Wd(π, µ) ≤ h1Wd1(π, µ) ≤

∫
N
λ |∂f | dµ,

where d is the trivial distance 0 or 1. Note that the L1-energy emphasized above
differs from the discrete version of the diffusion case, since our discrete gradient does
not derive from Γ.

On the other hand, let us introduce the transportation-information inequalities
emphasized in [G-L-W-Y]. Let α be a continuous positive and increasing function on
[0,∞) vanishing at 0. The invariant measure µ satisfies a transportation-information
inequality with deviation function α if for any absolutely continuous probability
measure π with density f with respect to µ, we have

α (Wdu(π, µ)) ≤ I(π, µ), (3.11)

where the so-called Fisher-Donsker-Varadhan information of π with respect to µ is
defined as

I(π, µ) :=
{
Eµ(
√
f,
√
f) if

√
f ∈ D(Eµ);

∞ otherwise.

Note that I(·, µ) is nothing but the rate function governing the large deviation
principle in large time of the empirical measure Lt := t−1 ∫ t

0 δXs ds, where δx is the
Dirac mass at point x. In other words, the Fisher-Donsker-Varadhan information
rewrites as the variational identity [Che2, th. 8.8]:

I(π, µ) = sup
V ∈F+

∫
N
−LV
V

dπ.

The interest of the transportation-information inequality resides in the equivalence
with the following tail estimate of the empirical measure [G-L-W-Y, th. 2.4]: for any
absolutely continuous probability measure π with density f ∈ L2(µ) with respect to
µ, and any g ∈ Lip1(du),

Pπ (Lt(g)− µ(g) > r) ≤ ‖f‖L2(µ) e
−α(r), r > 0, t > 0.

We have the following corollary of theorem 2.1.
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Corollary 3.9 (Weighted isoperimetry and transportation-information inequality).
With the notations of theorem 2.1, assume that the process is positive recurrent and
that the following quantity is well-defined:

κu :=
∫ ∞

0
sup
x∈N

Ex
[
exp

(
−
∫ t

0
Vu(Xu,s) ds

)]
dt <∞.

Then the weighted isoperimetric inequality (3.10) is satisfied with constant hu =
1/κu.
If moreover there exists two constants ε > 0 and θ > 1 such that
(1 + ε)λxu2

x + (1 + 1/ε)νxu2
x−1 ≤ −a (λx(θ − 1) + νx(1/θ − 1)) + b, x ∈ N, (3.12)

where a := aε,θ ≥ 0 and b := bε,θ > 0 are two other constants depending on both ε and
θ, then the transportation-information inequality (3.11) is satisfied with deviation
function

α(r) := sup
ε>0,θ>1

√
b2 + 2a(r/κu)2 − b

2a .

Remark 3.10 (The case of positive Wasserstein curvature). In particular if the
Wasserstein curvature σu with respect to the distance du is positive, then the process
is positive recurrent and we have

σuWdu(π, µ) ≤
∫
N
λu |∂f | dµ and α (Wdu(π, µ)) ≤ I(π, µ),

with the deviation function

α(r) := sup
ε>0,θ>1

√
b2 + 2a(rσu)2 − b

2a .

Proof. For every f, g ∈ D(Eµ) we have, by reversibility,

Covµ(f, g) :=
∫
N

(
g −

∫
N
g dµ

)
f dµ

=
∫
N

(
−
∫ ∞

0
LPtg dt

)
f dµ

=
∫ ∞

0

(
−
∫
N
PtgLf dµ

)
dt

=
∫ ∞

0
Eµ(Ptg, f) dt. (3.13)

Now, for every probability measure π � µ with dπ = fdµ, f ∈ D(Eµ), we get, using
(3.13),

Wdu(π, µ) = sup
g∈Lip1(du)

Covµ(f, g)

= sup
g∈Lip1(du)

∫ ∞
0
Eµ(Ptg, f) dt

= sup
g∈Lip1(du)

∫ ∞
0

∫
N
λu ∂f ∂uPtg dµ dt

=
∫ ∞

0

∫
N
λu |∂f | ∂uPtρ dµ dt

≤
∫ ∞

0
sup
x∈N

Ex
[
exp

(
−
∫ t

0
Vu(Xu,s) ds

)]
dt
∫
N
λu |∂f | dµ,
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where in the last inequality we used theorem 2.1. This concludes the proof of the
weighted isoperimetric inequality.

