Feuille de TD 4 Classification des chaînes de Markov

Exercice 1

Déterminez les classes (ainsi que leur nature) de la chaîne de Markov de matrice de transition donnée par

$$P = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 & 0 \\ 0 & 0 & 0 & 1/2 & 1/2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

Exercice 2

Même question avec la matrice de transition

$$P = \begin{pmatrix} 1/2 & 0 & 0 & 0 & 1/2 \\ 0 & 1/2 & 0 & 1/2 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1/4 & 1/4 & 1/4 & 1/4 \\ 1/2 & 0 & 0 & 0 & 1/2 \end{pmatrix}.$$

Exercice 3

On lance indéfiniment un dé équilibré à 4 faces : $E = \{1, 2, 3, 4\}$, et l'on définit la variable aléatoire X_n comme le maximum des n premiers lancers. On suppose de surcroît que les lancers sont indépendants de l'état initial $X_0 \in E$.

- 1 Montrez que la suite $(X_n)_{n\in\mathbb{N}}$ est une chaîne de Markov sur E, dont on précisera la matrice de transition.
- 2 Déterminez les classes de la chaîne.
- 3 Calculez le temps moyen mis par la chaîne pour atteindre l'état absorbant.

Exercice 4

On considère dans cet exercice la marche aléatoire simple sur \mathbb{Z} . C'est une chaîne de Markov à valeurs dans \mathbb{Z} et de matrice de transition donnée par

$$P(x,y) = \begin{cases} p & \text{si } y = x+1, \\ q & \text{si } y = x-1, \\ 0 & \text{sinon,} \end{cases}$$

avec $p \in]0,1[$ et q = 1 - p.

- 1 Montrez que la chaîne est irréductible.
- 2 Justifiez les égalités suivantes :

$$P^{2n+1}(0,0) = 0$$
, et $P^{2n}(0,0) = C_{2n}^n p^n q^n$, $n \ge 1$,

et donnez un équivalent de $P^{2n}(0,0)$ au voisinage de l'infini. On s'aidera de la formule de Stirling : $n! \sim \sqrt{2\pi n}(n/e)^n$.

3 - Déduisez-en que la chaîne est récurrente dans le cas symétrique p=q=1/2, et transitoire lorsque $p \neq q$.

Exercice 5

On considère dans cet exercice une file d'attente à temps discret. Soit $(U_n)_{n\geq 1}$ une suite i.i.d. intégrable de loi μ sur \mathbb{N} , indépendante d'une variable aléatoire entière X_0 . On définit la suite de variables aléatoires $(X_n)_{n\in\mathbb{N}}$ par

$$X_{n+1} = X_n - 1_{\{X_n \ge 1\}} + U_{n+1}, \quad n \in \mathbb{N}.$$

- 1 Montrez que la suite $(X_n)_{n\in\mathbb{N}}$ est une chaîne de Markov sur \mathbb{N} , et précisez sa matrice de transition P.
- 2 Montrez que l'on a la minoration

$$X_n \ge n \left(\frac{1}{n} \sum_{k=1}^n U_k - 1\right), \quad n \ge 1.$$

3 - En utilisant la loi forte des grands nombres, i.e.

$$\mathbb{P}\left(\lim_{n\to+\infty} n^{-1} \sum_{k=1}^n U_k = \mathbb{E}[U_1]\right) = 1,$$

montrez que si $\mathbb{E}[U_1] > 1$, alors $\mathbb{P}_x(\lim_{n \to +\infty} X_n = +\infty) = 1$ pour tout $x \in \mathbb{N}$.

- 4 Déduisez-en que la chaîne est transitoire dans le cas $\mathbb{E}[U_1] > 1$.
- 5 Montrez que si $\mathbb{E}[U_1] < 1$, alors le point 0 est récurrent.

Exercice 6 (CC2 2009-2010)

Soit $(X_n)_{n\in\mathbb{N}}$ une chaîne de Markov sur \mathbb{N} , de matrice de transition P définie pour tout $x\in\mathbb{N}$ par

$$P(x,y) = \begin{cases} \frac{1}{x+2} & \text{si } y = 0; \\ \frac{x+1}{x+2} & \text{si } y = x+1; \\ 0 & \text{sinon.} \end{cases}$$

- 1 Dessinez le graphe de cette chaîne et déduisez-en qu'elle est irréductible.
- 2 Soit $T_0 = \inf\{n \ge 1 : X_n = 0\}$ le temps de retour en 0 de la chaîne. Montrez que la formule suivante est satisfaite :

$$\mathbb{P}_0(T_0 = n) = \frac{1}{n(n+1)}, \quad n \in \mathbb{N}_*.$$
 (*)

- 3 En utilisant (*), démontrez que la chaîne est récurrente.
- 4 Déterminez $\mathbb{E}_0[T_0]$ et concluez sur la récurrence nulle ou positive de la chaîne.

Exercice 7 (CC2 2010-2011)

Soit $N \geq 2$ un entier quelconque et considérons $(X_n)_{n \in \mathbb{N}}$ la chaîne de Markov sur $E = \{0, 1, \dots, N\}$ de matrice de transition P donnée par

$$P(x,y) = C_N^y (\pi_x)^y (1 - \pi_x)^{N-y}, \text{ avec } \pi_x = \frac{1 - q^x}{1 - q^N}, x, y \in E,$$

où $q \in]0,1[$ est un paramètre fixé. On conviendra dans la suite que $0^0 = 1$.

- 1 Vérifiez que ${\cal P}$ est bien une matrice stochastique.
- 2 Déterminez les classes de la chaîne ainsi que leur nature (récurrence ou transience).
- 3 Montrez que l'identité suivante est satisfaite:

$$\mathbb{P}(X_{n+1} \notin \{0, N\}) = \sum_{x=1}^{N-1} (1 - \pi_x^N - (1 - \pi_x)^N) \, \mathbb{P}(X_n = x).$$

- 4 En posant $a_n = \mathbb{P}(X_n \notin \{0, N\})$ pour tout $n \in \mathbb{N}$, déduisez-en qu'il existe $\beta \in]0, 1[$, dépendant seulement de N, tel que pour tout $n \in \mathbb{N}$, on ait $a_{n+1} \leq \beta a_n$. <u>Indication:</u> on étudiera sur]0, 1[la fonction $u \mapsto 1 - u^N - (1 - u)^N$.
- 5 Posons $T = \inf\{n \geq 0 : X_n \in \{0, N\}\}$, représentant le temps d'absorption de la chaîne par les états 0 ou N. En utilisant ce qui précède, montrez que pour tout $n \in \mathbb{N}$,

$$\mathbb{P}(T > n) \le a_0 \, \beta^n.$$

6 - Déduisez-en soigneusement que $\mathbb{P}(T<\infty)=1$. Ce résultat était-il prévisible?