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ABSTRACT. We study the linear stability of compressible vortex
sheets in two space dimensions. Under a supersonic condition
that precludes violent instabilities, we prove an energy estimate
for the linearized boundary value problem. Since the problem
is characteristic, the estimate we prove exhibits a loss of control
on the trace of the solution. Furthermore, the failure of the uni-
form Kreiss-Lopatinskii condition yields a loss of derivatives in
the energy estimate.

1. INTRODUCTION

A velocity discontinuity in an inviscid flow is called a vorzex sheet. In three-space
dimensions, a vortex sheet has vorticity concentrated along a surface in the space.
In two-space dimensions, the vorticity is concentrated along a curve in the plane.
The present paper deals with compressible vortex sheets, i.e., vortex sheets in a
compressible flow.

If the solution is piecewise constant on either side of the interface of discon-
tinuity, one has planar vortex sheets in the three dimensional case and rectilinear
vortex sheets in the two dimensional case, respectively. The linear stability of pla-
nar and rectilinear compressible vortex sheets has been analyzed a long time ago,
see [12,27]. In three space dimensions, planar vortex sheets are known to be vio-
lently unstable (see e.g. [30]). In the two dimensional case, subsonic vortex sheets
are also violently unstable, while supersonic vortex sheets are neutrally linearly sta-
ble, see e.g. [27,30]. This result formally agrees with the theory of incompressible
vortex sheets. In fact, in the incompressible limit, the speed of sound tends to in-
finity, with the result that two-dimensional vortex sheets are always unstable. This
kind of instability is usually referred to as the Kelvin-Helmholtz instability. For
the incompressible theory of two-dimensional vortex sheets, we refer the reader to
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the books [7,22]. Moreover, we refer to [14] for the study of the instability of
vortex sheets when heat conduction is taken into account.

However, the normal modes analysis performed to derive the linear stability
of supersonic vortex sheets is by far not sufficient to guarantee the existence of
nonconstant vortex sheets (that is, contact discontinuities) solutions to the com-
pressible isentropic Euler equations. In this paper, we first show that supersonic
constant vortex sheets are linearly stable, in the sense that the linearized system
(around these particular piecewise constant solutions) obeys an energy estimate.
Then we consider the linearized equations around a perturbation of a constant
vortex sheet, and we show that these linearized equations obey the same energy
estimate. This is a first crucial step towards proving the existence of nonconstant
compressible vortex sheets.

Several points need to be highlighted. First of all, the existence of compress-
ible vortex sheets is a free boundary nonlinear hyperbolic problem. Moreover, the
free boundary is characteristic with respect to both left and right states since we
deal with contact discontinuities. This is one of the reasons why one can not apply
Majda’s analysis on shock waves (see [20,21]), that are noncharacteristic interfaces.
In some previous works devoted to weakly stable shock waves, see [10, 11], the first
author has considered noncharacteristic hyperbolic Initial Boundary Value Prob-
lems that did not meet the uniform Kreiss-Lopatinskii condition. In the case of
vortex sheets, the analysis is closely related, with the additional difficulty that the
boundary is characteristic (the present analysis thus relies more on the work of
Majda and Osher [23] rather than on the work of Kreiss [0, 17]). The connection
with [10, 11] is that in both cases, the analogue of the Kreiss-Lopatinskii condition
is fulfilled but not in a uniform way. Furthermore, in the case of vortex sheets as
in the case of shock waves, the linearized Rankine-Hugoniot conditions form an
elliptic system for the unknown front. This property is a key point in our work
since it allows to eliminate the unknown front and to consider a standard Bound-
ary Value Problem with a symbolic boundary condition (this ellipticity property
is also crucial in Majda’s analysis on shock waves [20,21]).

Regarding the energy estimates for the linearized problems, the failure of the
uniform Kreiss-Lopatinskii condition yields a loss of derivatives with respect to
the source terms. Furthermore, because the boundary is characteristic, we expect
to lose some control on the trace of the solution at the boundary. As a matter of
fact, we shall see that the only loss of control is on the tangential velocity (which
corresponds to the “characteristic part” of the solution). The good point is that
the ellipticity of the boundary conditions for the unknown front enables us to
gain one derivative for it, as in Majda’s work on shock waves [20]. Going slightly
more into the details, we shall prove that the only frequencies for which we lose
some control on the solution correspond to bicharacteristic curves. Those curves
originate from those points at the boundary of the space domain where the so-
called Lopatinskii determinant vanishes. In the interior of the space domain, these
singularities propagate along two bicharacteristics associated with the incoming
modes.
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Let us now describe the content of the paper. In Section 2, we present the
nonlinear equations describing the evolution of compressible vortex sheets and
introduce some notations. Then, in Section 3, we shall consider the linearized
equations around a constant (stationary) vortex sheet. The main result for the
constant coefficient linearized problem is given in Theorems 3.1 and 3.2. After
several reductions, we shall detail in Section 4 the normal modes analysis of the
linearized problem and construct a degenerate Kreiss’ symmetrizers in order to de-
rive our energy estimate. In Section 5, we first present the variable coefficients
linearized problem and introduce Alinhac’s good unknown. Then we paralinearize
the equations, in order to use symbolic calculus and derive the energy estimate. A
precise estimate of the paralinearization errors is given. Eventually, we show how to
control the different pieces of the solution, depending on their microlocalization.
The main result for the variable coefficients linearized problem is given in Theo-
rem 5.1. In Section 6, we make some remarks about possible future achievements.
Appendix A is devoted to the proof of several technical lemmas and Appendix
B gathers the main results on paradifferential calculus that are used throughout
Section 5.

2. THE NONLINEAR EQUATIONS

We consider Euler equations of isentropic gas dynamics in the whole plane R2.
Denoting by u the velocity of the fluid and p the density, the equations read:

{atp + V- (pu) =0,

2.1) or(pu) + V- (puou) + Vp =0,

where p = p(p) is the pressure law. In all this paper, p is assumed to be a strictly
increasing function of p, defined on 10, +o[. We also assume that p is a C*
function of p. The speed of sound c(p) in the fluid is then defined by the relation

c(p) :==+/p’(p).

Let (p,u)(t, x1,x2) be a smooth function on either side of a smooth hyper-
surface T := {x, = @(t,x1)}. Then (p,u) is a (weak) solution of (2.1) if and
only if (p,u) is a classical solution of (2.1) on both sides of T and the Rankine-
Hugoniot conditions hold at each point of T:

(2.2a) or@lpl —[pu-v] =0,
(2.2b) or@lpul —[(pu-viul - [plv =0,

where v := (—=0x, @, 1) is a (space) normal vector to I'. As usual, [q] = q* —q~
denotes the jump of a quantity g across the interface I (see [29]).

Following Lax [18], we shall say that (p,u) is a contact discontinuity if the
Rankine-Hugoniot conditions (2.2) are satisfied in the following way:

op=ut-v=u-v, pT=p.
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Because p is monotone, the previous equalities read

(2.3) oo =ut-v=u-v, pt=p.
Since the density and the normal velocity are continuous across the interface T,
the only jump experimented by the solution is on the tangential velocity. (Here,
normal and tangential mean normal and tangential with respect to I'). For this
reason, a contact discontinuity is a vortex sheet and we shall make no distinction
in the terminology we use.

Note that the first two equalities above are nothing but eikonal equations: if
X2 = @(t,x1) is the equation of the interface I, then @ satisfies

0@ +A2(pt,ut, 0, @) =0 and 0@+ Ax(pT,u",0x, @) =0,
on {x, = 0}, where

AZ(p!uig) =u- (_El)’ gERy

is the second characteristic field of the system (2.1). It is linearly degenerate since
the corresponding eigenvector, in the quasilinear form of (2.1), is given by

0
TZ(pau!E) = 1
3

Recall that the space dimension equals 2.

The interface I, or equivalently the function @, is part of the unknowns of
the problem. We thus deal with a free boundary problem. As it is common in this
kind of situation, we first straighten the unknown front in order to work in a fixed
domain. More precisely, the unknowns (p, u), that are smooth on either side of
{x2 = @(t,x1)}, are replaced by the functions

(pf,up)(t, x1,x2) := (p,n)(t,x1,®(t, x1,X2)),
(py,uy)(t,x1,x2) 1= (p,u)(t, x1, (L, x1, —Xx2)),

where ® is a smooth function satisfying
Ox,®(t,x1,x2) =2 k>0, &(t,x1,0) = @(t,x1).

With these requirements for ®, all functions pf, uﬁ are smooth on the fixed do-
main {x; > 0}. For convenience, we drop the # index and only keep the + and
— exponents. We also define the functions

D™ (t, x1,x2) := D(t, x1, £x2),
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which are both smooth on the half-space {x; > 0}.

Let us denote by v and u the two components of the velocity, that is, u =
(v,u). Then the existence of compressible vortex sheets amounts to proving the
existence of smooth solutions to the following system:

N
(2.42) OrpT + V0, T+ (U — 01 DT — U+ax1¢+)axz_f)
ax2¢+
Ox,u* Ox, @
+p o v +p” azdﬁ -p* ai:q)+ ox, v+ =0,
a +
(24b) vt +vto vt + (Ut - 0" - v+ax]<1>+)axz%
X2

+_v’(p*)a +__p%p*)8n¢+a .

p+ X1 p+ 5X2¢>+ sz
+ + + + + + N
(2.4c) U + VIO UT + (UT = 0P — VT Oy, ) TH—
axz(b+
p,(p+) asz+ _

+ pT b =0,
- — - — — — — asz_
(24d) 0p” +V 0P + (U — 0P —V 0y, D7) -
Ox,®

_ _ _Ox,u” _ Ox, @™ _

+p 0,V +p e p 3,0 O0x, v~ =0,
_ _ _ _ _ _ O, U™
(2.4e) 0V +V OV +(UT — 0P — VU 0x, D7) —
axz(b

p'(p7) _ p(p7) 0x, @ _

+ p_ axlp — pi_ aZT asz = 0,
- - _ _ _ _ _ Oy, U”
(2.4f) U + Vv 0 U+ (U — 0P —V 0y, D7) —
Ox,®

" p'(p7) Ox,p~ ~ 0,

p_ aXZ(I)_
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in the fixed domain {x; > 0}, together with the boundary conditions

+ — b —
[x,=0 — (I)|x2:0 =P,
— + _ _a- -
at(p - v‘xz:O axl(p + u|x2:0 - v|x2:0 axl(p + u|X2:0’
+ o
p|xz=0 - p|x2=0'

For convenience, we rewrite the boundary conditions in the following way:

(2.5a) @I{z:o = @@2:0 = @,

(25b) (1}+ - ‘U_)\XZZO axl(p - (u+ - u_)|X2:0 = 0’
(2.5¢) ot + v‘f(zzo Ox, @ — uf;zzo =0,

(2.5d) (PT =P )iy = 0.

The functions ®* and ®~ should also satisfy

(2.6) 0, T (t,x1,Xx2) = K, 0x,® (t,x1,X2) < —K,

for a suitable constant Kk > 0.
In [20,21], Majda makes the particular choice

D" (t,x1,Xx2) 1= =x2 + Q(t,x1).

This choice is appropriate in the study of shock waves because these are nonchar-
acteristic discontinuities. In the study of contact discontinuities, it seems rather
natural to choose the change of variables ®* such that the eikonal equations

®t + Ay(pt,ut, 0, @) = 0 dT + V¥ O, ®" —u” =0,
(P +Aa(p U, 0, ) = 0 d + vV 9, d —u” =0,

are satisfied in the whole closed half-space {x, > 0}. This choice, that is in-
spired from [13], has several advantages. First, it simplifies much the expression
of the nonlinear equations (2.4). But it also implies that the so-called boundary
matrix has constant rank in the whole space domain {x; = 0}, and not only on
the boundary {x, = 0}. This will enable us to develop a Kreiss’ symmetrizers
technique, in the spirit of [23]. We shall go back to this feature later on.

The problem is thus the construction of (local in time) smooth solutions to
(2.4)—(2.5)—(2.6), once initial data have been prescribed. Of course, such initial
data will have to fulfill a certain number of compatibility conditions. The first step
in proving such an existence result is the study of the linearized problem around
a particular constant solution, and this is our first main result, see Theorems 3.1
and 3.2. The second step is the study of the linearized problem around a (variable
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coefhicients) perturbation of the constant solution. The extension to the variable
coeflicients linearized problem is addressed in the second part of the paper. Our
second main result states that the constant coeflicients energy estimate still holds
when one considers a variable coefhicients linearized problem, see Theorem 5.1.

To avoid overloading the paper, we introduce some compact notations for the
nonlinear equations (2.4). Forall U := (p,v,u)T, we define

v p 0 u 0 p
Al :=|pP/p v 0, AU):= 0 u 0f.
0 v 0 u

0 p'(p)lp
Then the nonlinear equations (2.4) read
272) Ut + A (U)o U*

+ #(AZ(UU =0T — 05, ®TAI(U)) 0y, U =0,
ax2¢+

(2.7b) U~ +A1(U‘)8X1 U~

+ (Ay(U™) = 0yd™ — 05, ® A (U)) 0, U™ = 0.

1
O, &

With an obvious definition for the differential operator L, the system (2.7) also
reads

(2.8) LU+, veHyut =0, LU ,Vd)U =0.
When no confusion is possible, we also write this system under the form
L(U,V®)U =0,

where U stands for the vector (U*,U~) and ® for (®*,®~). One should always
remember that the interior equations (2.7) are entirely decoupled. The coupling
between the right and left states is made by the boundary conditions (2.5).

There exist many simple solutions of (2.8)—(2.5)—(2.6), that correspond, in
the original variables, to rectilinear vortex sheets:

(p,uy) ifxp, > o0t +nx,
(p,u) = .
(p,u)) ifx, <ot +nx.

Here above, u,, u; are fixed vectors in R2, and p > 0, o and n are fixed real
numbers. These quantities are linked by the Rankine-Hugoniot conditions:

O=-VyN+ Uy =—-VN+ U
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Changing observer if necessary, we may assume without loss of generality
oc=n=u,=u;=0 and v, +v;=0 (vy #0).

In the new variables, this corresponds to the following regular solution of (2.8)—

(2.5)—(2.6):
p p
V|, U=|v], &, x1,x) = +x2,
0 0

with the relation v, + v; = 0. We only consider the case v, # 0, and without
loss of generality, we assume v, > 0. In the next section, we study the linearized
equations around the particular solution defined by (2.9). Under a certain “super-
sonic” assumption, we shall show that the linearized equations satisfy an a priori
energy estimate.

(2.9) Uy

3. THE CONSTANT COEFFICIENTS LINEARIZED SYSTEM

3.1. The linearized equations. Let us denote by p.,u., V. some small per-
turbations of the exact solution given by (2.9). Up to second order, the perturba-
tions Ux = (P, U+, ts)7 satisfy

(3.1a) 0Us +A1(Ur)ax1U+ + Ay (Uy) asz+ =0,
(3.1b) 0tU_ + A (U)) 0, U- — Ay (Up) 0x,U- = 0,

in the domain {x, > 0}, together with the linearized Rankine-Hugoniot relations

(3.2a) ¥, =Y. =y,

(3.2b) (Vy —v1) O, — (14 —u-) =0,
(3.2¢) Ot + Vy Oy, — iy =0,
(3.2d) p+—p-=0,

on the boundary {x, = 0}. In short, equations (3.1)—(3.2) read

(33) {L’U =0, ifXg >0,

B(U,yp) =0, ifx;=0,
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with U := (U, U_), and obvious definitions for the operators L’ and B:

Ty U+ Al(Ur) 0 U+ AZ(Ur) 0 U+
vo=a (o (07 ) o (o) (07 ) ()

(vr - vl) axlw - (u+ - u,)
B(U,y) := Ot + Uy Ox, ¥ — 114

P+ = P-

It is important to note that the interior equations do not involve the perturbation
W, so L’ is an operator that only acts on U. This property also holds when one
studies the linearized shock wave equations around a planar shock, see [20,25].

