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Cité scientifique

59655 VILLENEUVE D’ASCQ CEDEX, France
e-mail: jfcoulom@math.univ-lille1.fr

March 16, 2004

Abstract

Assuming that a hyperbolic initial boundary value problem satsifies an a priori energy
estimate with a loss of one tangential derivative, we show a well-posedness result in the
sense of Hadamard. The coefficients are assumed to have only finite smoothness in view
of applications to nonlinear problems. This shows that the weak Lopatinskii condition is
roughly sufficient to ensure well-posedness in appropriate functional spaces.

AMS subject classification: 35L50, 35L40

1 Introduction

In this paper, we consider hyperbolic Initial Boundary Value Problems (IBVPs) in several space
dimensions. Such problems typically read:

∂tU +
∑d

j=1Aj(t, x) ∂xjU +D(t, x)U = f(t, x) , t ∈ ]0, T [ , x ∈ Rd
+ ,

B(t, y)U|xd=0
= g(t, y) , t ∈ ]0, T [ , y ∈ Rd−1 ,

U|t=0
= U0(x) , x ∈ Rd

+ .

(1)

The space variable x lies in the half-space Rd
+ := {x = (x1, . . . , xd) ∈ Rd/xd > 0}, y =

(x1, . . . , xd−1) denotes a generic point of Rd−1, and t = x0 is the time variable. The Aj ’s
and D are square n × n matrices, while B is a p × n matrix of maximal rank (the integer p is
given below). For simplicity, we shall only deal with noncharacteristic problems, but we point
out that the analysis can be reproduced with only minor changes for uniformly characteristic
problems (we shall go back to this in our final remarks).

To prove the well-posedness of (1), there are basically four steps (see e.g. [3] for a complete
description). One first proves a priori energy estimates for smooth solutions. Then one defines
a dual problem and shows the existence of weak solutions (this works because the original
and the dual problems usually share the same stability properties). The third step is to show
that weak solutions are strong solutions and thus satisfy the energy estimate. Eventually, one
constructs solutions of the IBVP. The first step of this analysis is linked to the so-called (uniform)
Lopatinskii condition (or uniform Kreiss-Lopatinskii condition), see [10]. Namely, the uniform
Lopatinskii condition yields an energy estimate in L2, with no loss of derivative from the source
terms (f, g) to the solution U . The second step relies on Hahn-Banach and Riesz theorems
(see [3]). One obtains weak solutions for which it is not possible to apply the a priori energy
estimate. Thus, in the third step, one introduces a tangential mollifier, regularizes the weak
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solution, applies the a priori estimate to the regularized sequence, and passes to the limit. This
procedure was introduced in [11]. The fourth step is to take into account the initial datum U0,
and it was first achieved in [18].

In all the above mentionned results, it is crucial that the first step yields an energy estimate
without loss of derivatives. (We shall say that such problems are stable problems). Such
an estimate holds either because the boundary conditions are maximally dissipative (or strictly
dissipative, which is even better), either because the uniform Lopatinskii condition is satisfied.
However, it is known that this stability condition is not met by some physically interesting prob-
lems. Examples of situations where the uniform Lopatinskii condition breaks down are provided
by elastodynamics (with the well-known Rayleigh waves [22, 20]), shock waves or contact dis-
continuities in compressible fluid mechanics, see e.g. [12, 16]. For such nonstable problems, there
is no L2 estimate, but in some weakly stable situations, one can prove a priori energy estimates
with a loss of one tangential derivative from the source terms to the solution. Without enter-
ing details, these problems are those for which the so-called Lopatinskii determinant vanishes
at order 1 in the hyperbolic region of the cotangent of the boundary T ∗Rd

t,y ' Rd × Rd. For
noncharacteristic problems, such energy estimates with loss of one derivative have been derived
by the author in [5], and for uniformly characteristic problems, similar energy estimates have
been derived by P. Secchi and the author in [6]. (Note that for the Rayleigh waves problem, the
Lopatinskii determinant vanishes in the elliptic region of the cotangent of the boundary, and the
situation is slightly better, as shown in [20]).

In this paper, we show how to solve the IBVP for such weakly stable problems where losses
of derivatives occur. More precisely, we show how to construct solutions of (1), with U0 = 0,
provided that we have an a priori estimate with a loss of one tangential derivative, both for
the initial problem (1) and for a dual problem. The construction of a weak solution is quite
classical, but still, it requires some attention. Then, we shall regularize our weak solution by
using a tangential mollifier. Unlike in the case of stable problems, where any tangential mollifier
is suitable, we shall show here that the choice of the mollifier is crucial in our context. Our
result is that weak solutions are what we shall call semi-strong solutions. In the end, we shall
prove a well-posedness result (in the sense of Hadamard) for the IBVP (1), when U0 = 0. The
case of general initial data is addressed in our final remarks.

The paper is organized as follows. In view of possible applications to nonlinear problems,
we have chosen to work with low regularity coefficients. Of course, this choice will introduce
technical difficulties, and we have found it appropriate to give in section 2 all the notations and
results on paradifferential calculus that will be used throughout this paper. In section 3, we
state precisely our weak stability assumption, and give our main result. In section 4, we prove
that (1) admits weak solutions, and that these weak solutions are semi-strong solutions. Up to
a few technical details, this ensures well-posedness for zero initial data. In section 5, we give
some extensions of our results, and make a few comments.

2 Paradifferential calculus with a parameter

In this section, we collect some definitions and results on paradifferential calculus. We refer to
the original works by Bony and Meyer [1, 15] and also to [14, 17] for the introduction of the
parameter. The reader will find detailed proofs in these references. We first introduce some
norms on the usual Sobolev spaces. For all γ ≥ 1, and for all s ∈ R, we equip the space Hs(Rd)
with the following norm:

‖u‖2
s,γ :=

1
(2π)d

∫
Rd

λ2s,γ(ξ) |û(ξ)|2 dξ , λs,γ(ξ) := (γ2 + |ξ|2)s/2 .

We shall write ‖ · ‖0 rather than ‖ · ‖0,γ for the (usual) L2 norm.

2



The classification of paradifferential symbols (with a parameter) is the following:

Definition 2.1. A paradifferential symbol of degree m ∈ R and regularity k (k ∈ N) is a function
a(x, ξ, γ) : Rd × Rd × [1,+∞[→ Cq×q such that a is C∞ with respect to ξ and for all α ∈ Nd,
there exists a constant Cα verifying

∀ (ξ, γ) , ‖∂αξ a(·, ξ, γ)‖Wk,∞(Rd) ≤ Cα λ
m−|α|,γ(ξ) .

The set of paradifferential symbols of degree m and regularity k is denoted by Γmk (Rd). It is
equipped with the obvious semi-norms. We denote by Σm

k (Rd) the subset of paradifferential
symbols a ∈ Γmk (Rd) such that for a suitable ε ∈ ]0, 1[ the partial Fourier transform of a satisfies

∀ (ξ, γ) , Supp Fx a(·, ξ, γ) ⊂ {ζ ∈ Rd/ |ζ| ≤ ε (γ2 + |ξ|2)1/2} .

Of course, the symbols in Σm
k (Rd) are C∞ functions with respect to both variables x and ξ,

and for all a ∈ Σm
k (Rd), we have the estimates

∀ (x, ξ, γ) , |∂βx∂αξ a (x, ξ, γ)| ≤ Cα,β λ
m−|α|+|β|,γ(ξ) .