Using now Cauchy-Schwarz inequality, reversibility and then (3.12) with Vθ(x) :=
θx, x ∈ N,

Wdu(π, µ) ≤ κu
√
I(π, µ)

√∫
N
λu2

(√
f(·+ 1) +

√
f
)2

dµ

≤ κu
√
I(π, µ)

√∫
N

((1 + ε)λu2 + (1 + 1/ε)νu2
·−1) f dµ

≤ κu
√
I(π, µ)

√∫
N

(
−a LVθ

Vθ
+ b

)
f dµ

≤ κu
√
I(π, µ)

√
aI(π, µ) + b,

from which the desired transportation-information inequality holds. �

Remark 3.11 (M/M/∞ and M/M/1 revisited). Corollary 3.9 exhibits optimal
functional inequalities, at least in the M/M/∞ case and its stationary distribution,
the Poisson measure of mean λ/ν. Choosing the weight u = 1, we obtain the optimal
constant ~1 = ν in the isoperimetric inequality. Indeed, corollary 3.9 entails ~1 ≥ ν,
whereas the other inequality is obtained by choosing π a Poisson measure of different
parameter. For the transportation-information inequality, we recover theorem 2.1 in
[M-W-W] since the choice of a := θ(1 + 1/ε)/(θ− 1) and b := λ(1 + ε+ (1 + 1/ε)θ)
allows us to obtain the deviation function α(r) := λ(

√
1 + νr/λ− 1)2, r > 0. Note

that it is optimal in view of example 4.5 in [G-G-W]: for any absolutely continuous
probability measure π with square-integrable density with respect to µ,

lim
t→∞

1
t

logPπ
(

1
t

∫ t

0
Xs ds−

λ

ν
> r

)
= −λ

(√
1 + νr

λ
− 1

)2
, r > 0.

For the M/M/1 process, we have the following inequalities for the optimal isoperi-
metric constant ~u, with ux = (ν/λ)x/2 (a quantity that will appear again in sec-
tion 3.3):

(
√
λ−
√
ν)2 ≤ ~u ≤ (

√
ν −
√
λ)
√
ν.

To get the second inequality, we choose the density f = (ν/λ)(1 − 1{0}) and the
1-Lipschitz test function g = ρ. In particular as the ratio λ/ν is small, we obtain
~u ≈ ν. However, we ignore if such a process satisfies a transportation-information
inequality.

3.3. Hitting time of the origin by the M/M/1 process. Recall that we con-
sider the ergodic M/M/1 process (λ < ν) for which the stationary distribution is
geometric of parameter λ/ν. Since the process behaves as a random walk outside 0,
the ergodic property relies essentially on its behavior at point 0. Using the notation
of theorem 2.1, the intertwining relation (2.2) applied with a positive function u
entails the identity

∂uPtf(x) = Ex
[
∂uf(Xt) exp

(
−
∫ t

0
Vu(Xu,s) ds

)]
where the potential is given for every x ∈ N by

Vu(x) := ν − ux−1

ux
ν1{x 6=0} + λ− ux+1

ux
λ.
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Following Robert [R], the process (Xy
t )t≥0 is the solution of the stochastic differential

equation
Xy

0 = y and dXy
t = dN

(λ)
t − 1{Xy

t−>0} dN
(ν)
t , t > 0, (3.14)

where (N (λ)
t )t≥0 and (N (ν)

t )t≥0 are two independent Poisson processes with parameter
λ and ν, respectively. Since the process is assumed to be positive recurrent, the
hitting time of 0,

T y0 := inf{t > 0 : Xy
t = 0}

is finite almost surely. We have the following corollary of theorem 2.1.