Proving an energy estimate for the linearized equations amounts to working
with source terms, both in the interior domain and on the boundary. From now
on, we thus consider the linear equations

L,U = f, isz > 0,
34 {MU&0=% ifx = 0,

and try to estimate U and ¢ in terms of f and g (in appropriate functional spaces).
In order to simplify the subsequent calculations, we introduce some new unknown
functions, and define the following quantities:

W1 = 1.)+, Wz:
Wg:=v_, Ws:

3 (=pelp+ai/c), Wsi=3(pe/p+iti/c),

(3.5) L, . . 1, - .
s(=p-Ilp+tu-/c), Ws:=5(p-/p+u-/c).

We also define the following vectors:

W = (W, Wa, W3, Wy, Ws, We)T,
We = (W, Wy)T,
W = (W, W3, Ws, We)T.

The notations W¢ and W"¢ are introduced in order to separate the “characteristic
» <« M M »

part” of the vector W and the “noncharacteristic part” of W. We shall go back

to this decomposition later on. It is obvious that estimating W is equivalent to

estimating U.
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Let us define the following 6 X 6 symmetric matrices:

1 0 0
0 2¢2 0 (0]
0 0 2c¢
(36) ./’Zlo = 1 0 0 y
0] 0 2¢2 0
0 0 2c2
v, —c? c?
—c? 2c¢%v, 0 (0]
c? 0 2c%v,
(3.7) Ap = v —c? 2 |
O —c? 2¢2v; 0
c? 0 2c%y;
0 0 0
0 -2¢3 0 0]
0 0 2¢3
(3.8) A, = 0 0 0 ,
(0] 0 2¢3 0
0 0 -2c3

where O stands for the 3 x 3 null matrix, as well as the following

0 vy —v 0 2v, -c —c ¢ ¢
(39) b = 1 Vy = 1 Vy y M = —C —C 0 0 .
0 0 0 O -1 1 1 -1

Then, using (3.5)—(3.6)—(3.9), the linear equations (3.4) equivalently read

LW = f, ifXg > 0,

(-10) <{B(W“C, W) =g, ifx,=0,

with new f and g, and where we have let

LW:= A, atW + A, a,ﬁW + A, axZW,

nc . nc at(ll
BW™, @) := MW™|__, +b (%w)'

Note that the kernel of A is exactly the set of those W such that W¢ = 0 (and
We is arbitrary). The boundary {x; = 0} is thus characteristic with multiplicity
2. As already noted in earlier works, see e.g. [19,23], we expect to lose control of
the trace of W¢, that is, on the trace of the tangential velocities (v, V_). At the
opposite, we expect to control the trace of W"¢ on {x, = 0}, that is, we expect to
control the trace of (P4, p_, 1., 1_).
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3.2. The main result for the constant coefficients case. Before stating our
energy estimate for the system (3.10), we need to introduce some Sobolev weighted
norms. First define the half-space

Q:={(t,x1,x3) € R¥s.t. x, >0} = RZx R".

The boundary 0} is identified to R?.
For all real number s and all y > 1, define the space

H; (R?) := {u € D'(R?) s.t. exp(—yt)u € H*(R?)}.
It is equipped with the norm
el r2) =l exp(=y ) ullps r2)-

Letting 71 := exp(—yt)u, one has

el = 1ils,y, where |[v]]Z, =

s 2
Gz |0+ TER @1 s,

where U is the Fourier transform of any function v defined on R?.

For all integers k, one can define the space H ;f (Q) in an entirely similar way.
The space LZ(R+;H§,(R2)) is equipped with the norm

2 oo 2
0 gy = [ Il e e

In the sequel, the variable in R? is (t, x1), while x; is the variable in R*.
Our first main result is stated as follows.

Theorem 3.1. Assume that the particular solution defined by (2.9) satisfies

(3.11) vy — v > 242¢.

Then there exists a positive constant C such that for all y = 1 and for all (W, ) €
H(Q) x Hy (R?), the following estimate holds:

(3.12) yIW I Z @ + 191l lE2 e + 10l @)

<c(mzwmpmw+ |wwwcwmmma)
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Introducing W .= exp(—yt)W and P = exp(—yt)y, we easily find that
(3.10) is equivalent to

LYW = yﬂoW + LW
=exp(=yt)f, if x2> 0,
| o _ D+ 0
(313) B)’(WI]C’(I}) = MW‘IIC70 +Q y([} NtW
*2= axlqj
= exp(—-yt)g, if x5 = 0.

Consequently, Theorem 3.1 admits the following equivalent formulation.

Theorem 3.2. Assume that (3.11) holds. Then there exists a positive constant C

such that for all y = 1 and for all (W, P) € H2(Q) x H2(R?), the following estimate
holds:

(3.14) v IIW o+ W lls + Pl

[xp=0

1 ~ 1 ~ o~
<c(SENOTIR, + 2@ pls,).
In (3.14), we have used the following notations for any v € L*(R*; H*(R?)):

Ioll2y = | el dxe

For instance, ||| - [llo,y is the usual norm on L?(Q) and does not involve y, so
we shall denote it by [l - lllo. The norm ||| - [[l1,, is the weighted norm on
L2(R*, H (R?)).

4. PROOF OF THEOREM 3.2

4.1. Some preliminary reductions. In this paragraph, we show that it is suf-
ficient to prove Theorem 3.2 in the particular case £YW = 0. This first reduction
simplifies many subsequent calculations. The argument we use was introduced in
(23, page 630].

In order to simplify notations, we drop the tildas. Let W € H?(Q) and
@ € H%(R?). Then we define:

fi=LYWeHYQ), g:=B (W™, yp)eH (R?).

Consider the following auxiliary problem:

4.1 MEswRe, =0, ifx; =0,

1 [x;=0

{LYWI = f, if x, > 0,
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where M*"™* is defined by

(0100
M "(0 01 o>'

In the auxiliary problem (4.1), the boundary conditions are maximally dissipative
(see the formula (3.6) defining the matrix A5). Since f € L2(R*; H'(R?)), it
follows from [19] that there exists a function W; € L2(R*; H! (R2)), such that the
trace of W} on {x; = 0} belongs to H!(R?), and that is a solution to (4.1). In
particular, the function W; satisfies the following estimates:

(4.22 VWil < S LI
@) Wy = S, = S [l de

Let us define W, := W — W;. It satisfies

LYW, =0, if x, >0,
BY (W3, @) = g — MW, if x, =0.

XZZO’

Consequently, if we manage to prove that Theorem 3.2 holds true as long as the
interior source term is zero, we shall obtain

2 ne 2 2 C ne 2
y w2l +1wze o+ llwlly, < ?Ilg =Myl

s§<\|g\|iy+||wm I17)-

1 ‘XZZO

Then using (4.2) to estimate the H! norm of the trace of W as well as the L?
norm of Wy, we shall derive our main energy estimate (3.14). Without loss of
generality, we thus assume from now on that W and y satisfy

(43) yA0W+A0 atW-l—.ﬂ] 8X1W+JZL2 aXZW =0

in the interior domain Q, as well as the following boundary conditions

Yy + oy

(4.4) MW™__ +b
ax1 W

)zg, x, = 0.

With slight abuse of notations, we still denote the source term in the boundary
conditions by g, instead of g — MW7, This is of pure convenience.
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Recall that all matrices A ; are symmetric, and that Ay is positive definite, see
(3.6). Taking the scalar product of (4.3) with W and integrating over Q yields the
following inequality:

ylIlwlIlg < cliwee,,_ll5-

Consequently, it is sufficient to derive an estimate of the form

C
4.5) wee Lo + lwllf, < pHgHiy

in order to obtain (3.14).

We shall derive (4.5) by means of a Kreiss' symmetrizer, whose construction
is detailed in the next paragraphs. Once performed a Fourier transform in (£, x1),
the first step consists in “eliminating” the front ¢ in the boundary conditions
(4.4). We emphasize that this operation is possible, even though the vortex sheet
is a characteristic boundary. Then we shall detail the normal modes analysis and
construct a symbolic symmetrizer.

4.2. Eliminating the front. As mentionned above, we focus on (4.3)—(4.4),
and perform a Fourier transform in (¢,x7). The dual variables are denoted by
(6,n). We also define T := y + id. This is the Laplace dual variable (indeed, the
previous manipulations amount to performing a Laplace transform with respect
to t). We obrtain the following system of differential equations:

o~

(4.6a) (TAy+inANW + ﬂzd—w =0, x>0,
dXz
(4.6b) b(t,m§ + MW=(0) = g,
where b(T,n) is simply defined by
2iv,yn
(4.7) b(t,n):=b (;) |1 +iven
0

Recall that b and M are defined by (3.9). Observe that b(T,n) is homogeneous
(of degree 1) with respect to (T, n). In order to take such homogeneity properties
into account, we define the hemisphere

S:={(1,n) € CxRs.t. |T|>+v2n? =1and RT = 0}.
Recall that T is the Laplace dual variable of the time variable t, while n is the

Fourier dual variable of x1, so T/n is a velocity. Our definition of X takes this
property into account.
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We denote by E the set
E:={(y,8,n) €[0,+00[ x R?s.t. (y,6,n) # (0,0,0)} =10, +oo[ - X.

It is the set of “frequencies” we shall consider in the sequel. We always identify
(y,0) eR?andT =y +i6 € C.

One crucial remark is that the symbol b(T,n) is elliptic, that is, it does not
vanish on the closed hemisphere =. More precisely, we have the following lemma.

Lemma 4.1. There exists a C* mapping Q defined on E such that Q has values
in GL3(C), is homogeneous of degree 0, and satisfies

0
v(t,n) €8 Q(t,mb(t,n) = 0 ,
&(T,n)

where & is C®, homogeneous of degree 1, and has the additional property:

min |3(T,n)| > 0.
(T,mex

Proof. We shall define the mapping Q on X and then extend Q by homo-
geneity. If we define

0 0 1
vV(t,n) € Q(t,n):=|T+iven =2iv,n 0],
—2iv,n T—1ivyn O

then we check that Q has all the required properties. The corresponding ¢ is given
by

v(T,n) €, 9(1,n):=I|T +iv,nl*+4vin.
Note that the last row of Q (T, n) is nothing but b(T,n)*, when (T,n) € 2. O

Let us multiply the boundary conditions in (4.6) by the matrix Q (T, n). We
obtain:

0

~ (BT,m)\ —

(4.8) 0 Y+ ( > wne(0) = Q(t,mg,
(9(T,n)) )

where B has two rows while £ has one row and

(B(T,n)
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The exact expression of £ is useless, but we shall use the expression of B:

(4.9)
-1 1 1 -1
B(T,n) = ( )

—c(T +1ivin) —c(t +1ivin) c(t +iven) c(T +1ivyn)
v (t,n) € 3.

Both B and ¢ are homogeneous of degree 0 and C® on E.
The last equation in (4.8) is

v(T,mes, T,mP+LT,nWe)=hb(t,n*g,

since b* is the last row of Q. Using the ellipticity property of ¢ (see Lemma 4.1)
together with a uniform bound for £ and b* on X, we obtain

V(T,n) €8 (TP +v2n®) P> < CUW(0)]> +141%).

Let us now integrate this last inequality with respect to (8,n) € R2. (Recall that
0 is the imaginary part of T). Using Plancherel’s Theorem, we obtain

(4.10) lwllty = CUW 06+ lallo)

e, 12 4 L1112
< ¢ (Il + S5llalR, )

In order to derive (4.5), it is therefore sufficient to derive an estimate of the
trace of W™, Consequently, we focus on the reduced problem

(TA¢ + in AW + ﬂzdl =0, x>0,
dXz

B(T,nWne(0) = h,

and try to derive an estimate for Wr<(0). One has to remember that the source

term h € C? is easily estimated by g, sce (4.8).

In the next paragraph, we recall that under the assumption made in Theorems
3.1 and 3.2, the above boundary problem satisfies the Kreiss-Lopatinskii condition
but violates the uniform Kreiss-Lopatinskii condition.

4.3. The normal modes analysis. Writing W = (W1, Wa, W3, Wy, Ws, W) T,
the two first equations in (4.6) are:
(T + v, Wi — ic2nW, + ic?nWs = 0,

(T + ivin) Wy — ic2nWs + icinWs = 0.
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They do not involve derivation with respect to the normal variable x,. For Rt >

0, we obtain an expression for W, and Wy that we plug in the last four equations.
This operation yields a system of ordinary differential equations of the following
form:

dwne
(4.11) dXZ
B(T,mWnc(0) = h,  ifx,=0.

= A(T,n)Wne, ifx, >0,

The matrix A(T,n) in (4.11) is given by

u'r _m'r O 0
my —Uy 0 0

0 0 -m; M
/o) (T +iven)?* + (c/2)n?
T,l = . ’
T + iUy N
(c/2)n?
My = I
T+ iV N

A well-known result, that is due to Hersh [15] in the noncharacteristic case
(see [23] for the extension to the characteristic case), asserts that the matrix A (T, n)
has no purely imaginary eigenvalue as long as RT > 0. As a consequence, the sta-
ble subspace of A(T,n) has constant dimension when RT > 0. This dimension
equals the number of characteristics going out of the discontinuity. In our case,
those theoretical results can be checked directly by computing the eigenvalues and
the stable subspace of A(T,n). The following lemma gives an expression of the
stable subspace.

Lemma 4.2. Let T € C and n € R, with RT > 0 and (t,n) € 3. The
eigenvalues of A(T,n) are the roots w of the dispersion relations

(4.13a) w?=p-m?= é(’l’ +iv,n)? +n?,
(4.13b) w? = pi —mi = %(T +ivin)* + n*.
In particular, (4.13a) (resp. (4.13b)) admits a unique root wy (resp. wy) of negative

real part. The other roor of (4.13a) (resp. (4.13b)) is —wy (resp. —wi), and has
positive real part. The stable subspace E~(T,n) of A(T,n) has dimension 2, and is
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spanned by the two following vectors:

C

1 , c , T
2172, ST ivyn)? + Enz —(T+ lvrn)wr,0,0> :

(4.142) E,(T.n) := (

T
(4.14b)  Ei(T,n) := (0,0, %(T +ivm)? + %nz — (T + v wy, %nz) .

Both wy and w; admit a continuwous extension to any point (T,n) such that
RT = 0 and (t,n) € =. This allows to extend both vectors E, and E; in (4.14) to
the whole hemisphere 3. Those two vectors are linearly independent for any value of
(t,n) € 2.

The symbol A(T,n) is diagonalizable as long as both wy and w; do not vanish,
that is, when T + (£, = ¢)in. Away from such points, A admits a C* basis of
eigenvectors.

The proof follows from straightforward computations, and we shall omit it.

We point out that the stable subspace £~ (T, n) is defined for all (T,n) € X,
while the matrix A (T, n) has some poles on the boundary of =, see (4.12). The
poles are exactly those points (T,n) € X verifying T = —iv, ;0 = Fiv,n (recall
that we have v, = —v; = 0).

Following Majda and Osher [23], we define the Lopatinskii determinant as-
sociated with the boundary conditions f in the following way:

(4.15) A(T,n) = det|B(r,m) (Er(T,m) Eu(T,m)],

with B defined by (4.9) and (E,, E;) defined by (4.14). We emphasize that the
Lopatinskii determinant A is defined on the whole hemisphere X and is continu-
ous with respect to (T, n). The first step in proving an energy estimate for (4.11)
consists in determining whether A vanishes on =. The answer is given in the
following result.

Proposition 4.3. Assume that (3.11) holds. Then there exists a positive number
Vi such that for any (T,n) € X, one has A(T,n) = 0 if and only if

T=0 or T==+iVin.

Each of these roots is simple. For instance, there exists a neighborhood V of (0,1/vy)
in X and a C* function h defined onV such that

v(t,n) eV, A(t,n) =Tth(t,n) and h(0,1/v,) = 0.

A similar result holds near (0,—1/v,) or near the points (xiVin,n) € .