Thus any symbol a ∈ Σm
k (Rd) belongs to Hörmander’s class Sm1,1 [9] and defines an operator

Opγ(a) on the Schwartz’ class S(Rd) by the usual formula

∀u ∈ S(Rd) , ∀x ∈ Rd , Opγ(a)u(x) :=
1

(2π)d

∫
Rd

eix·ξ a(x, ξ, γ) û(ξ) dξ .

We shall use the following terminology:

Definition 2.2. A family of operators {P γ} defined for γ ≥ 1 will be said of order ≤ m (m ∈ R)
if the operators P γ are uniformly bounded from Hs+m(Rd) to Hs(Rd) for all s, independently of
γ:

∀ γ ≥ 1 , ∀u ∈ Hs+m(Rd) , ‖P γu‖s,γ ≤ Cs ‖u‖s+m,γ .

The following Theorem is crucial:

Theorem 2.1. If a ∈ Σm
k (Rd), k ∈ N and m ∈ R, the family {Opγ(a)} is of order ≤ m. More

precisely, for all s ∈ R, there exists a positive constant C such that

∀ γ ≥ 1 , ∀u ∈ Hs+m(Rd) , ‖Opγ(a)u‖s,γ ≤ C ‖u‖s+m,γ .

The constant C only depends on s,m, on the confinement parameter ε ∈ ]0, 1[, and on a finite
number N of semi-norms of a (N only depends on s and m).

The regularization of symbols in the class Γmk (Rd) is achieved by a convolution with admis-
sible cut-off functions:

Definition 2.3. Let ψ : Rd ×Rd × [1,+∞[→ [0,+∞[ be a C∞ function such that the following
estimates hold for all α, β ∈ Nd:

∀ (ζ, ξ, γ), |∂αζ ∂
β
ξ ψ (ζ, ξ, γ)| ≤ Cα,β λ

−|α|−|β|,γ(ξ) .

We shall say that ψ is an admissible cut-off function if there exist real numbers 0 < ε1 < ε2 < 1
satisfying

ψ(ζ, ξ, γ) = 1 if |ζ| ≤ ε1(γ2 + |ξ|2)1/2 ,
ψ(ζ, ξ, γ) = 0 if |ζ| ≥ ε2(γ2 + |ξ|2)1/2 .
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An example of cut-off function is the following: we choose a nonnegative C∞ function χ0 on
Rd × R such that

|ξ1|2 + γ2
1 ≥ |ξ2|2 + γ2

2 =⇒ χ0(ξ1, γ1) ≤ χ0(ξ2, γ2) ,{
χ0(ξ, γ) = 1 if

(
γ2 + |ξ|2

)1/2 ≤ 1/2,

χ0(ξ, γ) = 0 if
(
γ2 + |ξ|2

)1/2 ≥ 1.

We define a function ϕ0(ξ, γ) := χ0(ξ/2, γ/2)− χ0(ξ, γ). Then the function ψ0 defined by

ψ0(ζ, ξ, γ) :=
∑
p≥0

χ0(22−pζ, 0)ϕ0(2−pξ, 2−pγ) (2)

is an admissible cut-off function (one can take ε1 = 1/16 and ε2 = 1/2).
If ψ is an admissible cut-off function, the inverse Fourier transform Kψ of ψ(·, ξ, γ) satisfies

∀ (ξ, γ) , ‖∂αξ Kψ(·, ξ, γ)‖L1(Rd) ≤ Cα λ
−|α|,γ(ξ) .

These L1 bounds for the derivatives ∂αξ K
ψ yield the following result:

Proposition 2.1. Let ψ be an admissible cut-off function. The mapping

a 7−→ σψa (x, ξ, γ) :=
∫

Rd

Kψ(x− y, ξ, γ) a(y, ξ, γ) dy

is continuous from Γmk (Rd) to Σm
k (Rd) for all m (the confinement parameter of σψa is ε2).

If a ∈ Γm1 (Rd), then a − σψa ∈ Γm−1
0 (Rd). In particular, if ψ1 and ψ2 are two admissible

cut-off functions and a ∈ Γm1 (Rd), then σψ1
a − σψ2

a ∈ Σm−1
0 (Rd).

Fixing an admissible cut-off function ψ, we define the paradifferential operator Tψ,γa by the
formula

Tψ,γa := Opγ(σψa ) .

If ψ1 and ψ2 are two admissible cut-off functions and a ∈ Γm1 (Rd), then Proposition 2.1 and
Theorem 2.1 show that the family {Tψ1,γ

a − Tψ2,γ
a } is of order ≤ (m− 1).

The symbolic calculus is based on the following Theorem:

Theorem 2.2. Let a ∈ Γm1 (Rd) and b ∈ Γm
′

1 (Rd). Then ab ∈ Γm+m′

1 (Rd) and the family

{Tψ,γa ◦ Tψ,γb − Tψ,γab }γ≥1

is of order ≤ m+m′ − 1 for all admissible cut-off function ψ.

Let a ∈ Γm1 (Rd). Then the family
{(Tψ,γa )∗ − Tψ,γa∗ }γ≥1

is of order ≤ m− 1 for all admissible cut-off function ψ.

Let a ∈ Γm2 (Rd) and b ∈ Γm
′

2 (Rd). Then ab ∈ Γm+m′

2 (Rd) and the family

{Tψ,γa ◦ Tψ,γb − Tψ,γab − Tψ,γ−i
∑

j ∂ξj
a∂xj b

}γ≥1

is of order ≤ m+m′ − 2 for all admissible cut-off function ψ.
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Let a ∈ Γm2 (Rd). Then the family

{(Tψ,γa )∗ − Tψ,γa∗ − Tψ,γ−i
∑

j ∂ξj
∂xja

∗}γ≥1

is of order ≤ m− 2 for all admissible cut-off function ψ.

An easy consequence of Theorem 2.2 is that, for any symbols a ∈ Γm2 (Rd) and b ∈ Γm
′

2 (Rd)
that commute, the remainder

T γa T
γ
b − T γb T

γ
a − T γ−i{a,b} = [T γa , T

γ
b ]− T γ−i{a,b}

is of order ≤ m + m′ − 2. Here above, the notation {a, b} stands for the Poisson bracket of a
and b:

{a, b} :=
∑
j

∂ξja ∂xjb− ∂xja ∂ξjb .

We now study the case of paraproducts: they are defined by the particular choice of ψ0 as
cut-off function, where ψ0 is defined by (2). We shall write T γa instead of Tψ0,γ

a for the associated
paradifferential operators. We have the following important result:

Theorem 2.3. Let a ∈W 1,∞(Rd), u ∈ L2(Rd) and γ ≥ 1. Then we have

‖a u− T γa u‖0 ≤
C

γ
‖a‖W 1,∞(Rd) ‖u‖0 , ‖a ∂xju− T γa ∂xju‖0 ≤ C ‖a‖W 1,∞(Rd) ‖u‖0 ,

‖a u− T γa u‖1,γ ≤ C ‖a‖W 1,∞(Rd) ‖u‖0 ,

for a suitable constant C that is independent of (a, u, γ).
If in addition a ∈W 2,∞(Rd), we have

‖a u− T γa u‖1,γ ≤
C

γ
‖a‖W 2,∞(Rd) ‖u‖0 ,

‖a ∂xju− T γa ∂xju‖1,γ ≤ C ‖a‖W 2,∞(Rd) ‖u‖0 ,

for a suitable constant C that is independent of (a, u, γ).

