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Abstract

In a former work, we have shown the existence of smooth shock profiles for a model of nonequilibrium radiative

hydrodynamics. In this Note, we show that such shock profiles are asymptotically stable for zero mass perturbation.

Following the case of viscous shock profiles, the analysis relies on energy estimates for the integrated system. To
cite this article: C. Lin, J.-F. Coulombel, T. Goudon, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

Résumé

Stabilité asymptotique de profils de choc pour un modèle de transfert radiatif. Dans un précédent

travail, nous avons montré l’existence de profils de choc pour un modèle de transfert radiatif hors-équilibre. Dans

cette Note, nous montrons que de tels profils de choc sont asymptotiquement stables pour des perturbations de

masse nulle. Comme dans le cas des profils de choc visqueux, l’analyse repose sur des estimations d’énergie pour

le système intégré. Pour citer cet article : C. Lin, J.-F. Coulombel, T. Goudon, C. R. Acad. Sci.Paris, Ser. I 340
(2005).

1. Introduction and main result

In this Note, we consider a simple model that describes the interaction of an inviscid compressible
fluid with photons. The fluid is described by its specific volume v, its velocity u, and its specific energy
e. The photons are described by the radiation energy n. The evolution of the fluid is governed by the
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one-dimensional compressible Euler equations, that are coupled with an elliptic equation for the radiative
energy n. In Lagrangian coordinates, the model reads:



























∂tv − ∂xu = 0 ,

∂tu+ ∂xp = 0 ,

∂t(e+ u2/2) + ∂x(p u+ q) = 0 ,

−∂x

(

∂xq

v

)

+ v q + ∂x(θ4) = 0 ,

(1)

where θ denotes the temperature of the fluid, p denotes the pressure, and q is the radiative flux, that is
related to the radiative energy n through the relation q = (∂xn)/v. We assume that the fluid obeys the
perfect gas pressure law:

p =
Rθ

v
=

(γ − 1) e

v
, (2)

where R is the perfect gas constant, and γ is the ratio of specific heats at constant pressure cp and constant
volume cv. (Recall that cp = γ R/(γ − 1) and cv = R/(γ − 1).) In [8], we have studied the existence of
shock profiles solutions to (1), see also [2] for a preliminary analysis. Shock profiles are traveling waves
solutions that connect asymptotic states defining a shock wave solution to the classical Euler equations
(i.e. without radiation). More precisely, let:

(v, u, e) =

{

(v+, u+, e+) , if x > s t,

(v−, u−, e−) , if x < s t,
(3)

be a shock wave with speed s solution to the classical Euler equations without radiation:










∂tv − ∂xu = 0 ,

∂tu+ ∂xp = 0 ,

∂t(e+ u2/2) + ∂x(p u) = 0 .

(4)

In other words, (v±, u±, e±, s) satisfy the Rankine-Hugoniot jump conditions together with the classical
entropy inequality, see e.g. [10]. Then a shock profile is a traveling wave solution (v, u, e, q)(x − s t) of
(1)-(2) such that:

lim
ξ→±∞

(v, u, e, q)(ξ) = (v±, u±, e±, 0) .

The existence of shock profiles has been proved in [8] for shock waves of small amplitude. Moreover,
we have shown in [8] that as the amplitude of the shock decreases, the smoothness of the shock profile
increases. In particular, one can obtain Ck shock profiles for any integer k ≥ 2. The main result of this
Note deals with the asymptotic stability of such shock profiles with respect to small initial perturbations,
and can be stated as follows:
Theorem 1.1 Let γ ∈ ]1, 2], v− > 0, u− ∈ R, e− > 0, and let (v+, u+, e+) be such that (3) defines a shock

wave with speed s for the Euler equations (4). Then if (v+, u+, e+) is sufficiently close to (v−, u−, e−),
there exists a C4 shock profile (V, U,E,Q)(x − s t) connecting (v±, u±, e±, 0), and this shock profile is

asymptotically stable with respect to zero mass perturbations. More precisely, if (Φ0,Ψ0,W0) ∈ H3(R) are

sufficiently small, then the system (1)-(2) with initial data:

(v, u, e+ u2/2)|t=0
= (V, U,E + U2/2) + (Φ0,Ψ0, cv W0 + U Ψ0)

′ ,

has a unique global in time smooth solution (v, u, e, q)(t, x), and:

lim
t→+∞

sup
x∈R

|(v, u, e, q)(t, x) − (V, U,E,Q)(x− s t)| = 0 .
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Theorem 1.1 is nothing but the extension of the stability result of [5] to the system (1). In particular,
the smoothness of the shock profile and the smoothness of the initial perturbations are the same in both
cases. The model considered in [5] is a Burgers equation coupled with an elliptic equation for the radiation,
so the equation is scalar while here we deal with a system. The perturbations are assumed to have zero
mass in order to follow the strategy of [1] that was developed in the case of systems of conservation
laws with artificial viscosity, see also [3] for the case of compressible Navier-Stokes equations. We refer to
[9,11] for some physical background on radiative hydrodynamics. We also refer to [6] for general existence
results of shock profiles for hyperbolic-elliptic systems. The asymptotic stability of shock profiles is still
open in such a general context. Eventually, we recall that the asymptotic stability of constant states for
(1) was established in [4] for general initial perturbations (that is, without zero mass assumption).