The number Vy is given by Vi = c* + v} — cv\Jc2 + 4vi. In particular, one has:
0<Vi<vy—c WhenTt =0 o0rt = £iVin, both eigenmodes w, and w; are
purely imaginary.
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We postpone the proof of Proposition 4.3 to Appendix A. We simply note
here that the three critical speeds =V, 0, V) are exactly the speeds of the kink
modes exhibited in the work by Artola and Majda [2]. As a matter of fact, Artola
and Majda used a “geometric optics approach,” while we have followed here a
“normal modes analysis approach.” However, the calculations are similar in both
cases (in [2], the number n equals 1).

4.4. Constructing a symmetrizer: the interior points. We now turn to the
construction of our degenerate Kreiss' symmetrizer. The construction is microlo-
cal and is achieved near any point (To, o) € =. The analysis is rather long since
one has to distinguish between five different cases. In the end, we shall consider a
partition of unity to patch things together and derive our energy estimate.

In all the rest of the article, the letter k denotes a generic positive constant
(typically, though not necessarily, a rather small one).

We first consider the case (Tg,n9) € = with Rty > 0. Then the matrix
A(T,n) is diagonalizable for all (T,n) close to (To,no). A smooth (that is, C*)
basis of eigenvectors is given by the following family:

Er(T;n), El(T;n),

c 5,1 . 2 € o . g
i ,E(Tﬂvm) o + (T +ivyn)wy,0,0)

(0 0,1 (t +ivim)? + Sn? + (7 + ivmew, & 2>T

il mn 2'7 n)wi, 2'7 .

Both vectors E; and Ej are defined by (4.14). Therefore, there exists a C* mapping
T(T,n), defined on a neighborhood "V of (7o, ng) in X, with values in GL4(C),
and such that

w, 0 0 0
_ 0 w; 0 0
1 _
Viom eV, TamATmTTm= =1 g o _,
0 0 0 -w

The first two columns of the matrix T(T,n) ! are the vectors E, and E;. In the
neighborhood V, we define the symmetrizer 7 in the usual way:

-1 0 0 O
-1 0 0

V(T’n) EV, V(T;r’) = 0 0 K 0]’
0 0 0 K

where K > 1 is a positive real number, to be fixed large enough. In what follows,
we use the standard notation

M+ M*

RM :
2
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for all square matrix M with complex entries (M* is the classical adjoint matrix).
The matrix 7 defined just above is hermitian, and we have

(4.16) Vv(t,meV, Re@(T,nTT,MAT,NT(T,n)"") =kl = kyl,

for some positive constant K. This is because w;, and w; have negative real part
when (T,n) € V,and y < 1 when (1,n) € 2.

We now simply need to fix K = 1 in order to recover an estimate for the trace
of Wn¢. We show that for K sufficiently large, the following inequality holds:

(4.17) v(t,nm eV, r(t,n+CBT,n*B(t,n) =1,

where C is a positive constant and B(T, n) :=B(t,mT(t,n)"L.
Let Z = (Z-, ZH)T € C4, with Z~, Z* € C2. We write

Br.mz =B, (ZO> + B (ZO> ,

and recall that the first two columns of T(7,n)~! are E, and E;. Because the
Lopatinskii determinant does not vanish at (7o, no), see (4.15) and Proposition
4.3, we obtain an estimate of the form

1Z712 < CoUZH 1+ 1B(T,n) Z1?),

for a suitable constant Cy that is independent of (T,n) € V. With Cy satisfying
this inequality, the definition of ¥ yields

r(T,mZ, Z)ci + 2G|l B(T,mZI1> = =1 Z7 1> + K| Z* > + 2Col B(T, ) Z|?
>|Z7 12+ (K =2Cy) | Z" 2.

This gives (4.17) for K large enough (e.g., K = 2Cp + 1).

4.5. Constructing a symmetrizer: the boundary points (case 1). We now
turn to the construction of the symmetrizer near those points (T,n) € X such that
RT = 0. We first prove a general result on the behavior of the eigenmodes wy,; in
the neighborhood of such points.

Lemma 4.4. Let (To,No) € X so that RTy = 0 and 19 # (—v, = ¢)ing. In
particular, Wy depends analytically on (T,n) near (1o, No). Then the two following
cases may occur:

(1) The eigenmode wy has negative real part at (To, No), and, in a suitable neigh-
borhood "V of (To,no), one has

Rw, < —k < 0.
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(2) The eigenmode wy is purely imaginary at (To,No). In this case, the derivative
Oy Wy calculated at (To, No) is a nonzero real number. In a suitable neighborhood
V of (1o, No) in =, we have

Rwy < —KY.

A completely similar result holds for w near all points (o, no) € X satisfying RTo =
0 and T9 = (—v; = ¢)ino.

Proof. Because Tg # (—Vy £ ¢)ino, the eigenmode w; is not zero at (To, No)
and it depends analytically on (T, n) by the implicit functions theorem.
The first case in Lemma 4.4 simply follows from the continuity of w;, with
respect to (T, n). In the second case, we use (4.13a) to derive

ow 1 .
Wy ayr = S (T +ivyn).

C

When T = Tg and n = ng, one has w, € iR\ {0} and (T¢ + iv, 1) € iR. This
proves that the derivative 0, w, is real. We now remark that 79 # —iv, no for, in
such a case, w; has negative real part. Consequently, the derivative 9, w; is not
zero. The estimate on Rw), is obtained by performing a Taylor expansion of w,
at (To, No)- =

According to Proposition 4.3, there are exactly four types of points on the
boundary of

(1) Those points (7o, no) where A(To, no) is diagonalizable and the Lopatinskii
condition is satisfied at (Tg, no).

(2) Those points (To, no) where A(To, no) is diagonalizable and the Lopatinskii
condition breaks down at (T, ng).

(3) Those points (To,no) where A(To,no) is not diagonalizable, that is, T9 =
(£Vy =¢)ino. In this case, Proposition 4.3 asserts that the Lopatinskii condi-
tion is satisfied at (T, no).

(4) Those points (To, no) that are the poles of A, that is, Top = £ivyng. At those
points, the Lopatinskii condition is satisfied.

As a matter of fact, an immediate consequence of Proposition 4.3 is that when-
ever the Lopatinskii condition fails at (To, no), then (7o, o) is not a pole and the
symbol A (T, n) is (smoothly) diagonalizable in a neighborhood of (o, no). The
three first categories of boundary points can thus be treated as in [0, 10,17, 28],
provided the technical assumptions of [10] near instability points hold. We are
going to show that such technical assumptions hold true. The last category of
boundary points (the poles of the symbol A) requires special attention.

We now deal with the construction of our symmetrizer in case 1: (To,no) € =
is such that A (7o, no) is diagonalizable and the Lopatinskii condition is satisfied
at (To, No), that is, A(To, ng) # 0.
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Because A (To, No) is diagonalizable, we have 79 # (+v, = ¢)ino. Hence
there exists a neighborhood "V of (7o, no) in X and a smooth basis of eigenvectors
of A defined on V. The smooth basis is the same as in the case of interior points

(see the preceding paragraph). We thus have

w, 0 0 0
1 w] 0 0
Viom eV, TamATmTTm=" =1 o o _4, o |

where, once again, the two first columns of T(T,n)~! are exactly E, and E;. We
choose 7 as in the case of interior points:

-1 0 0 O
-1 0 0

V(T’n) EV, V(T;r’) = 0 0O K o]’
0 0 0 K

with K > 1 to be fixed large enough. Clearly, v is a hermitian matrix. Using
Lemma 4.4, we can already conclude that

(4.18) vt,n) eV, R@(T,nT(T,nATnT(T,n)"") =«kyl.

Because the Lopatinskii condition is satisfied at (o, o), it is possible to choose K
large enough so that the following estimate holds:

(4.19) V(T,n) eV, r(t,n +CBT,n)*B(t,n) =1.

In (4.19), we have let, as usual, B(T,n) := B(T,n)T(T,n)~!. The analysis is the
same as what we have done for interior points. The estimates (4.18)—(4.19) are
similar (but not exactly identical) to (4.16)—(4.17).

4.6. Constructing a symmetrizer: the boundary points (case 2). In this
paragraph, we consider a point (7o, o) € X such that the Lopatinskii determinant
A vanishes at (79, n9). From Proposition 4.3, we know that the symbol A is
smoothly diagonalizable on a neighborhood V of (79, n¢) in X. In other words,
there exists a smooth mapping T(T, n) with values in GL4(C), and such that

wy 0 0 0
_ 0 w1 0 0
1 _
vt,meV, Ta,nAT,nT(t,n) = 0 0 -w, 0
0 0 0 -w
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The first two columns of T(T,n)~! are E, and E;. In this case, we define our
symmetrizer ¥ in the following (degenerate) way:

-y2 0 0 O

0 -y2 0 0
V(t,n) eV, r(t,n) := 0 g K ol

0 0 0 K

with K > 1 to be fixed large enough. The matrix ¥ (T, n) is hermitian and we have

y2 0 00
(4.20) R (t,mT(T,MA(T,mMT(T,n)~") = Ky 8 )2)2 (1) 8 ’
0 0 01
Vv (T,n) €V.

It only remains to fix K appropriately in order to recover an estimate on the
boundary. The choice of K relies on the following lemma.

Lemma 4.5. Ler (To,n0) € = be a point where the Lopatinskii determinant
vanishes. Then there exists a neighborhood ™V of (To,no) in = and a constant ko > 0
such that the following estimate holds for all (T,n) € V:

vz e, |[B(r,n(E-(t,n) E(t,m)z \2 = Kkoy*1Z7 %,

Before proving Lemma 4.5, let us first show that it enables us to obtain an
estimate between ¥ and the boundary matrix B. More precisely, we are going to
show the following estimate:

(4.21) Vv,m eV, r(,n +CBEn)* BT, n =y,

for an appropriate positive constant C. The definition of B(T,n) is the same as in
the preceding cases.

Let Z = (Z7,Z)T € C4, where Z~ and Z* belong to C2. Once again, we
write

Br.mz =B, (ZO) + B (ZO> ,

and we recall that the first two columns of T(T,n) ™! are E, and E;. Using Lemma
4.5, we obtain

Koy 1Z71? < Co(1Z*+ 1 + IB(T,m) Z|?).
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We thus derive

2Co & 2Co &
(r(T,mZ, Z)ce+ S2IBTmZIE = =y 27 1P+ KIZH P+ S 2B, m 21
>y Z71? + (K—&> | Z+)2.
Ko
Choosing K = 2Cy/ Ko + 1 yields
2C0 R 2 2 —12 +12 2 2
<r(T,n)Z,Z>c4+70|B(T,n)ZI 2y Z7 1P+ 12717 = yTIZ)

Here we have much weakened our estimate for the last two components Z*. How-
ever, an inequality like (4.21) is simpler to use since it does not distinguish between
the different coordinates of the vector Z. One should remember that the real loss
of control is on the modes w;, and w;, and not on the modes —w, and —w;.

The proof of Lemma 4.5 is postponed to Appendix A. It relies on the fact that
the roots of the Lopatinskii determinant A are simple (see Proposition 4.3).

4.7. Constructing a symmetrizer: the boundary points (case 3). In this
paragraph, we consider a point (To, no) € X such that 79 = —iv, 0o = icno. (The
case Top = —iviNo=icn is entirely similar, and we shall not detail it). Because v; =
—v, and v, > ¢v/2, we have Tg # —iving * icno, and therefore, the eigenmode
w; depends smoothly on (T,n) in a neighborhood V of (79, n9). Oppositely,
w, is only continuous with respect to (T,n) near (7o, no), but w2 is C* near
(To, no). This is because (4.13a) has a double root when (7,n) = (19, no).

When (T, n) is close to (To, No), the following family is a C* basis of C4:

(my, -m,,0,007,  (-7,0,0,0)T, Ei(T,n),

1 c C r
(0,0, E(T +1ivin)? + znz + (T + ivin)wy, 5”2> )

Recall that m; is defined by (4.12). Let T(7,n)~! be the (regular) matrix whose
columns are those four vectors. We compute

a O O
T(T,MAT,NT(T,mM =0 w 0 |,
O 0 -—-w

where a, is the 2 x 2 matrix defined as follows:

—cw? ;
T+ 1VN
aT(T, n) = . 2 2
2imycwy cwy

T+1V,n T+1VyN
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In particular, we have
0 1 .
ay(To,No) = (0 0) =: iN.

Moreover, we make the following observations:

— For all (1,n) close to (19, no) so that T € iR, a, has purely imaginary coefh-
clents.
— The lower left coefficient &, of a, satisfies

09,
W(TO,’?O) € R\ {0}.

Here we have exhibited a basis in which Ralston’s result [28] applies. Readers who
are familiar with the theory will have recognized the “block structure condition,”
that is a consequence here of the strict hyperbolicity of (2.1), see [24].

We are looking for a symmetrizer  under the form

s(t,n) O O
r(t,n) = (0] -1 0],

0] 0 K

where K > 1 is a real number, to be fixed large enough, and s is some 2 x 2
hermitian matrix, depending smoothly on (T, n). More precisely, we are looking
for the matrix s under the following form

(0 e f(t,n) 0y . (0 —g
=0 8)- (57 (s )

E F(T,n) G

where e;, e; and g are real numbers, and f is a real valued C* mapping that
vanishes at (7o, o), see [6, 17,28]. We choose e; in the following way:

-1
ey := (%(To,no)) € R\ {0},

where 9, is defined just above. This choice may look surprising but it will be
justified later on.
Now we observe that our choice of s yields (yo = 0):

061 0

0

ep e 0 O
Y(TO!HO): 01 02_1 0
K
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Moreover, the first and third columns of T(To,n9) ! are nothing but E, (7o, no)
and E;(To,no). This is due to the equality 4, = —m, when (1,n) = (7o, no)-
Because Lopatinskii’s condition is satified at (7o, 1¢), we can choose e, and K
large enough such that the following estimate holds:

7 (T, M0) + C(B(To,n0))* B(To,10) = I.

As was done before, we have let B(T, n) := B(t,mT(t,n)~. Up to shrinking
'V, we have thus derived the following estimate

(4.22) Vt,m eV, r(r,n+CB,n*BT,n =1l
for a suitable constant C.
Now, we show how to choose the real valued function f and the real number

g. We first write

ar(T,n) = ar(To,no) + (ar(id,n) — ar(To,Nno)) + (ar(T,n) — a,(id,n)),

and then use Taylor’s formula. We obtain

a?’(ia,m Mt ),

a,(t,n) =iN + (a,(id,n) — ar(To,N0)) + ¥ 3

for a suitable continuous function M. Because a;, has purely imaginary coefficients
when T is purely imaginary, we have

. C(ibGsm 0\
a,(i6,n) — ar (1o, No) = (ibz(ié,n) ib3 (i, n)) =:1B,(id,n),

for some C®, real valued mappings b1, b,, b3. Those three mappings obviously
vanish at (Tg, nog). We choose

f(t,n):=ei(bi(id,n) — b3(id,n)) + e2by(id, n),

so that f is a C*® real valued mapping that vanishes at (7o, n9). Moreover, this
choice of f implies that the matrix

(E+F(T,n)(N + By (i6,n))

is real and symmetric for all (7, n). Consequently, we obtain

R(s(T,na,(T,n)) = yR (GN + B9 (ié,n)> +yL(T,n),

oy
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where L is continuous (it is even C%) and L(T¢, n9) = 0. Our choice for e; yields

oay 00 1 %
(o) -3 ) (1 1)

where the * are coeflicients that only depend on e, e, (that have already been
fixed) and (7o, n¢). Choosing g large enough, and shrinking V' if necessary, we
end up with

R(s(T,mar(T,n) = Lyl,
and we thus obtain
(4.23) Vt,n eV, RaE,mMT(T,nNAT,nNTT,n ") =>«kyl.