We can extend the paradifferential calculus to symbols defined on a half-space in the following
way: let Ω denote the half-space Rd×]0,+∞[= Rd+1

+ . The space L2
xd

(Hs
t,y) is equipped with the

norm

|||u|||2s,γ :=
∫ +∞

0
‖u(·, xd)‖2

s,γ dxd .

Again, we shall write ||| · |||0 rather than ||| · |||0,γ when s = 0 (that is, for the usual norm in L2(Ω)).
We denote by Γmk (Ω) the set of symbols a(x0, . . . , xd, ξ, γ) defined on Ω×Rd× [1,+∞[ such that
the mapping xd 7→ a(·, xd, ·) is bounded into Γmk (Rd). We define the paradifferential operator
T γa by the formula

∀u ∈ C∞0 (Ω) , ∀xd ≥ 0 , (T γa u)(·, xd) := T γa(xd)u(·, xd) .

Using Theorem 2.3 and integrating with respect to xd, we obtain for all symbol a ∈ W 1,∞(Ω)
and all u ∈ L2(Ω) the estimates:

|||a u− T γa u|||0 ≤
C

γ
‖a‖W 1,∞(Ω) |||u|||0 ,

|||a ∂xju− T γa ∂xju|||0 ≤ C ‖a‖W 1,∞(Ω) |||u|||0 , j = 0, . . . , d− 1 .

When a ∈W 2,∞(Ω), one obtains an estimate with a gain of two tangential derivatives:

|||a u− T γa u|||1,γ ≤
C

γ
‖a‖W 2,∞(Ω) |||u|||0 ,

|||a ∂xju− T γa ∂xju|||1,γ ≤ C ‖a‖W 2,∞(Ω) |||u|||0 , j = 0, . . . , d− 1 .
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3 Statement of the result

Recall that Ω denotes the half-space Rd
t,y ×R+

xd
. We first make the following assumption on the

coefficients of (1):

Assumption 1. The Aj’s are defined on Ω and belong to W 2,∞(Ω).

There exists δ > 0 such that for all (t, x) ∈ Ω one has

|detAd(t, x)| ≥ δ .

The matrix B is defined on Rd and belongs to W 2,∞(Rd). It has maximal rank p, where p equals
the number of positive eigenvalues of Ad (that is, the number of incoming characteristics).

The system is symmetric hyperbolic, that is, there exists a (real) matrix valued mapping S ∈
W 2,∞(Ω) verifying

∀ (t, x) ∈ Ω , S(t, x) = S(t, x)T , S(t, x) ≥ δ I , S(t, x)Aj(t, x) = Aj(t, x)T S(t, x) .

We now make our first weak stability assumption on system (1):

Assumption 2. For any D1 ∈ W 1,∞(Ω), and for any symbol D2 ∈ Γ0
1(Ω), there exists a

constant C (that depends only on δ, ‖Aj‖W 2,∞(Ω), ‖D1‖W 1,∞(Ω), ‖B‖W 2,∞(Rd) and on a finite
number of seminorms of the symbol D2) and there exists a constant γ0 ≥ 1 such that for all
U ∈ C∞0 (Ω) and for all γ ≥ γ0 one has

γ |||U |||20 + ‖U|xd=0
‖2
0 ≤ C

(
1
γ3
|||f |||21,γ +

1
γ2
‖g‖2

1,γ

)
,

where f := A−1
d

γU + ∂x0U +
d∑
j=1

Aj ∂xjU +D1 U

 + T γD2
U , g := BU|xd=0

.

Before stating our last assumption, we make a couple of remarks. In the derivation of energy
estimates, one usually replaces the linear operator

U 7−→ A−1
d

γU + ∂x0U +
d∑
j=1

Aj ∂xjU +D1 U

 + T γD2
U

by its paradifferential version

U 7−→ T γ
(γ+iξ0)A−1

d

U +
d−1∑
j=1

T γ
iξjA

−1
d Aj

U + ∂xd
U + T γ

A−1
d D1

U + T γD2
U ,

and treats the errors as source terms1. These errors have the following form:

γ

(
A−1
d U − T γ

A−1
d

U

)
, or A−1

d Aj ∂xjU − T γ
iξjA

−1
d Aj

U , or A−1
d D1 U − T γ

A−1
d D1

U .

To absorb these errors in an estimate with a loss of one tangential derivative, one needs the
regularity stated in assumptions 1 and 2 for the coefficients (see Theorem 2.3 in the preceeding
section).

1Recall that we use a tangential symbolic calculus for which xd is seen as a parameter.
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The crucial point in assumption 2 is that the energy estimate is independent of the lower
order term in the interior equation. More precisely, if the energy estimate holds with D1 =
D2 = 0, it is not clear whether it also holds for arbitrary D1 and D2. This is a major difference
with the stable case where there is no loss of derivative (and therefore, one can treat lower order
terms as source terms in energy estimates). In the framework of weakly stable problems, the
lower order terms in the interior equations can not be neglected and one needs to pay special
attention. One way to rephrase assumption 2 is the following: energy estimates with loss of one
tangential derivative hold, independently of the lower order terms, and independently of their
nature (meaning classical, or paradifferential, or a linear combination of the two).

We now turn to our last assumption, that is the analogue of assumption 2 for a dual problem.
First recall the following definition:

Definition 3.1. A dual problem for (1) is a linear problem that reads:{
∂tV +

∑d
j=1A

T
j ∂xjV +D]V = f](t, x) , t ∈ ]0, T [ , x ∈ Rd

+ ,

M](t, y)V|xd=0
= g](t, y) , t ∈ ]0, T [ , y ∈ Rd−1 ,

where M] is a (n− p)× n matrix of maximal rank such that

∀ (t, y) ∈ Rd , B](t, y)T B(t, y) +M](t, y)T M(t, y) = Ad(t, y, 0) , (3)

for suitable p × n and (n − p) × n matrices B] and M , and such that B],M],M belong to
W 2,∞(Rd).

Our final assumption is that the energy estimate with loss of one tangential derivative is also
satisfied by one dual problem2, when the parameter γ is changed into −γ:

Assumption 3. There exists a dual problem (that is, a matrix M] satisfying (3)) such that for
any D1 ∈ W 1,∞(Ω), and for any symbol D2 ∈ Γ0

1(Ω), there exists a constant C (that depends
only on δ, ‖Aj‖W 2,∞(Ω), ‖D1‖W 1,∞(Ω), ‖M]‖W 2,∞(Rd) and on a finite number of seminorms of the
symbol D2) and there exists a constant γ0 ≥ 1 such that for all V ∈ C∞0 (Ω) and for all γ ≥ γ0

one has

γ |||V |||20 + ‖V|xd=0
‖2
0 ≤ C

(
1
γ3
|||f]|||21,γ +

1
γ2
‖g]‖2

1,γ

)
,

where f] := (ATd )−1

γV − ∂x0V −
d∑
j=1

ATj ∂xjV +D1 V

 + T γD2
V , g] := M] V|xd=0

.