Corollary 3.12 (Hitting time of the origin for the ergodic M/M/1 process). Given
x ∈ N, consider a positive recurrent M/M/1 process (Xx+1

t )t≥0 starting at point
x+ 1, and denote (Xx

u,t)t≥0 its u-modification process starting at point x, where

ux :=
(
ν

λ

)x
2
≥ 1.

Then we have the following tail estimate: for any t ≥ 0,

P(T x+1
0 > t) = ux e

−t (√λ−√ν)2

E
[

1
u(Xx

u,t)
exp

(
−
√
λν
∫ t

0
1{0}(Xx

u,s) ds
)]

≤ ux e
−t (√λ−√ν)2

.

Proof. Let us use a coupling argument. Let (Xx
t )t≥0 be a copy of (Xx+1

t )t≥0, starting
at point x. We assume that it constructed with respect to the same driving Poisson
processes (N (λ)

t )t≥0 and (N (ν)
t )t≥0 as the process (Xx+1

t )t≥0. Hence the stochastic
differential equation (3.14) satisfied by the two coupling processes entails that the
difference between (Xx+1

t )t≥0 and (Xx
t )t≥0 remains constant, equal to 1, until time

T x+1
0 , the first hitting time of the origin by (Xx+1

t )t≥0. After time T x+1
0 , the processes

are identically the same, so that the following identity holds:
Xx+1
t = Xx

t + 1{Tx+1
0 >t}, t ≥ 0.

Since the original process is assumed to be positive recurrent, the coupling is suc-
cessful, i.e. the coupling time is finite almost surely. Therefore we have for any
function f ∈ Lip(d1), where d1 is the distance d1(x, y) = |x− y|,

∂Ptf(x) = Ptf(x+ 1)− Ptf(x) = E
[
f(Xx+1

t )− f(Xx
t )
]

= E
[
∂f(Xx

t ) 1{Tx+1
0 >t}

]
so that if we denote the function ρ(x) = x, we obtain

P(T x+1
0 > t) = ∂Ptρ(x) = ux ∂uPtρ(x).

Using now (2.2) with the function u, we get

P(T x+1
0 > t) = ux E

[
1

u(Xx
u,t)

exp
(
−
∫ t

0
Vu(Xx

u,s) ds
)]
,

where Vu := (
√
λ−
√
ν)2 +

√
λν 1{0}. �

Remark 3.13 (Sharpness). Using a completely different approach, Van Doorn es-
tablished in [VD], through his theorem 4.2 together with his example 5, the following
asymptotics

lim
t→∞

1
t

log P(T x+1
0 > t) = −(

√
λ−
√
ν)2, x ∈ N.
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Hence one deduces that the exponential decay in the result of corollary 3.12 is sharp.
On the other hand, proposition 5.4 in [R] states that T x+1

0 has exponential moment
bounded as follows:

E
[
e(
√
λ−
√
ν)2Tx+1

0
]
≤
(
ν

λ

)(x+1)/2
,

so that Chebyshev’s inequality yields a tail estimate somewhat similar to ours -
although with a worst constant depending on the initial point x+ 1.

Remark 3.14 (Other approach). The proof of corollary 3.12 suggests also a mar-
tingale approach. First, note that we have the identity

−ν 1{0} = −Lu
u
− Vu

which entails as in the previous proof and since u ≥ 1, the following computations:
P(T x+1

0 > t) = ∂Ptρ(x)

= E
[
exp

(
−
∫ t

0
ν 1{0}(Xx

s ) ds
)]

≤ E
[
u(Xx

t ) exp
(
−
∫ t

0

(Lu
u

+ Vu

)
(Xx

s ) ds
)]

≤ ux e
−t (
√
λ−
√
ν)2
,

since the process (Mu
t )t≥0 given by

Mu
t := u(Xx

t ) exp
(
−
∫ t

0

Lu
u

(Xx
s ) ds

)
, t ≥ 0,

is a supermartingale. Indeed, denoting

Zu
t := exp

(
−
∫ t

0

Lu
u

(Xx
s ) ds

)
,

we have by Ito’s formula:
dMu

t = Zu
t du(Xx

t ) + u(Xx
t ) dZu

t

= Zu
t (dMt + Lu(Xx

t )dt)− u(Xx
t )Lu

u
(Xx

t )Zu
t dt

= Zu
t dMt,

where (Mt)t≥0 is a local martingale. Therefore, the process (Mu
t )t≥0 is a positive

local martingale and thus a supermartingale.