4.8. Constructing a symmetrizer: the boundary points (case 4). We now
consider the last case, which is (Tg,ng) € = with 19 = —iv, n9. (We shall not
detail the case To = —ivino that is entirely similar). The symbol A is not defined
at (To, no), while the stable subspace £~ of A admits a continuous extension at
this point. The family (E;, E;) is a C*® basis of £~ near (To, no), see Lemma 4.2,
and Lopatinskii’s condition is satisfied near (7o, o), see Proposition 4.3.

The eigenmode w, has negative real part when (7, n) is close to (o, no), see
(4.13a). Oppositely, the eigenmode w; is purely imaginary when (7, n) is close
to (To,No) and RT = 0, see (4.13b). Furthermore, both w;, and w; depend
analytically on (T, n) in a neighborhood "V of (79, no).

The matrix A is not smoothly diagonalizable on V. This is because the eigen-
vector associated with the eigenvalue —w, tends to be parallel to the eigenvector
associated with the eigenvalue w;,. Consequently, Majda and Osher’s construc-
tion of a symmetrizer in this case involves a singularity in the symmetrizer, see
[23]. We prefer to avoid this singularity and construct a smooth (that is, C®)
symmetrizer in the whole neighborhood V. This is possible if we go back to the
original system:

(4.24a) (TAo + in AW + ﬂzd—w =0, x>0,
dXz
(4.24b) B(t,m)Wnc(0) = h,

The following analysis is inspired from [4]. For (T,n) in a neighborhood V of
(To, No), the following matrix is regular (that is, invertible):
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(4.25) T(T,n):=

1 —icn(T+ivy,n—cwy) 0
c
0 > 0 O

0 (T +ivyn) (uy — wy) 1

1 icn(t +ivin—cw;) icn(T +ivin + cwy)

o 0  (T+ivn)(u—w)  (T+ivm) (u + w))
€ 2 C 5
0 2N 2N

To avoid overloading the equations, we shall simply denote by O the 3 X 3 zero
matrix. The determinant of 7 (7, n) is given by

2
detT (T,n) = %n‘*(T +ivin)wy,

and it is easy to check that this quantity does not vanish near (79, no). The matrix
T depends smoothly on (T, n) in the whole neighborhood V. It has no pole.
Let us define

. 1 . .
(4.26a) & := (T +1ivyn)(Uy — Wy) = E(T +ivyn)? + %nz = (T +ivyn)wy,

(4.26b) EF = (T +ivn) (u + w)) = %(T +ivm)? + %n2 + (T + ivn) .

The main idea now is that (4.24a) has a simple expression if we decompose
the vector W in the basis defined by 7. In other words, the matrices (T A +
inA)T (t,n) and A, 7T (7, n) have a rather similar structure. Performing some
manipulations on the rows of these two matrices, we shall transform (4.24a) into
an “almost diagonal” system of differential equations.

After some simplifications, we obtain the following expressions:

(Tﬂo + ll’)./’zll)T

T +1iv,n 0 ic’n
—ic?n cnfw, 0 O
_ ic’n 203w, & 2c*(T +1ivyn)
3pt] T+ 1ivin 0 0 ’
3pt] 0] —ic’n  -23wi§ 2w

ic’n cnfw; —c*nfw
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0 0 0
0 —c%n? 0 (0]
3 3
AT = 0 2c¢°& 2c ,
0 0 0
O 0 203§ 20§

0 _C4n2 _C4rl2

where & and & are defined by (4.26a)—(4.26b). These expressions may look
somehow complicated, but it is not so hard to simplify them multiplying on the
left by a suitable symmetrizer. Indeed, for all (T,n) in a neighborhood V of
(To, No), let us define the following matrix:

(4.27) Ri(T,n) :=

1 0 0
0 1 0 (0
2icin(t +ivyn —cw,)  2c3E,  cin?
1 0 0
(0] =2ic*n(T +ivin +cwy)  cin? 203E)

=2ic*n(T +ivin —cwy)  cin? 203E;
First we obtain
R1A,T = diag(0, —c%n?,2¢"n?,0, —4c’n* (T + ivin) wy, 4c’n? (T + ivin) wy),

where diag(as,...,a,) stands for the diagonal matrix whose diagonal elements
are i, ..., dp. We also obtain the following expression:

(4.28) Ri(TA+inA)T =

T +1iv,n 0 ic’n
—ic?n c‘n*w, 0 (@)
0 0 2¢'n*w,
T +1ivn 0 0
O 0 4’ n?wi(T +ivn) 0
0 0 4c7n*wi(T +ivin)

Recall that wy, n and (T+iv;n) do not vanish in the neighborhood "V of (g, no),
up to shrinking V. The following matrix is therefore a C* mapping of (T,n) on
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(4.29) Ry(T,n)

:=diag (1,1 ! 1 ! L
- 2¢7n?’ 7V 4c7n2wi (T + ivn) " 47w (T +ivin) )
We define
S(t,n) := Ra(T,n)R (T, n),

where R; and R, are defined by (4.27)—(4.29). It is now easy to derive the follow-
ing equalities for all (T,n) in V:

(4303) S(Tin)ﬂZT(T!n) = diag(oy_c4n211101_1!1)!
(4.30b) S(T,m(TAg +inA)T (T,n)
T +iv,n 0 ictn
—ic’n  c*n*w, 0 O
_ 0 0 Wy
B T+ivin 0 O
(0] 0 w; 0
0 0 w;

In particular, it is important to observe that both matrices S and 7 are C* on the
whole neighborhood V. Up to shrinking 'V, we may assume that w, has negative
real part for all (T,n) € V. This is possible because w, = —|n| at (7o, no).

Though a little complicated, the preceding calculations are based on the sim-
ple idea that the differential equations (4.24a) have an easy expression if we replace
the standard coordinates by the coordinates on the stable subspace. The difficulty
comes from the fact that we deal with the differential system satisfied by W and not
with the system satisfied by Wne. Because the boundary is characteristic, (4.24a) is
not an ordinary differential equation, and we thus need to diagonalize simultane-
ously (TA¢ + inA;) and A,. Even though the matrix S(TA( + inA;)7T is not
diagonal, we shall see that the reduced expressions (4.30a)—(4.30b) are sufficient
to derive energy estimates in such a neighborhood "V of the pole (To, no).

4.9. Derivation of the energy estimate. Ve now turn to the derivation of
the estimate (4.5). Recall that we are considering a function W € H 1(Q) such
that

o~

(TAy+inANW + ﬂzd—w =0, x>0,
dXz

B(T,nWne(0) = h,

where h is obtained from the source term g in (4.06) after eliminating the unknown

front:
A 0 0 1\ .
vitm ez, h= (T+ivm —2iv,n 0) g-
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Thanks to (4.10), it is sufficient to get an estimate of the trace of W"¢ on
{x, = 0} in order to derive (4.5).

The previous analysis shows that for all (Ty, no) € X, there exists a neighbor-
hood V of (79, no) in = and mappings defined on this neighborhood that satisfy
certain properties. Because X is a C* compact manifold, there exists a finite cov-
ering (V1,..., V1) of X by such neighborhoods, and a smooth partition of unity
(Xy,--+»X;y) associated with this covering. Namely, the x;’s are nonnegative, C%,

and satisfy

I
Suppx; € Vi and > xZ=

i=1
There are three different cases.

In the first case, Vi is a neighborhood of an interior point or a neighborhood
of a boundary point corresponding to cases 1 and 3 above (boundary points that
are not poles and for which the Lopatinskii condition is satisfied). On such a
neighborhood, there exist two C* mappings 7; and T; such that
— 7; is hermitian,

— T; has values in GL4(C),
— the following estimates hold for all (T,n) € V;:

(4.31a) Rri(t,mTi(t,M AT, Ti(t,n) ") = kiyl,
(4.31b) ri(t,n) + Ci(B(T,MTi(t,n) " H*B(T,mTi(t,n)" ' = 1.

The inequalities (4.31) are direct consequences of (4.16)—(4.17)—(4.18)—(4.19)—
(4.22)—(4.23).
We define

Ui(T,n,%2) := X; (T, M) T; (T, n)Wre(8, 1, x2).

Both mappings ¥; and T; are not defined on X but only on the neighborhood
i. However, only the values of these mappings on the support of x; will be
involved in the subsequent calculations, so we choose for convenience to extend
these mappings to the whole hemishpere =. Then we extend x;, 7i, T; to the
whole set of frequencies £ as homogeneous mappings of degree 0 with respect to
(t,n).
Because V; does not contain any pole of the symbol A, which is defined by
(4.12), one easily shows that U; satisfies

au;
dXz

B(T,mTi(t,n)~'U;(0) = x;h.

= Ti(t,n AT, nTi(t,n) Ui, x>0,
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We take the scalar product of this later ordinary differential equation with v;U;
and integrate with respect to x, on R*. Then we take the real part of the obtained
equality and use (4.31). These operations yield the classical Kreiss™ estimate:

+ 00 1 A
Ki}’JO |Ui (T, n,x2) 1> dx> + §|Ui(T,rI,O)|2 < Cix;(t,m?*Ih(T,n) %

Now we use the definition of U; and a uniform bound for || T; (T, n) !l on the
support of x;, to derive

+ 00
(4.32) yxl-(T,n)zL W5 (8,1, x2)1% doxz + X, (T, )2 Wie(8, 1, 0) |2
< Cix; (T, m?| A2

In the second case, Vi is a neighborhood of a zero of the Lopatinskii deter-
minant. On such a neighborhood, there exist two C® mappings #; and T; such
that

— 7 is hermitian,
— T; has values in GL4(C),
— the following estimates hold for all (T,n) € V;:
(4.332) R (T, Ti (T, M AT, ) Ti(t,m™") = kiy’I,
(4.33b) ri(t,n) + G(B(T,mMTi(t,n) " H*B(T,MTi(t,n)~" = y*I.
These inequalities correspond to (4.20)—(4.21).

As was done before, we first extend #; and T; as C* mappings on the whole
hemisphere 3. Then we extend T; and x; as homogeneous mappings of degree 0
with respect to (T,n), and we extend 7; as a homogeneous mapping of degree 2

with respect to (T,n). Thus (4.33) reads

(4.342) Rri(T,mTi(t,M AT, MTi(t,n)"") = kiy’I,

(4.34b) ri(T,n) + Ci(ITI> + vinH) B(T, M Ti(t,n) " H*B(T,n) Ti(t,n)!
>y,

forall (T,n) € R* - V. Once again, we define
Ui(T,1,%2) 1= Xy (T, M T (T, mW(8, 1, X2).
Because V; does not contain any pole of A, we still have

au;
dXz

B(T,mTi(t,n)~'U;(0) = x;h.

= Ti(t,n AT, nTi(t,n) Ui, x>0,
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We perform the same calculations as above (in the first case), but now we use

(4.34) instead of (4.31). We obtain

+

(4.35)  yx;(T, n)ZJ (Wne (8,1, x2) 1> doxy + x;(T,m)2[Wne(8,n,0) |

0
C: R
< y—;xi(r,n>2|h|2<|r|2 +vin?).
In the third and last case, "V is a neighborhood of a pole of the symbol A. For
instance, 'V; is a neighborhood of a point (—iv,ng, No) € =. In this case, we have
shown that there exists C* mappings 7; and S; defined on V; such that

— T has values in GLg(C),
— both relations (4.30a)—(4.30b) hold on V;.

Recall that w; has negative real part on V;.

Here, we extend x;, T; and S; as homogeneous mappings of degree 0 with
respect to (T,n). Moreover, we shall make as if T; and S; were defined on the
whole hemisphere X (this is of pure convenience since only the values on the
support of x; are involved in what follows). We define

Ui(T,n,%2) = x; (T, M Ti(T,m) "' W(8,n,x2) € C°.
The components of the vector U; are denoted as follows
Ui = (Ui1, Ui, ..., Uie) T,
and we also define
U := (Ui, Ui, Uis, Uig) T € C.

Using the definition (4.25) of T;(T, n), it is clear that the vector U}° is given by a
relation of the form

U = Ti(t,n)"'Wre,  with T;(T,n) € GL4(C).

We also note that the first and third column vectors of the matrix T;(T,n) are
exactly the vectors E, (T,n) and Ei(T,n). With these notations and definitions,
we get

(Ao + inANTH(T, MUs + A, Ti(T, n)jff ~0, x50,
2

B(T,m)Ti(T, U (0) = x,(T,n)h.
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Multiplying the equation in {x; > 0} by S;(T,n) and using (4.30a)—(4.30b), we
obtain the following system:

(4.36a) (T +ivyn)Ui; +ic’nU;s = 0,

42,2 4142 .
(4.36b) —ic’nU; + m Uis — |T|2C+’7v%n2 ‘i&f _
(4.360) w, Uy s + ”gii’; =0,
(4.36d) (t+ivin)Uis =0,
(4.36¢) wiUss “Zﬁf —0,
(4.366) wiUig + igg’f 0.

Recall that when (T, n) belongs to the conical set R* - V;, one has
Rwy < k([T +v2n>)? and Rw; < —KY,

for a suitable constant k > 0. Because U;3(x2) and Uj(x2) belong to L2(RY),
for y > 0, (4.36¢) and (4.36f) imply U;3 = 0 and Ui = 0. Using (4.36a) and
(4.36d), we also obtain U;; = 0 and Uj4 = 0. Eventually, (4.36b) and (4.36¢)
reduce to

au;,
dXz

=0 and wUis — Cfigjcls =0
2

Wy Ui,2 -

Because the first and third columns of T; (T, n) are nothing but E, and E; defined
in Lemma 4.2, the boundary conditions for U;; and Uj s read:

Ui (0)

(4.37) B(T,n) (ET(T;W) Ez(T,rl)) (U )
i,5

) = Xi(T, r’)]:l
Using the properties of w, and w; on the conical set R* - V;, we derive
+ 00
(TR vt 2 | Uit n ) P dxs < ClU(run, O,
+ 00
v[ W P dx < Cluis(rn, 000

Because the uniform Lopatinskii condition is satisfied on V;, (4.37) yields the
following estimate:

2
Uia(T,n,0) L
‘ (Ui,s(T,n,0)> ‘ < Cx;(T,n)"|h|~.
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Eventually, we obtain
+ 00 N
y |10 s + 100, 00 < Cx(r ) P
We now use the definition of the vector U} to derive
+ 00
(4.38) YX; L [Wne(8,n,x2) 12 dxy + XF 1W< (8,n,0)|* < Cx?lh|*.

We now add up (4.32)—(4.35)—(4.38), and use that the x;’s form a partition
of unity. We obtain

+ 00 o o C n
yjo 75 (5,m,62) 2 dx + 77(6,m,0) 2 = (I + vjn?)

We have already recalled that /1 is simply obtained from the source term g in (4.6)
by multiplying by a uniformly bounded matrix. Thus integrating the previous
inequality with respect to (6,1) € R? and using Plancherel’s theorem yields the
desired estimate:

ne ||| 2 nc 2 C 2
yllweelllg +wee,, Ll < ?Hglll,y-

Combining with (4.10), we have finished to prove (4.5). O

5. THE VARIABLE COEFFICIENTS LINEARIZED PROBLEM

5.1. The linearized equations and the main result. We introduce the lin-
earized equations around a state given by a perturbation of the constant solution
in (2.9). More precisely, let us consider the functions

p P
(5'1) U’I’ = (171’) + UT1 Ul = (_171’) + Ul) (1)1"1 (1)11
0 0

where p, U, are fixed positive constants (in this section we introduce the small
change of notation v, — v, for the piecewise constant solution) and where

pr(t,x1,X2) . pr(t, x1,X2)
Up(t,x1,x2) = [ vr(t,x1,X2) |, Up(t,x1,x2) = | Ur(t,x1,X2) |,

Uy (£, x1,X2) Uy (£, X1,X2)

pi(t, x1,x2) . pi(t, x1,x2)
Ui(t,x1,x2) = | vilt,x1,x2) |,  Uit,x1,x2) = | vi(t,x1,x2) |.

uy(t, x1,x2) uy(t, x1,x2)
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The functions ®,, ®; are perturbations of the change of variables. The index »
(resp. 1) denotes the state on the right (resp. on the left) of the interface (after the
change of variables). We assume that

(5.2a) Uy, U, V®,, VI, € Wa2(Q),
(5.2b) Uy, U w2y + 1(VEy, VO w2 () < Ko,

where Kj is a suitable positive constant, and that the perturbations Uy, U; have
compact support. These quantities are linked by the Rankine-Hugoniot condi-
tions and the continuity condition for the functions ®,; that, written in the form
of (2.5), become

(5.32) ®, (t,x1,0) = &1(t,x1,0) = @(L,x1),
(5.3b) (Vr = V1) |4y Ox, @ — (Wy — 1)y, =0,
(5.30) 0t @ + Vrly,_g Ox, @ — Ur|y,_, = 0,
(5.3d) (Pr = PV gy = 0.