In terms of the Lopatinskii condition, assumption 3 means that for one dual problem, the
backward Lopatinskii condition degenerates at order 1 in the hyperbolic region of the cotangent
of the boundary. In practice, one can usually compute explicit dual boundary conditions for
which the Lopatinskii determinant equals that of the original problem (1). Thus the derivation
of energy estimates for a dual problem is usually a direct consequence of energy estimates for
the original problem.

In all what follows, we always make assumptions 1, 2 and 3. The result is the following:

Theorem 3.1. Let D ∈ W 1,∞(Ω), and let T > 0. Then, for all functions f(t, x) and g(t, y)
verifying:

f, ∂tf, ∂x1f, · · · , ∂xd−1
f ∈ L2(ΩT ) , ΩT :=]−∞, T [×Rd

+ ,

g ∈ H1(ωT ) , ωT :=]−∞, T [×Rd−1 ,

2Note that, with our definition, the dual problem is not uniquely defined.
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and such that f and g vanish for t < 0, there exists a unique U ∈ L2(] − ∞, T [×Rd
+), whose

trace on {xd = 0} belongs to L2(]−∞, T [×Rd−1), that vanishes for t < 0, and that is a solution
to {

∂tU +
∑d

j=1Aj(t, x) ∂xjU +D(t, x)U = f(t, x) , t ∈ ]−∞, T [ , x ∈ Rd
+ ,

B(t, y)U|xd=0
= g(t, y) , t ∈ ]−∞, T [ , y ∈ Rd−1 .

In addition, U ∈ C([0, T ];L2(Rd
+)) and the following estimate holds for all t ∈ [0, T ] and all real

number γ ≥ γ0:

e−2γt ‖U(t)‖2
L2(Rd

+)
+ γ ‖e−γsU‖2

L2(Ωt)
+ ‖e−γsU|xd=0

‖2
L2(ωt)

≤ C

(
1
γ
‖e−γsf‖2

L2(Ωt)
+

1
γ3
‖e−γs∇t,yf‖2

L2(Ωt)
+ ‖e−γsg‖2

L2(ωt)
+

1
γ2
‖e−γs∇g‖2

L2(ωt)

)
.

The constant C and the parameter γ0 only depend on δ, ‖Aj‖W 2,∞(Ω), ‖D‖W 1,∞(Ω), ‖B‖W 2,∞(Rd)

and ‖M]‖W 2,∞(Rd).

4 Proof of the main result

In this section, we first show existence and uniqueness of solutions for the Boundary Value
Problem, with source terms (f, g) in weighted spaces. For γ ≥ 1, we define the spaces L2

γ(Ω) :=
exp(γt)L2(Ω), H1

γ(Ω) := exp(γt)H1(Ω). We also define the spaces

H(Ω) := {v ∈ L2(Ω) s.t. ∂tv, ∂x1v, . . . , ∂xd−1
v ∈ L2(Ω)} = L2(R+

xd
;H1(Rd

t,y)) ,

Hγ(Ω) := exp(γt)H(Ω) = {v ∈ D′(Ω) s.t. exp(−γt)v ∈ H(Ω)} ,
H(Ω) := {v ∈ H(Ω) s.t. ∂tv, ∂x1v, . . . , ∂xd

v ∈ H(Ω)} .
(4)

The spaces L2
γ(Rd) and H1

γ(Rd) are defined in a similar way. The space L2
γ(Ω) is equipped with

the obvious norm:
‖v‖L2

γ(Ω) := ||| exp(−γt)v|||0 ,

and the space Hγ(Ω) is equipped with the norm

‖v‖Hγ(Ω) := |||ṽ|||1,γ with ṽ := exp(−γt)v .

Similarly, the space H1
γ(Rd) is equipped with the norm

‖w‖H1
γ(Rd) := ‖w̃‖1,γ with w̃ := exp(−γt)w .

Some elementary, though useful, properties of the spaces H(Ω) and H(Ω) are collected in ap-
pendix A at the end of this paper. In particular, we show that elements of H(Ω) admit a trace
in H3/2(Rd) (though they do not necesarily belong to H2(Ω), since the definition (4) does not
require ∂2

xd
f ∈ L2(Ω)).

We consider a zero order coefficient D ∈W 1,∞(Ω), that we fix once and for all, and we wish
to prove a well-posedness result for the following Boundary Value Problem:{

LU := ∂tU +
∑d

j=1Aj(t, x) ∂xjU +D(t, x)U = f(t, x) , (t, x) ∈ Ω ,
B(t, y)U|xd=0

= g(t, y) , (t, y) ∈ Rd ,
(5)

when the source terms f and g belong to Hγ(Ω) and H1
γ(Rd), and γ is large. In view of

assumption 2, we expect to obtain a unique solution U in L2
γ(Ω) whose trace on the boundary

{xd = 0} belongs to L2
γ(Rd). In the end, we shall localize this result on a finite time interval.
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For later use, we define the norm of the coefficients:

N :=
d∑
j=1

‖Aj‖W 2,∞(Ω) + ‖D‖W 1,∞(Ω) + ‖B‖W 2,∞(Rd) + ‖M]‖W 2,∞(Rd) , (6)

where M] is given by assumption 3, and represents the dual boundary conditions.

4.1 Preliminary estimates

We first show that the original problem, as well as the dual problem, satisfy an energy estimate
in L2(H−1) when the source terms are in L2 (that is, we can shift the indices of regularity).
More precisely, we have the following result:

Lemma 4.1. Let D1 ∈W 1,∞(Ω), and let D2 ∈ Γ0
1(Ω). There exists a constant C (that depends

only on δ, ‖Aj‖W 2,∞(Ω), ‖D1‖W 1,∞(Ω), ‖B‖W 2,∞(Rd) and on a finite number of seminorms of the
symbol D2) and there exists a constant γ1 ≥ 1 such that for all U ∈ C∞0 (Ω) and for all γ ≥ γ1

one has

γ |||U |||20 + ‖U|xd=0
‖2
0 ≤ C

(
1
γ3
|||f1|||21,γ +

1
γ2
‖g1‖2

1,γ

)
,

where f1 := T γ
(γ+iξ0)A−1

d

U +
d−1∑
j=1

T γ
iξjA

−1
d Aj

U + ∂xd
U + T γ

A−1
d D1+D2

U , g1 := T γBU|xd=0
,

and one also has

γ |||U |||2−1,γ + ‖U|xd=0
‖2
−1,γ ≤ C

(
1
γ3
|||f2|||20 +

1
γ2
‖g2‖2

0

)
,

where f2 := A−1
d

γU + ∂x0U +
d∑
j=1

Aj ∂xjU +D1 U

 , g2 := BU|xd=0
. (7)

Proof. The first inequality is easily proved using the estimates given in Theorem 2.3:

‖BU|xd=0
− T γBU|xd=0

‖1,γ ≤ C ‖B‖W 1,∞(Rd) ‖U|xd=0
‖0 ,

|||A−1
d (γU + ∂x0U)− T γ

(γ+iξ0)A−1
d

U |||1,γ ≤ C ‖A−1
d ‖W 2,∞(Ω) |||U |||0 ,

|||A−1
d Aj ∂xjU − T γ

iξjA
−1
d Aj

U |||1,γ ≤ C ‖A−1
d Aj‖W 2,∞(Ω) |||U |||0 ,

thanks to assumption 1. Consequently, using assumption 2, the triangle inequality and choosing
γ large enough, one can absorb the error terms in the left hand side of the inequality.