3.4. Convex domination of birth-death processes. Let (Xx
t )t≥0 be theM/M/∞

process starting from x ∈ N. The Mehler-type formula (1.2) states that the random
variable Xx

t has the same distribution as the independent sum of the variable X0
t ,

which follows the Poisson distribution of parameter (λ/ν)(1− e−νt), and a binomial
random variable B(x)

t of parameters (x, e−νt). By convention, B(0)
t is assumed to be

0. Hence we have for any non-negative function f and any x ∈ N,

E [f(Xx
t )] = E[f(X0

t +B
(x)
t )], t ≥ 0. (3.15)

Such an identity can be provided by using the commutation relation (1.4). Indeed
we have

E
[
f(Xx+1

t )
]

= (1− e−νt)E [f(Xx
t )] + e−νt E[f(Xx

t + 1)],
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so that a recursive argument on the initial state provides the required result. An
interesting consequence of (3.15) appears in terms of concentration properties. For
instance a straightforward computation entails that for any θ ≥ 0, we get the fol-
lowing inequality on the Laplace transforms

E
[
eθX

x
t

]
≤ E

[
eθN

x
t

]
,

where Nx
t is a Poisson random variable with the same mean as Xx

t . Therefore,
using the exponential Chebyshev inequality entails an upper bound on the tail of
the centered random variable Xx

t −E[Xx
t ], which is sharp as t→∞ (recall that the

stationary distribution is Poisson with parameter λ/ν).
Actually, one may ask if for a more general birth-death process, the intertwining
relation of type (2.2) may imply a relation similar to (3.15). This leads to the
notion of stochastic ordering.

Following the presentation enlighten by Stoyan in [S], let us start with the classical
notion of stochastic ordering for integer-valued random variables. We say that X is
stochastically smaller than Y , and we note X ≤d Y , if for any function f ∈ Fd,

E[f(X)] ≤ E[f(Y )].

Such a relation, as the convex domination introduced below, is a partial ordering on
the set of distribution functions. The interesting feature of this stochastic ordering
resides in its characterization in terms of coupling: we have X ≤d Y if and only if
there exist random variables X1 and Y1, both defined on the same probability space
and with the same distribution as X and Y respectively, such that P(X1 ≤ X2) = 1.
Moreover, it is equivalent to the following comparison between tails: we haveX ≤d Y
if and only P(X ≥ x) ≤ P(Y ≥ x) for any x ∈ R. In other words, the random
variable X takes small values with a higher probability than Y does.

Another stochastic ordering of interest is the convex ordering, or convex domina-
tion. Denote Fc the subset of Fd consisting of non-negative non-decreasing convex
functions, where in our discrete setting the convexity of a function f : N → R is
understood as ∂2f ≥ 0. We say that X is convex dominated by Y , and we note
X ≤c Y , if for any function f ∈ Fc,

E[f(X)] ≤ E[f(Y )].

It is known to be equivalent to the inequality

E
[
(X − x)+

]
≤ E

[
(Y − x)+

]
, x ∈ R,

where a+ := max{a, 0}. Typically, one may deduce from the convex domination
concentration properties like a comparison of moments or Laplace transforms as in
the M/M/∞ case above. Moreover, this refined ordering might appear for instance
when using de-la-Vallée-Poussin’s lemma about uniform integrability of a family of
random variables. However, in contrast to the ≤d ordering, the authors ignore if
there exists a genuine interpretation of the convex domination in terms of coupling.

Coming back to our birth-death framework, we observe that if we want to use the
intertwining relation (2.2) of theorem 2.1 in order to obtain stochastic domination,
then a first difficulty arises. Indeed, another birth-death process appears in the right-
hand-side of (2.2), namely the u-modification of the original process. Therefore, let
us provide first a lemma which allows us to compare two birth-death processes with
respect to the ≤d ordering. Although the result below is somewhat obvious from the
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point of view of coupling, we give an alternative proof based on the interpolation
method emphasized in the proof of theorem 2.1. See also [S, prop. 4.2.10].