The functions ®, and ®; should also satisfy

(5.43) at@V + vr axl(b‘y - u‘r = O,
(5.4b) 0t ®; + V1 0x, 91 —u; =0,
together with

(5.5) axzq)r = K(), axzq)l < _KO,

for a suitable constant ko > 0, in the whole closed half-space {x; > 0}.
Let us consider the families U = Uy, + sUs, ®5 = &1 + sV., where s is a
small parameter. We compute the linearized equations

’ d + + +
L (UT,l! V(I)T,l)(Uil\Ili) = EL(US_, V(I)S_) 575:() = fi-

We obtain

1
(56) atUJr + AI(UV) axl U+ + —q)(AZ(UT) - atq:’r - axl‘DVAl(Ur)) ax2U+

axz v

Ox, ¥
+ [dAl(Ur)U+]aX1Ur - (axch +)2 (Az(Ur) - atq)r - axlq)rAl(Ur)) aszr
X2 *r
1
+ 3.® [dA (U Uy — 0:Y1 — 04, Y+ A1 (Uy) — 0x, 0, dA (U-) U4 04, Uy = f,
X2 *¥r

in the domain {x; > 0}, and a similar equation with U_, Y_, U;, ®;, f- instead
of Uy, Yo, Uy, @y, f+. Recall that, according to the definition in (2.7), (2.8), the
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first row in (5.6) may be simply denoted by L(U,, V&, )U., namely we set:

LUy, V&, ) Uy := atU+ +A1(Ur) ax1 U,

(AZ(U‘I") - at(pr axlq)rAl(Ur)) ax2U+-
axz(b‘y

The equation (5.6) and the corresponding one for (U-, ¥_) may be simplified by
the introduction of “la bonne inconnue” (the good unknown) as in [1]:

Y-

&
3o 0nUn U :=U_ - 50

(57) U+ = U+ aXZUl

Ox,

A direct calculation shows that U.., U_ satisfy

Yy

L(Uy, V®)Us + C(Uy, VU, V) U, + P
X2 ¥V

aXz[L(UTIVCDT)UT f+’

L(UL V@)U~ + C(UL, VU, VU~ + 50, [L(UL, Ve U] = £,
X2 l

where

C(Uy, VUy, V‘1)1’)U+ = [dAl(Ur)U+]ax1 Uy

[dAZ(UV)U+ axlq)rdAl(Ur)U+]ax2Ury
axz(p‘r

and with a similar expression for C(Uj, VU, V®)U_. In view of the results in
[1,13], we neglect the zeroth order term in Y., ¥_ in the linearized equations and
thus consider the linear equations

(5.8a) L;/U+ = L(Uy, vq)r)UJr + C(Uy, VUy, V‘I)V)U+ = f4,
(5.8b) LiU- := L(U, V&) U- + C(U, VU, Ve)U- = f-.

We easily verify, using (5.2), that the coefficients of the operators L(Uy, V®,) and
L(U;, V®;) are in W2®(Q), that is

A1(Uy) € W»(Q), (A2(Uy) = 0r®y — 0, Br A1 (Uy)) € WH™(Q),

axz (br

A (U) € WH™(Q), (A2 (Up) — 0@ — Ox, ®1A1 (U))) € WH™(Q).

aXz

Moreover, we have C(Uy 1, VU, 1, V&, 1) € W (Q). It is clear that the linearized
equations (5.8) form a symmetrizable hyperbolic system. For instance, a Friedrichs
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symmetrizer for the operator L} is given by

(p'(pr)/pr) 0 0

Sy = 0 pr 0
0 0 pr

Using (5.4), we compute

S
L (Ay(Uy) — 0r®y — 0x, @y A1 (Uy))

axzq)r
1 0 -p'(pr) axlq)r p’ (pr)
= axzq)r _p,(pr) axlq)r 0 0 ’
p'(pr) 0 0

and we thus expect to control the traces of Ui and (Us3 — 0x,®- U, ) on the
boundary {x, = 0}. These considerations motivate the introduction of the fol-
lowing operator:

. Ui,
5.9 L P
=, 1 -’ x2=0

We now turn to the linearized boundary conditions. The linearization of (2.5)
gives
‘II+‘X2=0 = \Y*\m:o =y,
(Vy =) Ox, P + (Vy = V) 0, @ — (U —U_) = gi,
Oty + Vy Ox Y + Vi 0x, @ — Uy = g2,
P+ —P- =93

on the boundary {x; = 0}. Let us introduce the vector by = (0,1,0)” and the

matrices
0 (vy —V1)ix,=0
Q(t!xl) = 1 vT|X2:0 L]
0

0

0 0@ -1 0 -0y 1
1 0 0 -1 0 0

M(t,x;1) := (0 ox, -1 0 0 0

Let us also denote U = (U, U-)T, Vg = (0;@,0x, )T and g = (g1,92,93)".
Then the boundary conditions equivalently read

\Il+|x2:0 = \Il_|X2:0 = (Ij’ quj + MU|x2=O = g
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In terms of the good unknown U defined by (5.7), the linearized boundary condi-
tions read

(5.103) \II"'\XZ:O = \I’_|X2:0 =y,
(5.10b) B (U,p):=bVy +M OeUr/0q®r W+ MU
. s =D + M + M xp—0 = G-
3, U/ 33,1 |
b

We observe that the linearized boundary conditions only involve the traces of PU.,
and PU_, with P defined by (5.9). With this notation, we can state our main result
(the norms are the weighted norms defined in Section 3).

Theorem 5.1. Assume that the particular solution defined by (5.1) satisfies

(5.11) 7y > \2¢(p),

and that the perturbations Uy, V¥, | have compact support and are small enough
in W2*(Q). Then there exist some constants Cy and y, = 1, that only depend on
Ko and ko (defined in (5.2), (5.5)), such that for all y > y1 and for all (U,yp) €
H§ (Q) xH f,([Rz) the following estimate holds:

. 2 . 2 2
5.12) ylllUl1z0) + IPU,ollizme) + Wi we)
1y, 1,
<A (SN + S Gl e ).

The linearized operators L' and B’ are defined in (5.8) and (5.10).
The remaining part of this section is devoted to the proof of Theorem 5.1.

5.2. Some preliminary transformation. Let us consider again the linearized
equations (5.8). After multiplication by the Friedrichs’ symmetrizer defined above
and a straightforward integration by parts, we easily prove the following lemma.

Lemma 5.2. There exist two constants C > 0 and Yo = 1 such that for all
Y = Yo, the following estimate holds:
Ui 220 < SMLLUL 2 ) + CIIPUL )2
3’||| + |||L§(Q) = ; ||| rY+ |||L?,(Q) + || +Ixz:o||L§(|R2)’

where the operator P is defined in (5.9). The estimate for U_ is the same, namely:

o2 Ciirrrr 112 : 2
y || U- H|L§(Q) = y Il L;U- H|L§(Q) + C||PU—\XZ:OHL§(R2)-
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As was done in the constant coefficients case, it remains to show an estimate
of the traces PU.|,,_, and the front function ¢ in terms of the source terms in
the interior domain and on the boundary. In order to prove such an estimate,
it is convenient to transform further the interior equations (5.8) in order to deal
with a problem with a constant and diagonal boundary matrix (i.e., the matrix
coefficient of 0y, in the differential operators L. ;). This is possible because the
boundary matrix has constant rank in the whole closed half-space. Namely, let us
consider the coefficients of dx, U in (5.8). The coefficients are equal to

1
aX2<1>

(A2(U) = 0¢® — 0x, A1 (U)),

where we forget for the moment the indices , I. Under the assumption (5.4), this
coeflicient reduces to the matrix

0 —pOox,® p
AS(U,V®) = -(p'(P)/p)ox,® 0 0
axz(b
(p'(p)/p) 0 0
which has eigenvalues
AM=0, Ass= iC(P)@xl‘I’)'

O, ®

Here we have introduced the notation (0x,®) = /1 + (0x,®)2. In order to di-

agonalize the above matrix we compute the eigenvectors associated to the above
eigenvalues. We obtain respectively the vectors

(01 ava), <<axl<1>> I
p

T

c(p))f

(@) P
p

Observe that these eigenvectors are not orthonormal (because A5 is not symmet-
ric). Thus, we may define the following (non orthogonal) matrix

0 (0x, @) (0x, @)

c(p) c(p)
TWU,ve):=| 1 _Taxlq) Tax1¢ ,
o P _clp)

p o
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which permits to diagonalize the above matrix A (U, V®):
0 O
Ay O
0 Az

T-Y(U,V®)AS(U, V)T (U, Vd) =

S OO

In order to obtain a constant boundary matrix in the differential operators, we also
introduce the matrix

1 0 0
100 ) o 0
AU, V@) =10 A0 0 | =0 G )
0 0 A; 0 _ 0n®
(p) (0, ®)

It follows that AgT'A5T =1 := diag(0,1,1). Let us define the new unknown
functions W* := T-Y(U,, V&, ) Uy, W~ := T-1(U;, V&) U_, and set

Ty = T(Up s, VO, 1), Abli= Ag(Uy, Vo).

After multiplication on the left side of the equations in (5.8) by Ag‘lTTi |, we see
that W* solve the equations

(5.13a) AL QW™ + AT 0y W* + Lo, W' + ALCTW* = F*,

(5.13b) Abow= + AL o W™ + Lo, W™ + ALClW ™ = F,

where we have set (with slight abuse of notation)

ATl = ANITA T (U, V),
Cl= [T10, T+ T7'A10x, T + T ' A%0x, T + T CT1(Uy 1, VU, V),
+ —
F* = AT,

v

The above equations (5.13) are equivalent to the linearized equations (5.8). Intro-
ducing W= := e Y'W=, the equations (5.13) become equivalent to

(5.14a) LIW* = yAsW* + AL 9, W™
F AT W + L0, W + AFC"W* = e VIFT,
(5.14b) LYW~ = yAbW~ + AL o W~

+ Al1 Ox, W+ I, axZW_ + AéClW‘ = o YIE—.



42 JEAN-FRANCOIS COULOMBEL ¢ PAOLO SECCHI

Recall that we have A;’l e W2*(Q), and C"! € WL (Q). Using the vector W =

(W*,W)T as defined above, the boundary conditions (5.10) become equivalent
to

(5.152) Yo=Y, =,

v T, O
(5.15b) bVy +by + M ( OT Tl) W|X2=0 =9

Introducing W+ and ¥, := e VY., J := e Yy, the equations (5.15) are also
equivalent to

(5.163) ‘fI\}_;. = \II_ = (’Ij,

(5.16b)  BY(W, ) := ybol + bV + b + M (Tr 0) Wi =€ g.

From (5.2) we have

b e W2 (R?), b e wh>(R?),
M eW>*(R*), Try__, € W™ (R).

The next step is to look for an a priori estimate of the solution to the (weighted)
linearized problem (5.14), (5.16). In view of Lemma 5.2, we are looking for an
estimate of PU. and PU_. Of course, we shall derive this estimate using the new
function W. The reader should keep in mind the relations

. (Ox, @) (WS + W3,
P = &5 orzaws - W;mo) |
pr
. <aX1(p>(W27 + W§)|x2:0
PU-|\,o = %(aM(P)z(W{ - Ws_)xzo) ’

from which we easily deduce the estimate

(517) ||[P)U+|x2:0”L§,(IR2) + ||PU7\X2:0||L§([R2)
< C(”(WS—IW;)\XZ:O”L%,(RZ) + ||(W2_,W3_)|X2:0||L§(R2))-

We are thus led to estimating the trace of the vector (W;, W; , Wz_ , V~V3_ ), when
W is a solution to the (weighted) linearized equations (5.14), (5.16). From now
on, for the sake of simplicity, we drop the tildas and write W*, Y., ¢ instead of

W=, ¥., ). Observe that Y., @ are coupled to W* only through the boundary
conditions.
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5.3. Paralinearization. We refer to Appendix B for the definition of parad-
ifferential symbols and operators, where the reader will also find the main results
on paralinearization and symbolic calculus. We recall that the Fourier dual vari-
ables of (t,x) are (6, 1), and that we always denote T = y + i6 the Laplace dual
variable of t. Recall we have introduced the positive constants Ko, ko in (5.2),
(5.5). We now turn to the paralinearization of the linearized equations.

(1) The boundary conditions. Define the following symbols:

0
bo:=|1],
0

vr _vl
bl(tixl) = Uy (t,xlio)i
0

b(t,x1,0,n,y) := Tho + inb; (£, x1).
Because by is constant, we have
ybow +bodrw = T, w.
The main paralinearization estimate (Theorem B.9) yields

C(Ko)

by 0x, 0 = Ty, Wy < Clibyllwe e Il llo < i,y

We now easily obtain

C(Ko)

(5.18) lyboy +bo dr + by 0y, ¢ — Ty Wi,y < y

@i,y

We also have the following inequalities:

C (Ko, ko)

(5.19) by = T wlhy < Clibllws) llwlo < @y,

(5.19b) 1T Wi,y < ClIbllz=) Iy l1y < C(Ko, ko)W1,

where b is defined by (5.10). Eventually, we define the symbol

M(t,x1) = M(t, x1,0) (1(; %) (t,x1,0,
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with the matrices M, Ty, T; defined above. Recall that the state around which the
equations are linearized satisfies

®, (t,x1,0) = &1(8,x1,0) = @(t,x1), pr(t,x1,0) = pi(t, x1,0).

A direct calculation yields

Cy 2 Cy 2 Cl 2 Cl 2
0 ——(0 —(0 0 —(0 ——(0
pr< i P) pr( @) pl( @) pl( @)
M=lo -2 o) 0 0 0
Pr Pr
0 <aX1(p> <aX1(p> 0 _(aX1(p> _<aX1(p>

Thus the matrix M only acts on the noncharacteristic part of the vector W =

(W, W), that is, Wr¢ := (W5, W5, W; , W5 ). Since M € W2 (R?), we have
C nc

(5.20) IMW,,_, = TuWi,, o ll1,y < y IMllw2. 2y IWES_ o

C(Ko)

< || nc

x2=0

llo-

Adding (5.18)—(5.19)—(5.20), we obtain the paralinearization estimate for the
boundary operator:

1
(5.21) IBY (W, @) =Ty @ —TW,,,,lhy < C(Ko, Ko) (nwnl,y + ;nngono) :

We recall that the boundary operator BY is defined by (5.16). Observe that in the

paralinearized version of BY, there is no more zeroth order term in .

(2) The interior equations. We first estimate the paralinearization error for
fixed x7, and then integrate with respect to x,. For instance, we have

2
lyAw — Tl W I,
+ 00
- JO VAALW* (-,x2) = TLW* (x| dxs
+ o0
<O IARC X e W (o x0)
2 2 2

= CllAg 2o W Ilo = CKo W[5

In a completely similar way, we obtain the following estimates

AL 3eW* — T p W ll1y < CKD) W Ilo,
AT 00, W* = T) o W ll1y < CCK) W Ilo,
IAFCTW* = Ty s W1y < C(Ko, ko) W llo-
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Adding these inequalities, we end up with the paralinearization estimate for the
interior equations:

(5.22) Lyw+ — T1¥A5+inAT+A6CVw+ L0, Wy
< C(Ko, ko) W o,

where the linearized operator £ is defined by (5.14). The estimate for the equa-
tion on W~ is identical:

(5.23) LYW =Tl patearaW ™~ 1206 Wy

< C(Ko, ko) lIIW ™ llo-

(3) Eliminating the front. We proceed as in the constant coefficients case, and
show how to eliminate the front ¢ in the (paralinearized) boundary conditions. If
the perturbation is small enough (in the L* norm), there exists a constant ¢ > 0
(depending only on Ko) such that

Ib(t,x1,6,n,¥)1% = c(y? + 6%+ n?).