We now turn to the second estimate. Let U ∈ C∞0 (Ω), and define

f := T γ
(γ+iξ0)A−1

d

U +
d−1∑
j=1

T γ
iξjA

−1
d Aj

U + ∂xd
U + T γ

A−1
d D1

U ,

g := T γBU|xd=0
,

W := T γ
(γ2+|ξ|2)−1/2U = T γ

λ−1,γU .

It is clear that we have

|||W |||0 = |||U |||−1,γ , and ‖W|xd=0
‖0 = ‖U|xd=0

‖−1,γ ,
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and we are thus led to derive an energy estimate of W in L2. Thanks to assumption 1 and to
Theorem 2.2, we compute:

T γ
(γ+iξ0)A−1

d

W +
d−1∑
j=1

T γ
iξjA

−1
d Aj

W + ∂xd
W + T γ

A−1
d D1

W

= T γ
λ−1,γ f + T γ−i{(γ+iξ0)A−1

d ,λ−1,γ}U +
d−1∑
j=1

T γ{ξjA−1
d Aj ,λ−1,γ}U +Rγ−2U

= T γ
λ−1,γ f + T γ−i{(γ+iξ0)A−1

d ,λ−1,γ}λ1,γ
W +

d−1∑
j=1

T γ{ξjA−1
d Aj ,λ−1,γ}λ1,γ

W +Rγ−1W ,

where Rγ−2 is a family of order ≤ −2, and Rγ−1 is a family of order ≤ −1. In a similar way, we
also compute

T γBW|xd=0
= T γ

λ−1,γg +Rγ−1W|xd=0
,

where, once again, Rγ−1 is a family of order ≤ −1. Now, we apply the first estimate of Lemma
4.1 with the symbol

D2 := i{(γ + iξ0)A−1
d , λ−1,γ}λ1,γ −

d−1∑
j=1

{ξjA−1
d Aj , λ

−1,γ}λ1,γ ∈ Γ0
1(Ω) .

We get

γ |||W |||20 + ‖W|xd=0
‖2
0 ≤ C

(
1
γ3
|||T γ

λ−1,γ f +Rγ−1W |||21,γ +
1
γ2
‖T γ

λ−1,γg +Rγ−1W|xd=0
‖2
1,γ

)
.

Going back to the definition of W , and choosing γ large enough, we have already obtained the
L2(H−1) estimate for the paradifferential problem, namely:

γ |||U |||2−1,γ + ‖U|xd=0
‖2
−1,γ ≤ C

(
1
γ3
|||f |||20 +

1
γ2
‖g‖2

0

)
.

The result now follows from Lemma 4.2 that we give just below. This Lemma enables us to
control the distance (in L2) between f and f2, and the distance between g and g2 (f2 and g2 are
defined by (7)).

Lemma 4.2. Let γ ≥ 1, a ∈W 1,∞(Rd) and v ∈ H−1(Rd). Then one has

‖(a− T γa ) v‖0 ≤ C ‖a‖W 1,∞(Rd) ‖v‖−1,γ ,

for a suitable constant C that does not depend on γ, a, v.
If, in addition, a ∈W 2,∞(Rd), one has

‖(a− T γa ) v‖0 ≤
C

γ
‖a‖W 2,∞(Rd) ‖v‖−1,γ ,

‖(a− T γa ) ∂xjv‖0 ≤ C ‖a‖W 2,∞(Rd) ‖v‖−1,γ .

Proof. We prove Lemma 4.2 for v in the Schwartz’ class S(Rd). The conclusion follows from a
density/continuity argument. Decompose v as

v = v\ +
∑
j

∂xjvj , with ‖v\‖0 ≤ γ ‖v‖−1,γ , ‖vj‖0 ≤ ‖v‖−1,γ .
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This decomposition holds with

v̂\(ξ) :=
γ2

γ2 + |ξ|2
v̂(ξ) , v̂j(ξ) :=

−iξj
γ2 + |ξ|2

v̂(ξ) .

We easily get

‖a v − T γa v‖0 ≤ ‖(a− T γa )v\‖0 +
∑
j

‖(a− T γa ) ∂xjvj‖0 ≤ C ‖a‖W 1,∞(Rd) ‖v‖−1,γ ,

thanks to Theorem 2.3. The second part of Lemma 4.2 is proved in the same way, and we omit
the details.

When dealing with symbols defined on a half-space, one simply integrates the estimates of
Lemma 4.2. The result is a gain of one or two tangential derivatives, depending on the regularity
of the multiplicator. Then one can end the proof of Lemma 4.1. The details are left to the reader.

Of course, similar a priori estimates hold true for the dual problem (with γ changed into −γ),
since the assumptions and the regularity of the coefficients are exactly the same. We therefore
have:

Lemma 4.3. Let D] ∈W 1,∞(Ω). There exists a constant C (that depends only on δ, ‖Aj‖W 2,∞(Ω),
‖D]‖W 1,∞(Ω) and ‖M]‖W 2,∞(Rd)) and there exists a constant γ1 ≥ 1 such that for all V ∈ C∞0 (Ω)
and for all γ ≥ γ1 one has

γ |||V |||2−1,γ + ‖V|xd=0
‖2
−1,γ ≤ C

(
1
γ3
|||f ]|||20 +

1
γ2
‖g]‖2

0

)
,

where f ] := (ATd )−1

γV − ∂x0V −
d∑
j=1

ATj ∂xjV +D] V

 , g] := M] V|xd=0
.

Recall that M] represents the boundary conditions for the dual problem.

With the help of our L2(H−1) estimate, we are going to construct weak solutions of (5).

4.2 Existence of weak solutions

This paragraph is devoted to the proof of the following result:

Proposition 4.1. There exists γ2(N, δ) ≥ 1 such that for γ ≥ γ2, f ∈ Hγ(Ω), and g ∈ H1
γ(Rd),

there exists U ∈ L2
γ(Ω) satisfying U|xd=0

∈ H
−1/2
γ (Rd) and U is a solution to (5) (in the sense

of distributions).

Proof. We first commute (5) with the weight exp(−γt), and we are led to search a function
Ũ ∈ L2(Ω) that is a solution to{

LγŨ := γŨ + LŨ = f̃(t, x) , (t, x) ∈ Ω ,
B(t, y) Ũ|xd=0

= g̃(t, y) , (t, y) ∈ Rd ,
(8)

with (f̃ , g̃) := exp(−γt)(f, g) ∈ H(Ω)×H1(Rd). The formal adjoint (Lγ)∗ of the operator Lγ is
defined by

(Lγ)∗V := γV − ∂tV −
d∑
j=1

ATj ∂xjV +

DT −
d∑
j=1

∂xjA
T
j

 V .
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Using relation (3) and formally integrating by parts, (8) reads

∀V ∈ C∞0 (Ω) ,

〈〈Ũ , (Lγ)∗V 〉〉L2(Ω) = 〈〈f̃ , V 〉〉L2(Ω) + 〈g̃, B]V|xd=0
〉L2(Rd) + 〈MŨ|xd=0

,M]V|xd=0
〉L2(Rd) ,

where the scalar products are denoted as follows:

〈〈U1, U2〉〉L2(Ω) :=
∫

Ω
U1(x) · U2(x) dx , 〈U1, U2〉L2(Rd) :=

∫
Rd

U1(t, y) · U2(t, y) dtdy .