2. Asymptotic stability of shock profiles

In this section, we give an outline of the proof of Theorem 1.1. We follow the analysis of [3] and
decompose the solution to (1) in the following way:

(v, u, e, q)(t, x) = (V, U, cv Θ, Q)(x− s t) + (φ, ψ, cv ω, z)(t, x− s t) .

We rewrite (1) for the unknowns φ, ψ, ω, z, that depend on the variables t and ξ = x − s t, and we also
make use of the zero mass assumption for the initial data. In particular, we can look for the solution
φ, ψ, ω, z under the form:

(φ, ψ, ω, z) =

(

∂ξΦ, ∂ξΨ, ∂ξW +
1

cv

(

U ′ Ψ −
(∂ξΨ)2

2

)

,
1

V + ∂ξΦ

(

∂ξZ −
(Q′

V
− Θ4

)′ ∂ξΦ

V

)

)

. (5)

The system satisfied by the perturbations φ, ψ, ω, z reads:






































∂tφ− s ∂ξφ− ∂ξψ = 0 ,

∂tψ − s ∂ξψ +R∂ξ

(

Θ + ω

V + φ
−

Θ

V

)

= 0 ,

∂t(cv ω + U ψ + ψ2/2) − s ∂ξ(cv ω + U ψ + ψ2/2) +R∂ξ

(

(Θ + ω) (U + ψ)

V + φ
−

ΘU

V

)

+ ∂ξz = 0 ,

V + φ

V

(

Q′

V
− Θ4

)′

− ∂ξ

(

Q′ + ∂ξz

V + φ

)

+ (V + φ) z + ∂ξ(Θ + ω)4 = 0 ,

(6)
while the system for the integrated perturbations Φ,Ψ,W,Z reads:







































∂tΦ − s ∂ξΦ − ∂ξΨ = 0 ,

∂tΨ − s ∂ξΨ −
RΘ ∂ξΦ

V (V + φ)
+

R

V + φ

(

∂ξW +
1

cv
(U ′ Ψ − ψ2/2)

)

= 0 ,

cv(∂tW − s ∂ξW ) +R
Θ + ω

V + φ
∂ξΨ − sU ′ Ψ +

∂ξZ

V + φ
−

(Q′/V − Θ4)′ φ

V (V + φ)
= 0 ,

(V + φ)Z − ∂ξ

(

∂ξZ

V + φ

)

+ ∂ξ

(

(Q′

V
− Θ4

)′ φ

V

)

+
Q′ φ

V
+ (V + φ)

(

(Θ + ω)4 − Θ4
)

= 0 .

(7)

The energy functional for (6)-(7) is defined as follows:

N(t)2 := sup
0≤τ≤t

‖(Φ,Ψ,W )(τ)‖2
L2(R) + ‖(φ, ψ, ω)(τ)‖2

H2(R) + ‖z(τ)‖2
H3(R)

+

∫ t

0

‖|V ′|1/2(Ψ,W )(τ)‖2
L2(R) + ‖Z(τ)‖2

H1(R) + ‖(φ, ψ, ω)(τ)‖2
H2(R) + ‖z(τ)‖2

H3(R) dτ . (8)
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This functional is inspired from [4] and [3]. Theorem 1.1 is then obtained by first proving the following
result:
Proposition 2.1 Let γ ∈ ]1, 2]. Let T > 0, let (Φ,Ψ,W,Z) ∈ C([0, T ];H3(R)3 ×H4(R)) solution to (7),
and let (φ, ψ, ω, z) ∈ C([0, T ];H2(R)3 ×H3(R)) be given by (5). Then there exist two constants δ > 0 and

C > 0, such that if N(T ) ≤ δ and if the amplitude of the shock is sufficiently small, then one has:

N(T )2 ≤ C
(

N(0)2 +N(T )3
)

.

To show proposition 2.1, one first derives an L2 estimate for (7) by following [3]. The novelty relies
in the elliptic equation for Z, which yields a few modifications in the symmetrization of the equations.
One derives similarly L2 estimates for (6). The main difference with respect to [3] is that we need to
symmetrize the quasilinear form of (6), while in [3] the authors first linearized the equations around
the shock profile solution and treated the linearization errors as source terms. This strategy cannot be
followed because the dissipation introduced by the elliptic equation is not strong enough to control the
linearization errors. However, the standard symmetrization of the quasilinear system (6) works, and the
last ingredient in the proof is the H1 estimate for the elliptic equation satisfied by z (which tells more
or less that the H3 norm of z is controled by the H2 norm of ω). The global existence of a smooth
solution, as well as the asymptotic decay follows directly from proposition 2.1, see e.g. [4]. Compared to
the results of [1,3] obtained for the viscous regularization of hyperbolic conservation laws, we need here
to consider initial integrated perturbations in H3, and not only in H2 as in [1,3]. This is due to the fact
that the dissipation is not as strong as in the viscous case. In particular, we need to control the solution
in L∞

t (W 1,∞
ξ ), while in [1,3] the authors only needed a control in L2

t (W
1,∞
ξ ). This higher regularity is

the main difference between coupled hyperbolic-elliptic systems and viscous regularizations of hyperbolic
conservation laws. Detailed proofs of the above results may be found in [7].
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