Applying Gérding’s inequality (Theorem B.7), we obtain
c
Re{Tyep W, W)r2(re) 2 §||W||f,w
for all y = yo (where yo only depends on Ky). Using the rules of symbolic cal-

culus (Theorem B.6), we have Tlg/*b = (Tg)*Tg + RY, where RY is of order < 1.
Consequently, we have an estimate of the form

@iy < C(K) I Ty @llo-

For all y > yq, we thus obtain
(5.24) lwlhy < CKo) 1Ty @ + T Wiy, llo + W), llo)

1
< C(Ko) (yIIT.gyw + Ty Wig,oo Iy + W™, ||0) :

From (5.21) and (5.24) we deduce for y > yq large enough (depending on Kj)
the estimate

1
lwlli,y = C(Ko) <;||BY(W, Wy + IIWR ||0) ,

which shows that it only remains to prove an estimate of W"¢|__ in terms of the
source terms.
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For all (7,n) in the hemisphere X, we define the matrix

0 0 1
Ht 2,0, y) = (r vyt x1,0) ~in(vy v (,X1,0) 0) ’

and we extend IT as a homogeneous mapping of degree 0 with respect to (T, n).
We have TTb = 0, and IT € TY. Applying Theorem B.6, we thus obtain:

ITNTY Wiy = ITAT W — Tap Wy < CKo Wiy,
1T Wi, = Ta TiWi o1y = CKo) W™, lo-

Using the decomposition
ToWie-o = (Tim = TR TR Wiyoo + T (T Wiy + Ty W) — TH Ty W,
we get the following estimate

(5.25)  ITgmWi, ooy
< C(Ko) (W™, llo + 1Ty w + Ty Wi, oy + @l y).

As was done in the constant coeflicients case, we define the symbol B of the
reduced boundary conditions:

YV (t,x1,8,n,y) € REX R, B(t,x1,8,n,y) :=T1(t,x1,8, 1, y)M(t, x1).
We now focus on the paralinearized system with reduced boundary conditions:

Y + +_ 5
TTA(};‘FIT]A{/‘FA(})/CVW +IzaX2W —F+, X2>0,

(5.26) Tj’Aé”nA% +A(1LC1W_ +1Lo, W™ =F., x>0,
TgWi,,., = G, x; = 0.

Our aim is to prove an energy estimate for the paralinearized equations (5.26).
Once this is done, we shall obtain an energy estimate for the linearized equations.
More precisely, we have the following proposition.

Proposition 5.3. Assume that there exists a constant Co, depending only on Ko
and Ko, such that the solution W to (5.206) satisfies

1z 1, -
5.27 W7l = Co (5 IS, + 1GIE, ).

Jorall'y = yo (where yo only depends on Ko and ko). Then the thesis of Theorem 5.1
holds.



Stability of Compressible Vortex Sheets 47
Proof. The proof is straightforward. We first write

Y + + _ Yt
TrAg+inAT+A5CVW +1,05,W" = Ly W™ + error,

T%yAénnA% W oW = LYW + error,
and estimate the error terms with the help of (5.22)—(5.23). We use (5.27) to
derive

n 2 / 1 2 1 2 1 2
el G (s WIS, + SIS+ limgwi i, ).

where, as usual, LYW = (£¥W+,£{W‘). Using (5.24) and (5.25), and choosing
y large enough, we obtain the following inequality:

||Wnc\x2=o||é + ||W||iy

a1 2 1 2 1 2
<y (S ILWI, = S Iwil+ SR+ R, ).
Eventually, we use (5.21) to derive (up to choosing y large enough):

||Wnc\x2=0||§ + ||(lj||%,y

rrr 1 1 ].
< (LNowli, = SIwil+ Sis ok, ).

Then one uses the definitions

e VU, =T, W, e YU-=TiW~,
e VALT LU, = LYW, e VIANTT LU- = LYW,

as well as (5.17) and Lemma 5.2 to derive (5.12). The reader will easily check that
the constants C, Cj etc. involved in the energy estimates only depend on Ky and
Ko. O

Thanks to Proposition 5.3, we only need to prove the estimate (5.27) for the
paralinearized system (5.26). This will be done in the next paragraphs.

Recall that the boundary matrix B in (5.26) only acts on W™¢ = (W5, W3, W5,
W3') and not on the full vector W. Namely, the first and fourth columns of p van-
ish. Consequently, we feel free to write the boundary conditions under the form
T Wi, = G, that is, we consider B as a matrix with only four columns and two
rows.
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5.4. Microlocalization. To derive the desired energy estimate for (5.26), we
follow the general strategy of the constant coefficients case. Namely, we first con-
sider the two equations that do not involve any x; derivative:

Y + Y +
TTH’vrnWl + Tincﬁ/py@xlfbﬂwz
Y + _ +
+ Tincf/py<ax]q>y>w3 + order 0 terms = Fy,
Y - Y -
Trviom™t + Tingz o, en W2

+ TV,

inc /pz(ax1<1>z>W3 + order 0 terms = F; .

Formally, the idea is to invert the operators Ty and to substitute the cor-

T+ivy, N
responding value of Wi into the four remaining equations. We shall thus get a
system of the form

{asznc = TAW"® + T W™ + source term, X > 0,

Té’ W‘“C = source term, x, =0,
x2=0

where A is of degree 1 and E is of degree 0. (Both matrices A and E are block
diagonal since the equations for W* and W~ are decoupled). An important issue
is to show that this operation can be achieved. Namely, the zeroth order terms in
the two scalar equations above involve Wi" and W[ . When inverting the opera-
tors T +iv, ;n» one needs to take the zeroth order terms into account, in order to
avoid introducing Wi in the final equation for W»°. We shall show that such an
inversion is possible. But in this paragraph, we focus on the first order term and
explicit the symbol A. Consider the following 2 X 2 matrix:

AT —A%Y
(5.28) A= 7,

AL A}
with

c 772 Ox, Py (T +1vyN) 0x, P 0x, Py Ox, Prin
5.29a) Al := - L - e 1 :
( 2 ! 2(t + lvrn)(axlq)r)S Cr<ax1 b)) <ax1 D, )2
crn? Ox, s (T +1vy1) 0x, Dy Ox, Dy Ox, Prin

5.29b) A} := - - + 2 4 =2 ! ,
e TG T N N S E M N EATSE
(5.29¢) Aj: €r” Ox, o

T 2(T + 1Urn) (Ox, By )3
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The definition of Al is completely similar, changing the 7 index by I. The symbol
A mentionned above is nothing but the block diagonal matrix

AY 0

The set of poles of A is denoted by Y, that is,
Yp := {(t,x1,X2,T,N) € QX E such that T = —in v, 1 (t, x1,x2) }.

As was done in the constant coefficients case, we denote by £~ (t, x1, x2, T, n) the
stable subspace of A(t,x1,x2,T,n). This stable subspace is well defined when
RT > 0, and admits a continuous extension up to any (T,n) such that T € iR
and (T,n) = (0,0).

At each point (t,x1,0) of the boundary 0€, the subspace

{Z e T (t,x1,0,7,n) s.t. B(t,x1,T,n)Z =0}
is nontrivial (that is, not reduced to {0}) if and only if

T:—invr(t’xl’o);”l(t’xl’o) o T=inVi(t,x)) or T=inVa(t,x),

for suitable functions V;, € W2*(R?). This is just because when one freezes
the coefficients on the boundary and computes the associated Lopatinskii deter-
minant, the calculations yield the same result as in Section 4. Recall that the
state (Uy,;, V®,1) around which the equations are linearized satisfy the Rankine-
Hugoniot conditions, see (5.3). As in [11], we define the critical set of space-
frequency variables in the following way:

Y = {(t,xl,'r,n) € 0O XE

(vr + vl)(t,x1,0)
2

sered-in vt x, invace xo | .
This is exactly the set of space variables on the boundary 0Q and frequencies so
that the Lopatinskii determinant vanishes. Moreover, if the perturbation (Uy 1, V&, ;)
is sufficiently small (in the L* norm), we have

(UT + vl)(t!xllo)

—Ul(l',X1,0)>V1(t,X1)>— 2

> VZ(tixl) > _UT(tixli 0)’
\v/ (t, X1 ) € 0Q.
Therefore, the critical set Y2 does not intersect the set of poles on the boundary of

the space domain:
YON (Yp N {xy=0}) = D.
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Another important feature of the critical set Y? is that it admits a neighborhood in
which the symbol A is diagonalizable. To be more precise, there exists a neighbor-
hood V? of Y? in R? X £ and a mapping Qg on V¢ (with values in the set of 4 x 4
invertible matrices and homogeneous of degree 0 with respect to (T, 1)) such that

(5.31) Qo(2)A(2)Qo(2)! = diag(wy; (2), w; (2), w; (2), W} (2)),
Vz=(tx,T,n) €V,

where w; (resp. w;) is the eigenvalue with negative (resp. positive) real part of
A" when y > 0. (The definition of wj is similar). Note that the matrix Qg has
the same block diagonal structure as A, see (5.30). The symbol Q¢ belongs to the
class TY (see Appendix B for the precise definition).

Since Y? does not intersect Yp N {X, = 0}, we may assume that the neighbor-
hood V? does not intersect Yp N {x; = 0} either.

The key point in the derivation of an energy estimate is to understand how
the singularities at the boundary (that is, the set Y2) propagate in the interior do-
main. Following [11], we shall show that the singularities propagate along the
two bicharacteristic curves associated with the (real) symbols S, provided that
these curves do not reach the poles of A or the points where A stops being diago-
nalizable. These ideas motivate the following result.

Proposition 5.4. Assume that the perturbation (Uy 1, VO, ) is small in W2 (Q)
and has compact support. Then one can choose the neighborhood V such that there
exists an open set Ve C QxE satisfying the following properties:

— Ven{x2=0}=V0and Ve nYp = @.

— The symbol A defined by (5.28)—(5.29)—(5.30) is diagonalizable on the set V. In
other words, (5.31) holds on all Ve, and not only on the trace V.

— Forall z = (t,x1,x2,T,N) € Ve, one has

w; (z) # wy(z) and w;(z2) * w; (2).

— The solutions of the hamiltonian system of ODEs

(5.32a) ;—; = %(t,xl,xz,'r,rl),

(5.32b) 2—2 = g—:(t,xl,Xz,T,n),

(5.32¢) ;—fz = —%(t,xl,xzmn),

(5.32d) ;7)?2 = —%(t,xl,xz,ﬂn), (t,X1,6,1,¥) 14,0 € V5

are defined for all x, = 0 and remain in Ve, both for h = 3w; and h = Sw;.
These solutions are referred to as bicharacteristic curves.
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Following [11], we now construct a (real) weight that vanishes on the bichar-
acteristic curves, and that satisfies a linear transport equation. For all z =
(t,x1,T,n) € R?2 x 2, define

(UT + vl)(t!xllo)
2

(533) ()= (547 ) (6= Vit x0) (8 - nvate, x),
and extend 0 to the whole set R? X £ as a homogeneous mapping of degree 1 with
respect to (T, n). The velocities V1, are those defined above, and correspond to
the critical speeds for which the Lopatinskii determinant vanishes. The symbol o
thus belongs to the class I . It is straightforward to check that

Y)={z=(t,x1,T,n) €ER?XEs.t. y +io(z) = 0}.

Using Proposition 5.4, it is possible to construct solutions 0 of the linear
transport equations

(5-343) axzo-‘r + {O-‘y', Sw;} = O,
(5.34b) Ox,01 + {01, Sw[} =0,
(5.34¢) Orlyeo = Ollyyy = O,

where {a, b} stands for the Poisson bracket:

_daodb oda db odaodb Oda db

by = s S Y anax;  atas  ax on

As a matter of fact, both 0, and 07 are well-defined in the neighborhood of the
bicharacteristic curves starting from the critical set Y. This is because oy are
constant along the bicharacteristic curves defined by (5.32), provided these curves
are globally defined! Shrinking V0 and "V, if necessary, we may assume that o
and 07 are defined in the whole open set V¢. The key point is that 0 vanishes
on the bicharacteristic curve originating from Y and associated with the symbol
Jwj . (A similar result holds for o). Far from these bicharacteristic curves, both
|0y | and |oy] are bounded from below.
Up to now, the symbols Qo, 0y, 07 are only defined microlocally, that is,
locally in the frequency space. To circumvent this difficulty, we now introduce
cut-off functions. We fix, once and for all, two nonnegative cut-off functions
(with values in [0, 1]) X, and x,, such that
— Xc and x,, are smooth, that is, C* and homogeneous of degree 0 with respect
to (T,n). They thus belong to the class 1",8 for any integer k.

— The support of X, is contained in the open set V¢, and X, = 1 in a neighbor-
hood of the bicharacteristic curves originating from Y.

— The support of x,, does not intersect the support of X, that is, x.x, = 0.
Moreover, x,, = 1 in a neighborhood of the poles Yj.
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Eventually, we define x,, := 1 — X — X, and observe that x,, is supported far from
the bicharacteristic curves and far from the poles. As a consequence, the support of
Xy on the boundary 0Q only consists of points for which the uniform Lopatinskii
condition holds. We shall therefore be able to use standard Kreiss' symmetrizers
(as constructed in Section 4) to derive an energy estimate for T;{u w.

The end of this section is devoted to the proof of the a priori energy estimate
(5.27). We thus fix W = (W*, W~) € H%(Q) and define the source terms

(5.35a) F* = Tlar cinarsare W + Lo, W € HY(Q),
(5.35b) Fi= T oatate W™ + 106 W™ € HY(Q),
(5.35¢) G:=TygW™, ., € H*(R?).

We first show how to estimate the trace of Txy W then we show how to esti-
mate the trace of T){u Wre, using Kreiss' symmetrizers. Eventually, we show how
to estimate the trace of Tgp wne. In the first two cases, the first step in the analysis

consists in deriving an equation that only involves Wn¢, that is, in eliminating Wi
in the paradifferential equations (5.26). Once we have derived this noncharacteris-
tic equation, we apply the strategy of [11]. At the very end of the proof, we show
how to absorb the microlocalization errors.

5.5. Derivation of energy estimates: The bad frequencies. We define
We =Ty W+,
and compute the equation satisfied by W . Starting from (5.35a), we obtain
Lo, Wd =Ty W+ Ty F* = Ty (Tiarinarcaper W)
Then we apply the rules of symbolic calculus (Theorem B.6) to get

(5.36)  ThariinarWe + ThrerWe + W' + 10, WS = TR F* + R W™,
where R_; is an operator of order < —1, and 7 is a symbol in the class ¥ that
vanishes in a neighborhood of the bicharacteristic curves. Namely, ¥ is defined by
the following formula:

1 .
vi= ;{xC,TAS +inAT} = 0x, X I,

and is thus a linear combination of derivatives of x,.. Therefore, 7 is supported far
from the bicharacterstic curves originating from the critical set.

To avoid overloading the paper with unuseful notations, we shall denote by
™ a generic symbol in the class I, that may vary from line to line, or within
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the same line, and whose exact expression is not useful. Moreover, we denote by
bol in T} th ishes i ighborhood of the bich isti

¥ any symbol in I}’ that vanishes in a neighborhood of the bicharacteristic curves.

The notation Ry, is also used to denote a generic operator of order < m. At last,

we denote the components of the vectors W, W+ in the following way:

W= (wi,wi,wH, W= W, wy,wihHl.