We define a set of appropriate test functions:

F :=
{
V ∈ C∞0 (Ω) s.t. M]V|xd=0

= 0
}
⊃ C∞0 (Ω) .

Thanks to assumption 3 (with D2 = 0 and D1 = DT −
∑
∂xjA

T
j ), we observe that the operator

(Lγ)∗ is one-to-one in the vector space F . Consequently, we may define a linear form ` with the
following formula:

∀V ∈ F , `[(Lγ)∗V ] := 〈〈f̃ , V 〉〉L2(Ω) + 〈g̃, B]V|xd=0
〉L2(Rd) . (9)

The following estimate is now a consequence of Lemma 4.3:

|`[(Lγ)∗V ]| ≤ |||f̃ |||1,γ |||V |||−1,γ + C ‖g̃‖1,γ ‖V|xd=0
‖−1,γ

≤ C
(
|||V |||−1,γ + ‖V|xd=0

‖−1,γ

)
≤ C

γ3/2
|||(Lγ)∗V |||0 ,

provided that γ is large enough, say γ ≥ γ2(N, δ). Now we apply Hahn-Banach theorem and we
can thus extend ` as a (continuous) linear form over the whole space L2(Ω). Thanks to Riesz’
theorem, we conclude that there exists a function Ũ ∈ L2(Ω) verifying:

∀V ∈ F , `[(Lγ)∗V ] = 〈〈Ũ , (Lγ)∗V 〉〉L2(Ω) .

In particular, it is clear that LγŨ = f̃ in the sense of distributions. Using that Ad is invertible,
the trace of Ũ on the boundary {xd = 0} is well-defined and belongs to H−1/2(Rd), see [3,
chapter 7]3. Moreover, the following Green’s formula holds:

∀V ∈ C∞0 (Ω) , 〈〈Ũ , (Lγ)∗V 〉〉L2(Ω) = 〈〈f̃ , V 〉〉L2(Ω) + 〈AdŨ|xd=0
, V|xd=0

〉H−1/2(Rd),H1/2(Rd) .

Combining with the definition of `, see (9), we obtain:

∀V ∈ F , 〈g̃ −BŨ|xd=0
, B]V|xd=0

〉H−1/2(Rd),H1/2(Rd) = 0 .

Using (3), we observe that the matrix(
B]
M]

)
∈W 2,∞(Rd)

is invertible. We can therefore conclude that BŨ|xd=0
= g̃. This completes the proof of Propo-

sition 4.1.
3The proof in [3] is done with C∞ bounded coefficients, but it extends to Lipschitzean coefficients by using

paradifferential techniques to estimate commutators, see e.g. [4] and appendix B for such estimates.
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We have constructed a solution Ũ ∈ L2(Ω) of (8), whose trace belongs to H−1/2(Rd) (so that
the boundary conditions have a clear meaning). We point out that the L2(H−1) estimate given
by Lemma 4.3 is crucial in order to obtain Ũ ∈ L2(Ω). If we had only used the L2 estimate
given by assumption 3, we would have obtained a solution Ũ ∈ L2(H−1).

In view of assumption 2, we expect the function Ũ to admit a trace in L2 and to satisfy an
appropriate energy estimate, namely:

γ |||Ũ |||20 + ‖Ũ|xd=0
‖2
0 ≤ C

(
1
γ3
|||f̃ |||21,γ +

1
γ2
‖g̃‖2

1,γ

)
.

In the next paragraph, we show that this property holds. In particular, there exists a unique
solution of (5) in L2

γ(Ω), and its trace belongs to L2
γ(Rd) when γ is large. Of course, such an

existence-uniqueness result will hold independently of the zero order term D.
Before showing this result, we first state an analogue of Proposition 4.1 when the source

terms are in L2
γ . As a matter of fact, we want to solve the BVP for source terms with tangential

derivatives in L2
γ , but in the analysis, we shall see that we also need to solve BVPs with source

terms that are only in L2
γ .

Proposition 4.2. There exists γ2(N, δ) ≥ 1 such that for γ ≥ γ2, f ∈ L2
γ(Ω), and g ∈ L2

γ(Rd),

there exists U ∈ L2(R+;H−1
γ (Rd)) satisfying U|xd=0

∈ H−3/2
γ (Rd) and U is a solution to (5) (in

the sense of distributions).

Proof. Most of the proof is similar to the proof of Proposition 4.1. Keeping the same notations
for the linear form `, and for the vector space F , and using assumption 2, we easily obtain the
existence of Ũ ∈ L2(R+;H−1(Rd)) such that

∀V ∈ F , `[(Lγ)∗V ] = 〈〈Ũ , (Lγ)∗V 〉〉L2(H−1),L2(H1) .

In particular, one has LγŨ = f̃ in the sense of distributions. The problem is now to give
a meaning to the boundary conditions. This is solved by a trace lemma, which we state in
appendix C at the end of this paper. Using this result, we can conclude that the trace of Ũ on
{xd = 0} is well-defined and belongs to H−3/2(Rd). Moreover, the following Green’s formula
holds:

∀V ∈ C∞0 (Ω) , 〈〈Ũ , (Lγ)∗V 〉〉L2(H−1),L2(H1) = 〈〈f̃ , V 〉〉L2(Ω)+〈AdŨ|xd=0
, V|xd=0

〉H−3/2(Rd),H3/2(Rd) .

Using a continuity/density argument, the equality holds for all functions V ∈ H2(Ω) such that
M]V = 0 on the boundary. As was done in the proof of Proposition 4.1, we obtain:

〈g̃ −BŨ|xd=0
, B]V|xd=0

〉H−3/2(Rd),H3/2(Rd) = 0 ,

provided that V ∈ H2(Ω) and M]V = 0 on the boundary. Because B] and M] belong to
W 2,∞(Rd), for all function µ ∈ H3/2(Rd), there exists V ∈ H2(Ω) such that µ = B]V|xd=0

, and

M]V|xd=0
= 0. We can therefore conclude that g̃ = BŨ|xd=0

.

4.3 “Weak=semi-strong”

The result is the following:

Theorem 4.1. Let (f̃ , g̃) ∈ H(Ω) × H1(Rd), and let Ũ ∈ L2(Ω) be a solution to (8) 4, for γ
sufficiently large. Then there exist a sequence (Uν) in H(Ω), a bounded sequence (dν) in the set
of symbols Γ0

1(Ω), and a bounded sequence (bν) in the set of symbols Γ−1
1 (Rd), that satisfy the

following properties:
4Recall that the trace of Ũ is automatically in H−1/2(Rd) and the boundary conditions make sense.
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Uν −→ Ũ in L2(Ω), Uν|xd=0
−→ Ũ|xd=0

in H−1/2(Rd),

LγUν +AdT
γ
dνUν −→ f̃ in H(Ω),

BUν|xd=0
+ T γbνU

ν
|xd=0

−→ g̃ in H1(Rd).

In particular, Ũ|xd=0
belongs to L2(Rd) and the following energy estimate holds:

γ |||Ũ |||20 + ‖Ũ|xd=0
‖2
0 ≤ C

(
1
γ3
|||f̃ |||21,γ +

1
γ2
‖g̃‖2

1,γ

)
. (10)

Recall that the space H(Ω) is defined by (4)5.