Lemma 3.15 (Stochastic comparison of birth-death processes). Let (Xx
t )t≥0 and

(X̃x
t )t≥0 be two birth-death processes both starting from x ∈ N. Denoting respectively

λ, ν and λ̃, ν̃ the transition rates of the associated generators L and L̃, we assume
that they satisfy the following assumption:

λ̃ ≤ λ and ν̃ ≥ ν

Then for every t ≥ 0, the random variable X̃x
t is stochastically smaller than Xx

t . In
other words, we have X̃x

t ≤d Xx
t .

Proof. Let g ∈ Fd and define the function s ∈ [0, t] 7→ J(s) := P̃sPt−sg where
(Pt)t≥0 and (P̃t)t≥0 are the semigroups of (Xx

t )t≥0 and (X̃x
t )t≥0 respectively. By

differentiation, we have

J ′(s) = P̃s
(
L̃Pt−sg − LPt−sg

)
= P̃s

(
(λ̃− λ) ∂Pt−sg + (ν̃ − ν) ∂∗Pt−sg

)
,

which is non-positive since the semigroup (Pt)t≥0 satisfies the propagation of mono-
tonicity, cf. remark 2.4. Hence the function J is non-increasing and the desired
result holds. �

Now we are able to state the following corollary of theorem 2.1, which states a
new convex domination involving decoupled random variables in the right-hand-
side. However, despite some particular cases like the M/M/1 case for which the
convenient coupling appearing in the proof of corollary 3.12 allows us to extend the
next result to the ≤d ordering, we ignore if it can be done in full generality.

Corollary 3.16 (Convex domination). Denote (Xy
t )t≥0 a birth-death process start-

ing at some point y ∈ N. We assume that the birth rate λ is non-increasing and that
there exists κ ≥ 0 such that

∂(ν − λ) ≥ κ.

Then for any t ≥ 0 and any x ∈ N, the random variable Xx+1
t is convex dominated

by the independent sum of Xx
t and a Bernoulli random variable Yt of parameter

e−κt ∈ (0, 1]. In other words, we have
Xx+1
t ≤c X

x
t + Yt.

Proof. We have to show that for any function f ∈ Fc,

E
[
f(Xx+1

t )
]
≤ E[f(Xx

t + Yt)]. (3.16)

Using the intertwining relation (2.2) of theorem 2.1, we have since f is non-decreasing:

E
[
f(Xx+1

t )
]
≤ E[f(Xx

t )] + e−κt E
[
∂f(Xx

1,t)
]

≤ E[f(Xx
t )] + e−κt E[∂f(Xx

t )]
= (1− e−κt)E[f(Xx

t )] + e−κt E[f(Xx
t + 1)]

= E[f(Xx
t + Yt)],

where to obtain the second inequality we used lemma 3.15 with the 1-modification
process (Xx

1,t)t≥0 playing the role of (X̃x
t )t≥0 since ∂f is non-decreasing (recall that

f ∈ Fc). �
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Remark 3.17 (More on convex domination). By an easy recursive argument one
obtains from the latter result the following convex domination:

Xx
t ≤c X

0
t +B

(x)
t ,

where B(x)
t is a binomial random variable of parameters (x, e−κt), independent from

X0
t , as in the case of the M/M/∞ queuing process.

Acknowledgments. The authors are grateful to Arnaud Guillin and Laurent Miclo
for their remarks during the ANR EVOL meeting held in Hammamet (2010). They
also thank the anonymous referees for their helpful suggestions and comments. This
work was partially supported by the French ANR Project EVOL.

References
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[Cha1] D. Chafäı, Entropies, convexity, and functional inequalities: on Φ-entropies and Φ-Sobolev
inequalities. J. Math. Kyoto Univ. 44(2):325-363, 2004.
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[W] L. Wu, Poincaré and transportation inequalities for Gibbs measures under the Dobrushin
uniqueness condition, Ann. Probab., 34(5), 1960-1989, 2006.
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