Some tedious computations lead to

Al
c? c?
vr v v
Pr{0x, Pr) Pr{0x, r)
_ Pr axzq)r axzq)r ( G axlq)r ) 0
2Cr<ax1¢’r)2 Cr<ax1¢’r) " (axlq:’V)
—Pr axzq)r 0 _axzq)r (U i Cy axlq)r)

2Cr<ax1q)r)2 Cr<ax1¢r) " <ax1q)r>

and we also have

. ax q)‘r _ax q)'y
Af =d 1, - , - .
0 lag< Cy (Ox, Py ) Cr<ax1¢r>>

The first scalar equation in (5.36) thus reads

wi + T

Y
I lnc'z’/p‘)’(a)(](b‘)’)

+ +
T+invy (wz T w3 )

3
+ > Thw! + T'W* =Ty F + R W+,
i=1

Since the support of X, is included in the open set Ve (and does not intersect the
poles Yp), we can choose two smooth cut-off functions x; and x, such that

— X; = 1 on the support of X, and x, = 1 on the support of x;.
— X, (and therefore x,) is supported in V.
— X; and X, are C* and homogeneous of degree 0 with respect to (T, n).

It is clear that the properties of the cut-off function x, imply x,/(T+inv,) € I .
We apply the operator T;’ ) to the previous equality and, after repeated

2 /(T+invy
applications of Theorem B.6, we obtain:

Twi +T)

+ +
xzinC3/(T+invr)py<ax1<I>y>(wz tws

VTR Fi + RoW™.

3
Y + Y + _ 7Y
+ 2 Tor Wi + T rainun W' = Ty jevin,
i=1
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NOW, wWe note that
Ty wi =T TS W =TY W + RLWH = wi + RLW;H
xa Wi X2 txe W1 xc 1 -2 1 2wy,

and we are led to the following relation:

3
+ 7Y + + Y +
(5:37) Wi = =T it rinvyoy o) (W2 + W3+ 2 Tt
i=1
+ y Y+ +
+ TZ'V/(T-an w +TX2/ (T+invy) TXCFl +ROW™.

It is important to note that there is a term in w{" (of degree —1) in the right-hand
side of (5.37).

In the second equation of (5.36), wi" appears both in a term of order 1, say
Tywi with 0! € T}, and in a term of order 0, say TJ,w; with 0° € T. We
first use the expression (5.37) of w; in the term T),w; . The second equation of
(5.36) thus reads

Tyws + 1w3 Z owi + W + 0wy = ReTR Ff + Ty Fy + RaW™,

where 035 € T;. We use once more the expression (5.37) in the term Thw;

just above (recall that «® € T} so we can apply the rules of symbolic calculus).
Collecting the different terms, we are led to an equation that can be written under
the following form:

Tyws + 1w3 Z Thw + T'W* + 0x,wy = RoTy Fy + TR.Ff + RLyW™.

In this equation, all the first and zeroth order terms in w;" have been eliminated.
Performing similar computations to eliminate w; in the last equation of (5.306),
we obtain a system of two equations that reads

wy y wy y wy . . .
(5.38) O, | | =Tx + Tir + TYWH + RoF* + R\ WH,
ws 2 \wy wy

where E" € 1"{), A>T<2 € T;, and A;Q = A" in the region {x, = 1}. Recall that
the (singular) symbol A" is defined by (5.28)—(5.29). Moreover, the symbol 7 in
(5.38) belongs to I{ and is identically zero in the region {X, = 1}, and Ry (resp.
R_1) is an operator of order < 0 (resp. < —1).

We are now reduced to the noncharacteristic case, for which we follow the
analysis of [11]. Indeed, since the symbol A equals A" in the region {x, = 1},
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we can diagonalize APTQ in this region, and its eigenvalues are exactly w;. More
precisely, in the region {x, = 1}, we have the following relation:

Y AY w; O v

r
—_
DY

Recall that on the set Ve, and therefore also in the region {x, = 1}, we have
w; # w; thanks to Proposition 5.4. The following lemma can thus be proved as
in [11] (to avoid overloaded equations, we denote x¢ := t, & := 0, and §; := n
the variables used in the tangential symbolic calculus).

Lemma 5.5. There exist a symbol QT € T7'" and a diagonal symbol DY} € T},
that are defined in the region {X, = 13, such that

(QF + QL) (AL, + B +34,Q5

1 1
+ g > (9g;Qf 0x,A%, — 9, D} 0x;Qf) — (DY + D (QF + Q7))
j=0

is a symbol of degree —1 and regularity 1 (at least in the region {x, = 1}).

In terms of symbolic calculus, Lemma 5.5 means nothing but
(Qp+Q")) # (0x, — A§2 —E") = (0x, — D] = Dp) 4 (Qy + Q" )).

In other words, the change of basis (Qj + Q') diagonalizes both the first order
term A}, and the zeroth order term E". We thus wish to prove an estimate for

Z = T r r
: X1(Qp+QLy) ’
1'%0 1 w;—

since this new vector will satisfy a paradifferential equation with diagonal symbols.
Observe the role of the cut-off function x;, whose support is contained in the
region {X, = 1}, and that also satisfies X, = 1 on the support of x.. (We recall
that the vector (w5, w3) is microlocalized on the support of x,).

Starting from (5.38) and using Lemma 5.5, as well as Theorem B.6, we com-
pute the equation satisfied by the vector Z*:

(5.39) 0x,Z" = irz+ + irz+ +TYW* + RyFt + R, yWH,
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where DY (resp. Df) is an extension to the whole set Q X E of DY (resp. Dy).
These extensions can be chosen such that

~ w, 0 - ye, +ih, 0
! 0 wi 0 yei +iht )’

~ d;, 0
D= ,
0 dr

with ey, ef € IY, hy, hf €T3, and d;, d; € I). Moreover, the symbols e}, e,
h;, hi are real valued and there exists a constant ¢ > 0 such that

e, <—c<0, ef=c>0.
The second equation in (5.39) reads
0x, 25 = Too 25 + T Z3 + Y W™ + RoF™ + Ry W™,

For this scalar equation, we choose A>Y := Op(y?+ E2+&%) asa symmetrizer, that
is, we multiply the equation by A>YZ5 and integrate over Q. Some elementary
manipulations, whose details can be found in [11], yield the L?(H') estimate of
Z5:

(540 yllZ5lITy + 1125 I,
< %( NEIIT, + W * g+ N Tw*l13,)-
The first equation in (5.39) reads
(5.41) O, Zf = Toy Z{ + T Z + Y W' + RoF* + R W™,
We first choose the identity as a symmetrizer, and derive the following L? estimate:
(542) Y lIzf lllo = y?lizf O)llg

+ g(IIIF+ I3y + MWl + T W I,)-

Recall that in the preceding paragraph, we have constructed a symbol o that
satisfies the transport equation:

{axZO} +{ov,h;} =0, x>0,
O-V‘xzzo =0,
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where h, is the imaginary part of the eigenvalue w, . This symbol o is well-
defined in the open set V¢, thanks to Proposition 5.4. Since we have extended the
eigenvalue w; (and thus h;) to the whole set Q X E, we can also extend 0 to
Q x E. Of course, we do not change the value of 0 on V¢, since the solution o
to the transport equation is constant on the bicharacteristic curves (5.32). With
slight abuse of notations, we still denote 0 the extension of 0 to the whole set
Q x E. This extension belongs to the class T} and dx, 0y € T7.

We now choose S := (T3, )*TJ, as a symmetrizer for (5.41). (We reproduce
below the calculations of [11] since this is really the key point in the analysis).
Standard integration by parts yields first of all:

(5.43)
+00 +oo
T ZF O =% [ (@u)ZE 2 dxa + 2% [ STY 21, 20 dxa

+2R Lm (ST). Z{,Z{) dxy + 2R JO+°°<5T3/W+, Ziy dx;
+ 2R ij (SRoF*, Z) dx> + 2% Lm (SRLIW™, Zi) dx,
where the notation (a, b) stands for the tangential scalar product in L?:
(a,b) := JRZ a(t,x))b(t,x,) dtdx;.

The three last integrals on the right hand-side of (5.43) are easily estimated using
Cauchy-Schwarz and Young’s inequalities (¢ is a positive number to be fixed later
on):

+ 00 C
2@ TWL Tz dx < ITWE I, + ey T8 27 I,

+ o0 C
2| T RF T ZD dxa < IIE I + e 1T 27 I

+ o0 C
2| L RAW T Z ) dxa < S IIW G+ ey 1T 211G

The rules of symbolic calculus give T9, Tg; = Tj{; T, + Ro, which yields the upper
bound

+ 00
% L (STY_Z{, 1) dxz < C|| T3, 21 [ll§ + CILZ{ Mo 11T, Zf 1l
2 C 2
< (C+en T3,z |5 + pav Iz lllo

> C 2
< (C+en) T3 2 5+ pav Nw=ilo
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Using the definition of S, we obtain
0,8 = (T3 o) To, + (T3)* T3 -

From the basic estimates above, we already get the relation

+ 00
(5.44) —mj (), Z + 10, Ty Z{, T3, Z{) dx;,
0 2vr v
< [[TYZ{ ()5 + (C + 4ey) | T3, Z{ |15
C
+ 5(!HF* Iy + T w17y + 1w 115)-

Now, we decompose w; as w, = ye, + ih,, where e;, h, take real values,
ey €Y, and h; €T). Because the symbol 0 satisfies the transport equation

aXZO-T + {O-Tl h;} = 01

equation (5.44) yields

+00 +oo
0 r 0

—i{oy,er}
+00 +o

- Zy‘RJ (R4 Z{, T, Z1 )y dxy — 29&[ (T}, T3, Z{, T3, Z;) dx,
0 0 r

+ 00
- mj (RoZ{, T4 Z}') dx2 = right-hand side of (5.44).
0

The first term in the left-hand side is bounded from below thanks to Gérding’s
inequality (Theorem B.7). All the other terms are put on the right-hand side and
estimated using Cauchy-Schwarz and Young’s inequalities. In the end, we choose
an appropriate € and obtain

ylIl T3,z Il = cliTe zi )l + Cy Iz [l
C
+ 5 UIE 5y + W, + N I5).-

We use (5.42) to estimate the term y||| Z{ |||% in the right-hand side. Eventually,
we derive

545  ylIT8Z{ o < CUITEZE )]s + 11Z{ (0)][5)

+ g( EI, + T W, + 1w o).
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Recall that 0 is homogeneous of degree 1 with respect to the frequencies (T, n),
s0 (5.45) has to be understood as a L?(H') estimate of Z; far from the bicharac-
teristic curve (which is exactly the set where 0 vanishes).

A similar analysis enables us to derive an energy estimate for the vector

- Y Y WZ_
2 =T b+al) Txe wy )’

where Q}) diagonalizes the symbol AL 5"

w; 0
Lal _ l 1
QOAXZ = ( O wz_) QO’

and Q' | is defined as in Lemma 5.5, mutatis mutandis. The final estimates are
_ _ C _ _ _
(5:46) ¥z Iy + 1122 O, = S UIE Iy + MW= IE+ T W ,2,

vl zr s+ y 17527 1l

= C(y?lIZr O + |75 27 0)]lp) + g( HEIy + Hw =I5+ 1T wI,)-

The remaining part of the job is to estimate the traces of the incoming modes
(Z{ and Z7) in terms of the outgoing modes (Z; and Z;) and G, knowing that
we have the relation

T
Y (WS Wi Wy Wy)  =G.

lxp=0

This is nothing but the definition of G, see (5.35¢). Observe that the first col-
umn vector of Q} and the first column vector of Q) span the stable subspace
E~(t,x1,x2,T,n) (at least when the space-frequency variables belong to the set
Ve). These column vectors are denoted by E, and Ej. Following the proof of
Lemma 4.5 (see Appendix A), one can show that there exist some 2 X 2 invertible
matrices P; and P, such that

P (Er E1)P, = (Y we (1’) .

Therefore, repeating the arguments of [11], one can show the following estimate
for the boundary terms:

(5.47)  y*(|1Z7 Ofg + [1Z{ (O[3) + 1T¥ Z (0[5 + || T¥ Z; (0)]]3
< C(lIGI1}, + 1Z5 01Ty, + 1125 O, + W™, IE).
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Recall that the main ingredient of the proof is the microlocalized Garding’s in-
equality (Theorem B.8), and the fact that o is real valued.
Collecting (5.40), (5.42), (5.45), (5.46), and (5.47), we end up with the final

estimate near the critical set:
548) y(llzz 5y + Mz NI, + Tz G+ I T Z5 NG
+y2lz s+ Y2 ZE 1G) + (lzz O, + 1125 )]]F,
+ 1T 27 Ol + 11527 0[5 + Y2127 O)]l5 + ¥211Z7 (0)][5)
C
< ;( IENT, + MW lls+ ITXW T, +1GIE, + W=, .

Recall, for later use, that the vectors Z* are defined by the formulas

+ _
o o (V2 7 =1 o ("
: X1(Qg+Q%,) " Xc W; ’ : xj(Qh+al,) " Xc w; )

and the matrices Qg’l are invertible on a neighborhood of the support of x,. We
also recall the relation x; X, = X,-

Recall also that the components Ty, W™ are given in terms of Ty, W3 by the
relation (5.37). In particular, this relation yields an L? estimate for Ty, W;", and

an L?(H') estimate far from the bicharacteristic curves. Namely, we can add the
norms

2 — 2 2 —m2
YT W Mo + ¥ N TR Wi lllg + v N T3, T Wi Il + vl Ton T Wi il

in the left-hand side of (5.48). We thus control the L? norm of the vector Ty, W,

and not only the noncharacteristic part of the vector. We also control the L?(H")
norm far from the bicharacteristic curves that originate from the critical set.

5.6. Derivation of energy estimates: the good frequencies. To estimate the
trace of Ty, W"°, one first computes the equation satisfied (in Q) by the vector
Txyu W; then one eliminates the components that belong to the kernel of I, and
obtains an equation involving only Ty, W". The equation is similar to (5.38).
For this reduced equation, one can construct Kreiss' type symmetrizers, because
the uniform Lopatinskii condition is satisfied in a neighborhood of the support of
Xyu- The construction of the symmetrizer is achieved as in the constant coeflicients
case (see Section 4). Once again, we refer to [11] for a detailed derivation of energy
estimates, and we only give the result here. The estimate obtained by this method
reads:

(549 ylITLWIIT, + 1T, WO,

= C(IIGI[Ty + W< ()[o) + %(IIIFlllf,y +lwilg+ W)
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As in (5.48), the symbol * vanishes in a neighborhood of the bicharacteristic
curves (the symbol 7 in (5.49) is a linear combination of the derivatives of x,,,
and the cut-off function x,, is identically zero near the bicharacteristic curves).

5.7. Derivation of energy estimates: the poles. To derive an estimate for

Txyp W=, one starts from (5.352)—(5.35b) and computes an equation similar to

(5.36). Then one changes basis, as was done in the constant coefficients case. In
the end, one derives a maximal L%(H') estimate because the uniform Lopatinskii
condition is satisfied near the poles. The energy estimate is thus similar to the one
corresponding to the good frequencies:

(5.50) ylI T WL, + 1T W Oll3,

= C(IGII5, + W )lo) + g(IIIFIIIf,y + WG+ T wIT,)-

5.8. Proof of Theorem 5.1. We now patch together the microlocalized en-
ergy estimates, and show that the estimate (5.27) holds. We first note that,
adding (5.48), (5.49), (5.50), we are able to control the norms y3|||W|II% and
Y2 wre lI2. Namely, we first obtain (up to choosing y large enough):

(5.51) Left-hand side of (5.48)—(5.49)—(5.50)

= ClGllr, + %(HlFHlf,y + I WIlLy).