There is a similar result for solutions of (5) with source terms in L2
γ . One simply needs to

shift the indices (the regularized sequence belongs to Hγ(Ω) and so on). The a priori estimate
in L2(H−1

γ ) is the inequality (7) in Lemma 4.1. We omit the proof in this case, and focus on
Theorem 4.1.

As detailed in the introduction, we are going to introduce a tangential mollifier in order to
regularize Ũ . For all ε ∈]0, 1], we define the following symbol ϑε:

∀ (ξ, γ) ∈ Rd × [1,+∞[ , ϑε(ξ, γ) :=
1

γ2 + ε|ξ|2
,

as well as the corresponding Fourier multiplier:

Θγ
ε := T γϑε

= (γ2 − ε∆t,y)−1 .

With slight abuse of notations, we let Θγ
ε act on functions defined over Rd and on functions

defined over the half-space Ω (where we use symbolic calculus with respect to the tangential
coordinates, and the Fourier transform has to be understood as a partial Fourier transform).
This mollifier is exactly the one used in [7] (after introducing the parameter γ). As we shall
see later on, it has some particularly nice commutation properties with the operator Lγ (these
properties are expressed by relation (2.11) in [7]).

Elementary properties of the mollifier Θγ
ε are listed below:

Lemma 4.4. Let γ ≥ 1, ε ∈ ]0, 1] and s ∈ R. Then for all v ∈ L2(R+;Hs(Rd)), one has:

|||Θγ
εv|||s,γ ≤

1
γ2
|||v|||s,γ , |||Θγ

εv|||s+1,γ ≤
1

γ
√
ε
|||v|||s,γ , |||Θγ

εv|||s+2,γ ≤
1
ε
|||v|||s,γ .

If v ∈ L2(R+;Hs+2(Rd)), one has

|||Θγ
εv − v/γ2|||s,γ ≤

ε

γ4
|||v|||s+2,γ .

In particular, one has |||Θγ
εv − v/γ2|||s,γ → 0 when ε→ 0, for all v ∈ L2(R+;Hs(Rd)).

The proof of Theorem 4.1 is based on several estimates of commutators. Before starting the
proof, we recall a lemma by Friedrichs:

5Recall also that the trace on {xd = 0} of any element v ∈ H(Ω) is well-defined and belongs to H3/2(Rd). In
particular, it belongs to H1(Rd) and the third point of the Theorem makes sense, see Theorem A.1 in appendix
A.
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Lemma 4.5 (Friedrichs). Let a ∈ W 1,∞(Ω). There exists a constant C that depends only on
‖a‖W 1,∞(Ω) such that, for all γ ≥ 1, for all ε ∈ ]0, 1], and for all v ∈ L2(Ω), one has

|||[a,Θγ
ε ] v|||1,γ ≤ C |||v|||0 .

Furthermore, one has |||[a,Θγ
ε ] v|||1,γ → 0 when ε→ 0, for all v ∈ L2(Ω).

Let a ∈ W 2,∞(Ω) and j ∈ {0, . . . , d − 1}. There exists a constant C that depends only on
‖a‖W 2,∞(Ω) such that, for all γ ≥ 1, for all ε ∈ ]0, 1], and for all v ∈ L2(Ω), one has

|||[a∂xj − T γa ∂xj ,Θ
γ
ε ] v|||1,γ ≤ C |||v|||0 .

Furthermore, one has |||[a∂xj − T γa ∂xj ,Θ
γ
ε ] v|||1,γ → 0 when ε→ 0, for all v ∈ L2(Ω).

We postpone the proof of Lemma 4.5 to appendix B (the first part is well-known), and we
now give the proof of Theorem 4.1.

Proof. Define
U ε := Θγ

ε Ũ ∈ L2(R+
xd

;H2(Rd
t,y)) .

A direct computation yields

A−1
d LγU ε = Θγ

ε (A
−1
d f̃) + γ [A−1

d ,Θγ
ε ] Ũ + [A−1

d D,Θγ
ε ] Ũ +

d−1∑
j=0

[A−1
d Aj∂xj ,Θ

γ
ε ] Ũ ,

where Lγ is defined by (8), and where we use the convention A0 = Id. Thanks to Lemma 4.4
and to Lemma 4.5, we already have

Θγ
ε (A

−1
d f̃) + γ [A−1

d ,Θγ
ε ] Ũ + [A−1

d D,Θγ
ε ] Ũ =

1
γ2
A−1
d f̃ + rε , |||rε|||1,γ → 0 .

This is because A−1
d ∈ W 2,∞(Ω), D ∈ W 1,∞(Ω), and A−1

d f̃ ∈ L2(R+;H1(Rd)). Using the
decomposition

[A−1
d Aj∂xj ,Θ

γ
ε ] Ũ = [A−1

d Aj∂xj − T γ
iA−1

d Ajξj
,Θγ

ε ] Ũ + [T γ
iA−1

d Ajξj
,Θγ

ε ] Ũ ,

and using Lemma 4.5 (recall that A−1
d Aj ∈W 2,∞(Ω)), we obtain

A−1
d LγU ε =

1
γ2
A−1
d f̃ + rε +

d−1∑
j=0

[T γ
iA−1

d Ajξj
,Θγ

ε ] Ũ , (11)

where |||rε|||1,γ tends to 0. The remaining commutators are zero order terms in Ũ , uniformly with
respect to ε. Therefore, one cannot neglect them and treat these commutators as source terms.
What saves the day is that these commutators can be decomposed in the following way6:

[T γ
iA−1

d Ajξj
,Θγ

ε ] Ũ = T γdj,ε
U ε + rε ,

where dj,ε is a symbol in Γ0
1(Ω) that is uniformly bounded with respect to ε. Indeed, we use

Theorem 2.2 to compute

[T γ
iA−1

d Ajξj
,Θγ

ε ] Ũ = T γ{A−1
d Ajξj ,ϑε}

Ũ +Rγε Ũ = T γdj,εϑε
Ũ +Rγε Ũ = T γdj,ε

U ε +Rγε Ũ , (12)

6If ϑε had compact support in ξ, such a decomposition would not hold. The choice of the mollifier ϑε is
therefore crucial.
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where the symbol dj,ε is given by

dj,ε =
d−1∑
k=0

2ε ξjξk
γ2 + ε|ξ|2

∂xk
(A−1

d Aj) ∈ Γ0
1(Ω) , (13)

and where Rγε is of order ≤ −1, uniformly with respect to ε:

|||RγεV |||1,γ ≤ C |||V |||0 , ∀V ∈ L2(Ω) , ∀ ε ∈ ]0, 1] .

The symbols dj,ε defined by (13) are uniformly bounded in Γ0
1(Ω) with respect to ε.

We observe that ϑε = γ−2+εσε, with σε bounded in Γ2
1(Ω). We also observe that dj,ε = εαj,ε,

with αj,ε bounded in Γ2
1(Ω). Consequently, the remainder Rγε in (12) satisfies

lim
ε→0

|||RγεV |||1,γ = 0 , ∀V ∈ C∞0 (Ω) .