In view of (5.51), the only thing to show is how to absorb the term || T W1,
Recall that the symbol 7 is identically zero in the regions where X, X,, or X, are
equal to 1. We may thus decompose 7 as a linear combination of the form

g 0 0
0 o 0 (0] 1 0
0 0 Al 0 x,Qp
+ Qe o 0 0 1 0 |Xe
O 0 oo 0 0 x,Q}
0 0 AW

The matrices &cu,p have a block diagonal structure. We are thus able to absorb
the term ||| T Wll1,y, thanks to the left-hand sides of (5.48)—(5.49)—(5.50). We
thus obtain (5.27), since the left-hand sides of (5.48)—(5.49)—(5.50) are bounded
from below by

e I llg + ¥ W™, llo), e > 0.

Thanks to Proposition 5.3, the estimate (5.12) for the variable coefficients lin-
earized operators also holds. This completes the proof of Theorem 5.1.
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6. CONCLUDING REMARKS

In this paper, we have proved a linear stability result for a wide class of rectilinear
compressible vortex sheets. To summarize, once we are given a suitable pertur-
bation of a rectilinear supersonic vortex sheet, the linearized coefficients around
this perturbation satisfies an a priori estimate with loss of one derivative (in the
tangential variables). We have also proved that the paralinearized version of the
linearized equations satisfies the same a priori estimate. The constants appearing
in the energy estimates are uniform with respect to the W2* norm of the coefhi-
cients.

To prove the local in time existence of nonconstant vortex sheets, the next
step will be to build an iteration scheme that takes into account this loss of regu-
larity. In view of [1, 13], there is a strong hope that a Nash-Moser type iteration
scheme might answer the problem. However, special attention should be paid, at
each step, to the relations (5.3), (5.4), and (5.5), that are crucial in the proof of
Theorem 5.1. The verification of the local existence of (supersonic) vortex sheets
is postponed to a future work.

The one-dimensional stability of contact discontinuities has received a gen-
eral treatment in [8] and [9]. Unfortunately, the isentropic Euler equations do
not admit contact discontinuities in one space dimension. However, it would
be interesting to determine whether the present analysis extends to some contact
discontinuities for the general Euler equations, and see the connections with the
one-dimensional analysis.
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to understand the symmetrizer construction near the poles. ]J.-F. C. thanks the
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APPENDIX A. PROOF OF INTERMEDIATE RESULTS
1.1. The proof of Proposition 4.3. Using (4.9) and (4.14), we obtain

(e B)
| (T+iven) (e N T+ iven) - wy) (T +ivn) (¢ (T + ivin) — wy)
T\ —cwy (T +ivin)(cwy — (T +1vy1n)) cwi(T +ivyn)(cw; — (T +ivin))

for all (1,n) € X. This gives the following expression for the Lopatinskii determi-
nant:

A(T,n) = —c*(T +ivyn — cwy ) (T + ivin — cwp) (Wrw; — n?) (Wy + w)).
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Recall that w, and w; have negative real part when T has positive real part, and
satisfy the dispersion relations (4.13a)—(4.13b). Because v, = —vj, we have the
identity

wy (T,n) = wi(T,—n).

With the above expression for A, it is easy to check that A(T,n) = A(T,—n). We
shall thus only consider nonnegative values of 1 in all this section: n = 0.
One first checks that both expressions

(T+ivyn—cwy) and (T +ivin—cwp)

do not vanish for any (T,n) € X, because of (4.13a)—(4.13b).

Clearly, the sum w; + w; can not vanish when T has positive real part, since
both numbers have negative real part. When T is purely imaginary, one extends
w1 by continuity. If T = i6 € iR satisfies (6 + v,1n)? < ¢?n?, one has

Wy = —\/n2 - é(5+vm)2 e R.

If (5 + vyn)? > ¢?n?, we use Cauchy-Riemann relations to derive

wy = —isgn(d + vrn)\/clz(é +vyn)?2 —n? iR,

The calculations are almost the same as those done in [3]. For w, one just changes
Uy into v; = —v, and derives similar formulas. Then using the dispersion rela-
tions (4.13a)—(4.13b), we easily check that w, + w; vanishes if and only if T = 0
(and therefore n # 0). For n > 0, this gives the following values for the eigen-

modes:
v .
Wy = —1n g—lz—wleﬂR.
Recall that v, > c+/2.

It now remains to determine whether the expression (w;, w;—n?) may vanish.
If n = 0, one has w, = w; = —T/c, and, therefore, w, w; = 0. We thus assume
n # 0 (that is, n > 0) and introduce the reduced expressions

V.= ,L, Qpp:= U?r,l.
m i

Assume that Q,Q; = —1. Using (4.13) and (Q,Q;)? = 1, we obtain the following
polynomial equation for V:

VA= 2(c? + vHV? + vE(vE - 2¢?) = 0.
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This is a polynomial equation of degree 2 for the unknown V2, whose roots are
real and distinct. If (3.11) holds, both roots are positive. Let us denote these roots
by V and V#, where 0 < V; < V,. One has

VZ=c?+v?-cyc? +4vd,
V7 =c? + v+ cyc? + 4vi.

We first show that the root V5 does not yield any instability. If V' = V5, one
has V + v, > ¢. Because n > 0, we obtain

Q = —\/iz(v2 +v,)2 -1 and Q= —\/iz(v2 ~v)2 -1,
C C

so Q,Q; + —1. The Lopatinskii determinant A does not vanish when V = V5. A
similar argument shows that A does not vanish either for V.= —V,.

Now we show that V = V; is a root of the Lopatinskii determinant. One first
checks that Vi + v, > ¢, and V] — v, < —c. Hence, for n > 0 and T = iVin, we
find

QTZ—\/%(Vl-FUy)Z—l and Ql:\/%(vl—vy)z—l.
Cc C

These relations yield Q,Q; < 0 and (Q,Q;)? = 1, that is, we have Q,Q; = —1.
For V = Vj, the Lopatinskii determinant vanishes. The same argument holds for
V=-Vj.

This completes the first part of the proof of Proposition 4.3. What remains
to show is that the roots of the Lopatinskii determinant are simple. We first show
that near T = 0 and n = 1/v, (this is the only point of = such that T = 0 and
n > 0), we have

wy + wy; = Th(T,N),

for an appropriate C* function h. Since n # 0 near T = 0, we have
Wy + Wi =n(Qr +Q),

where the notations are those introduced earlier. Near V = 0, both functions Q,
and ) are analytic with respect to V and satisfy

1 1
=S (V)1 Qf=S(V-v)’ -1

We thus obtain

4o, @)\ o,
(dv v ) lvee T o) 7Y
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Using a classical factorization property of holomorphic functions, we obtain
Qr+Q=VH(),
where H is holomorphic near 0 and H(0) + 0. This yields

wr+wl=TH<,l>.
i
The factorization result for A is proved near the root T = 0.

As regards the situation near those roots of the form (+iVin,n) € %, it is
entirely similar and we shall not detail the proof. (The proof is similar because Q,
and Q) are still holomorphic with respect to V' in a neighborhood of V; and —V7).
The result is that the Lopatinskii determinant A admits a factorization that reads

A(T,n) = (Tt —-iVinh(t,n) or A(T,n) = (Tt +iVin)h(t,n),

where h is C* and does not vanish near the roots of A. This completes the proof.

1.2. The proof of Lemma 4.5. In the proof of Proposition 4.3, we have seen
that the matrix B(E,E;) has the following expression:

B (e &)
| (T+iven) (e N T+ iven) — wy) (T +ivn) (¢ (T + ivin) — wy)
C\—cwp (T +ivin) (cwy — (T +iven)) cwi(T +iven)(cw; — (T +ivin)) )’

for all (T,n) € . We have also seen that the quantity (T + iv,n — cw,) does
not vanish for (T,n) € =. Let us now consider a neighborhood V of a point
(To, No) € X such that 79 = 0. Up to shrinking V, the quantity (T + iv, n) does
not vanish in V. As a consequence, the upper left corner coefficient of B(E,E)
does not vanish in V. We write

e 8)- (3 ).

Then, the relation (4.15) can be rewritten as A = €14 — >C3, and T does not
vanish in V. The identity

1/C 0 1 -C 10
(—cs/lcl 1>3(E’ ) (0 c12>:(0 A)

is a straightforward verification. In particular, this identity yields the estimate
g p Yy

IB(Er Ei) Z7 1> = kmin(1,1A12)|Z7 |,
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for all Z= € C2. Using Proposition 4.3, the Lopatinskii determinant A can be
factorized near (To, ng):

A(T,n) =Tth(T,n), h(To,n0) # 0.

Since y is the real part of T, we obtain |A(T,n)| = Ky, for a suitable constant
Kk > 0 (still up to shrinking the neighborhood V). This last inequality yields

B (Er El) 7712 > ky?|Z7 |2,

forall Z= € C?andall (T,n) € V.

Lemma 4.5 is thus proved when (T, no) satisfies 79 = 0. The other points
where A vanishes are those points (To, n¢) such that To = +iVing. Near those
points, the upper left corner coeflicient of B(E,E;) still does not vanish. We
can again conclude that in an appropriate neighborhood V of (1o, no) (with,
for instance, Tg = iV1no), one has

B (Er E)Z~ 12 = kmin(1,|A1%)|Z7 |
Now we use the factorization
A(T,n) = (T —iVinh(t,n), h(te,no) + 0,
to conclude. This completes the proof of Lemma 4.5.

APPENDIX B. PARADIFFERENTIAL CALCULUS WITH A PARAMETER

In this appendix, we collect the main results of the paradifferential calculus of
Bony and Meyer [5, 20] that we use in this paper, see [25] for the introduction of
the parameter. We refer to these papers for the proofs of the results stated below.
We first recall the classification of paradifferential symbols.

Definition B.1. A paradifferential symbol of degree m € R and regularity k
(k € N) is a function a(x, &, y) : RZ x RZ x [0, +oo[ — CN*N such that a is C®
with respect to & and for all o« € N2, there exists a constant Cy verifying

V(Ey), logal, & y)lwk=me) = Cod™ 1Y (8) = Coly? + 18|17 M1l 2,
The set of paradifferential symbols of degree m and regularity k is denoted by I}".
We denote by 37" the subset of paradifferential symbols a € I} such that for a

suitable € € 10, 1[ one has

V (£,¥), SuppFxa(-,&y) C{C e R?/IC| <e(y*+ &%)
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Of course, the symbols in =} are C* functions with respect to both variables
x and &, and for all a € =", we have the estimates

V(x,E ), 10808alx,Ey)l < CapA™ 1 IALY (g),

Thus any symbol a € X} belongs to Hormander’s class S{'} [10] and defines an
operator Op¥ (a) on the Schwartz’ class S by the usual formula

Vues, Op(au(x):= J[Rzei"'ga(x,& Y)u(g) dg.

1
(2m)?
We shall use the following terminology:

Definition B.2. A family of operators {PY} defined for y = 1 will be said of
order < m (m € R) if the operators P¥ are uniformly bounded from H**™ to
H>:

Vy=1,VueH"™, [Pullsy < C(s,m)ullsim,y-

The following theorem is crucial for the sequel of the analysis.

Theorem B.3. Ifa € 3, the family {Op¥ (a)} is of order < m.

The regularization of symbols in the class I}" is achieved by a convolution
with admissible cut-off functions.

Definition B.4. Let y : R?xR?X[1,+oo[ — [0, +o0[ be a C* function such
that the following estimates hold for all &, B NZ:

V(C,Ey), 1020Ew(T,E )l < Copd 1071y (E).

We shall say that  is an admissible cut-off function if there exist real numbers
0 < & < & < 1 satisfying

P, &y =1 if|Cl<e(y*+I18512,
WY, Ey) =0 if|C]=e(y?+I|E>)YV.

An example of cut-off function is the following: let x be a nonnegative C*
function on R? x R such that

yi+1&17 2 y3 +1&17 = x (&, y1) < Xx(&,52),
XEy) =1 if P2 +[EPV? <,
XEy) =0 if(y>?+[E*H2=>1.
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We define a function @ (&,y) := x(£/2,y/2) — x(&,y). Then the function
defined by

Wo(T,&y) = > x2*PL,00p (277,27 y)
p=0

is an admissible cut-off function (one can take &7 = 1L6 and &, = %).
If @ is an admissible cut-off function, the inverse Fourier transform KY¥ of

Y(-, &, y) satisfies
V(& y), ||a§‘KW(',§,Y)||L1(R2) < Cod71¥hY (%),

These L! bounds for the derivatives agK ¥ enable us to establish the following
proposition.

Proposition B.5. Let Y be an admissible cut-off function. The mapping

a— ot (x,&y):= LRZKW(X -y, & y)a(y, &y dy

is continuous from I} to 3} for all m.
Ifa e ™, then a— oy € T\, In particular, if W1 and W are two admissible
cut-off functions and a € 11", then ol — g e ZS”_I.
Fixing an admissible cut-off function , we define the paradifferential opera-
tor TV by the formula
T := OpY (o).

If @1 and Y are two admissible cut-off functions and a € I", then Proposition

B.5 and Theorem B.3 show that the family (TIY TV} is of order < (m—1).
The symbolic calculus is based on the following theorem.

Theorem B.6.
— Lera €™ andb € TI" . Then ab € T and the family

vy v,y vy
{Ta OTb _Tab }yzl

is of order < m + m' — 1 for all admissible cut-off function .
— Leta € I"™. Then for all admissible cut-off function W, the family

(TS = TE Y e

is of order < m — 1.
— Leta €T andb € TV, Then ab € T"™ and the family

Wy oWy oWy | wy
{Ta™" o T," — Ty, _Tfizjagjaaij}yzl

is of order < m + m' — 2 for all admissible cut-off function .
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— Leta € 1. Then the family

W,y \ % vy v,y
W(15") _Ta* -T izjagjaxju*}yzl

is of order < m. — 2 for all admissible cut-off function .
The next theorem is the parameter version of Garding’s inequality.

Theorem B.7. Let a € TP™ and let @ be and admissible cut-off function. As-
sume that there exists a constant ¢ > 0 such that

V(x,8y), Ra(x,§y)=cA*Y(E)I
Then there exists yo = 1 such that

C
Vy=yo YueH™, R(TIYu,u)ygmpnm = E||u||fn’y.

We also have a microlocalized version of Gardings inequality.

Theorem B.8. Lera € TP™, x € 1Y and @ be and admissible cut-off function.
Assume that there exists § € I\ and a constant ¢ > 0 such that § = 0, X = X, and

V(x,8y), Xx,&y)Ra(x,&y) =cx(x, & y) A" (E)I.

Then there exists yo = 1 and C > 0 such that

; , , c : 2 2
%<T¢(1PYT)(<11 yu’ T?l(p yu>H’m,Hm = EHT}((P y””m,y - C||u||m—1,y’
Vy=>yy VueH™.

We now study the case of paraproducts: they are defined by the particular
choice of g as cut-off function. We shall write T instead of T/ for the parad-

ifferential operators obtained after convolution by the function . We have the
following important result.

Theorem B.9. Leta € WH™(R?), u € L*(R?), and y = 1. Then we have
y C
lau — Taullo < ;||6l||wlv°°(u112) lullo,
llaox,u — Ty Ox;ullo < Cllallwr(r2) llullo,

for a suitable constant C that is independent of (a,u,y).
Ifa € W2*(R?), we have

c
lau — T ully,y < ;llallwzyw(uv) llullo,
lladx,u — T3 Ox;ull1y < Cllallwes e llullo,

for a suitable constant C that is independent of (a,u,y).
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We can extend the paradifferential calculus to symbols defined on a half-space
in the following way: we still denote by I}"* the set of symbols a(xo, x1,x2,,y)
defined on Q x (R4 x [0, +o[ \ {0}) such that the mapping X, — a(-,xz,-) is
bounded into I}". We define the paradifferential operator T3 by the formula

Vuec(Q), Vx>0, (Tdu)(-,x2):=T) . ul-x2).

(x2)

Using Theorem B.9 and integrating with respect to X, we obtain for all symbols
a e Whe(Q) and all u € L2(Q) the estimates:

A

C
llaw - Taulllo < ;Ilallww(mlllulllo,

IA

ladx,u — Tz 0x,ulllo < Cllallwsllullo, j=0,1.
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