Thanks to the uniform bound on Rγε , we may conclude that |||Rγε Ũ |||1,γ tends to zero as ε tends
to zero. Using (12) in equation (11), and defining

dε := −
d−1∑
j=0

dj,ε ∈ Γ0
1(Ω) ,

we obtain
A−1
d LγU ε + T γdεU

ε =
1
γ2
A−1
d f̃ + rε , |||rε|||1,γ → 0 , (14)

and the symbols dε are bounded in Γ0
1(Ω). Note that (14) also reads

∂xd
U ε = −A−1

d

γU ε + ∂x0U
ε +

d−1∑
j=0

Aj ∂xjU
ε +DU ε

− T γdεU
ε +

1
γ2
A−1
d f̃ + rε ∈ H(Ω) ,

and we thus have U ε ∈ H(Ω), with H(Ω) defined by (4).
For the boundary conditions, one proceeds in an entirely similar way, and gets

BU ε|xd=0
+ T γbεU

ε
|xd=0

=
1
γ2
g̃ + rε , ‖rε‖1,γ → 0 , (15)

with symbols bε bounded in Γ−1
1 (Rd).

Using (14) and (15), the first part of the Theorem is proved, provided that we define (with
slight abuse of notations):

Uν := γ2 U εν ∈ H(Ω) , dν := dεν , bν := bεν , εν :=
1

ν + 1
.

Now we show that Ũ|xd=0
∈ L2(Rd) and that (10) holds. First note that the operators

V 7−→ A−1
d LγV + T γdνV and V 7−→ BV|xd=0

are continuous from the space H(Ω) into H(Ω) and from H(Ω) into H1(Rd) (use Theorem A.1
in appendix A for the boundary operator). Since C∞0 (Ω) is dense in H(Ω) (see Proposition A.1
in appendix A), it is clear that the a priori energy estimate given by assumption 2 still holds
when U ∈ H(Ω) (and not only when U ∈ C∞0 (Ω)).
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Thanks to assumption 2, and to the boundedness of dν in Γ0
1(Ω), we know that there exists

a constant C = C(N, δ) and a positive number γ3(N, δ) such that

γ |||Uν |||20 + ‖Uν|xd=0
‖2
0 ≤ C

(
1
γ3
|||A−1

d LγUν + T γdνU
ν |||21,γ +

1
γ2
‖BUν|xd=0

‖2
1,γ

)
,

for all ν ∈ N, and for all γ ≥ γ3. Decomposing

BUν|xd=0
= (BUν|xd=0

+ T γbνU
ν
|xd=0

)− T γbνU
ν
|xd=0

,

and using (14)-(15), we get (for γ large enough):

γ |||Uν |||20 + ‖Uν|xd=0
‖2
0 ≤ C

(
1
γ3
|||A−1

d f̃ + rintν |||21,γ +
1
γ2
‖g̃ + rbν‖2

1,γ

)
, (16)

where
|||rintν |||1,γ −→ 0 , ‖rbν‖1,γ −→ 0 .

The sequence (Uν|xd=0
) is thus bounded in L2(Rd), and therefore, up to extracting a subsequence,

it converges weakly in L2(Rd) toward some function u∞ ∈ L2(Rd). Since the whole sequence
(Uν|xd=0

) converges toward Ũ|xd=0
in H−1/2(Rd), this implies Ũ|xd=0

∈ L2(Rd). Moreover, we know

that the sequence (Uν) converges strongly toward Ũ in L2(Ω), and (16) yields

γ |||Ũ |||20 + ‖Ũ|xd=0
‖2
0 ≤ C lim inf

(
1
γ3
|||A−1

d f̃ + rintν |||21,γ +
1
γ2
‖g̃ + rbν‖2

1,γ

)
,

≤ C

(
1
γ3
|||f̃ |||21,γ +

1
γ2
‖g̃‖2

1,γ

)
.

This completes the proof.

We summarize Proposition 4.1 and Theorem 4.1 by the following well-posedness result for
the Boundary Value Problem (5):

Theorem 4.2. Let D ∈ W 1,∞(Ω). There exists γ3(N, δ) such that for γ ≥ γ3, f ∈ Hγ(Ω) and
g ∈ H1

γ(Rd), there exists a unique solution U ∈ L2
γ(Ω) of the following system:{

LU = ∂tU +
∑d

j=1Aj(t, x) ∂xjU +D(t, x)U = f(t, x) , (t, x) ∈ Ω ,
B(t, y)U|xd=0

= g(t, y) , (t, y) ∈ Rd ,

This solution satisfies U|xd=0
∈ L2

γ(Rd) and the following estimate holds:

γ ‖U‖2
L2

γ(Ω) + ‖U|xd=0
‖2
L2

γ(Rd) ≤ C

(
1
γ3
‖f‖2

Hγ(Ω) +
1
γ2
‖g‖2

H1
γ(Rd)

)
.

In addition, there exists a sequence (Uν) in H1
γ(Ω) that satisfies the following properties:

Uν −→ U in L2
γ(Ω) , Uν|xd=0

−→ U|xd=0
in L2

γ(Rd) ,

LUν −→ f in L2
γ(Ω) , B Uν|xd=0

−→ g in L2
γ(Rd) .

The last part of the Theorem is proved in [17], using Friedrichs’ lemma (lemma 4.5). We
make the following important comments: even though the source terms f and g have tangential
derivatives in L2

γ , there is no hope to prove, for instance, that LUν converges toward f in Hγ(Ω),
see Theorem 4.1. Eventually, the convergence of the traces in L2

γ can be obtained because we
already know (thanks to Theorem 4.1) that the trace of U belongs to L2

γ(Rd).
When the source terms are only in L2

γ , there is an analogous result:
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Theorem 4.3. Let D ∈ W 1,∞(Ω). There exists γ3(N, δ) such that for γ ≥ γ3, f ∈ L2
γ(Ω) and

g ∈ L2
γ(Rd), there exists a unique solution U ∈ L2(R+

xd
: H−1

γ (Rd
t,y)) of the following system:{

∂tU +
∑d

j=1Aj(t, x) ∂xjU +D(t, x)U = f(t, x) , (t, x) ∈ Ω ,
B(t, y)U|xd=0

= g(t, y) , (t, y) ∈ Rd ,

This solution satisfies U|xd=0
∈ H−1

γ (Rd) and the following estimate holds:

γ3 ‖U‖2
L2(R+;H−1

γ (Rd))
+ γ2 ‖U|xd=0

‖2
H−1

γ (Rd)
≤ C

(
1
γ
‖f‖2

L2
γ(Ω) + ‖g‖2

L2
γ(Rd)

)
.

One should also keep in mind that the dual problem admits similar well-posedness results.

4.4 Well-posedness with zero initial data. End of the proof

Now, we show that Theorem 4.2 and Theorem 4.3 yield a well-posedness result for the Initial
Boundary Value Problem with zero initial data. We first prove that the classical support lemma
extends to weakly stable problems:

Lemma 4.6. There exists γ4(N, δ) such that, if γ ≥ γ4, (f, g) ∈ Hγ(Ω) × H1
γ(Rd) vanish for

t < T0, then the solution U ∈ L2
γ(Ω) of (5) vanishes for t < T0. Moreover, if γ ≥ γ4, f ∈ L2

γ(Ω),
and g ∈ L2

γ(Rd), then the solution U ∈ L2(R+;H−1
γ (Rd)) of (5) also vanishes for t < T0.

Proof. We give the proof when the source terms are in Hγ(Ω)×H1
γ(Rd), but the proof is similar

when the source terms are in L2
γ . There is no loss of generality in assuming T0 = 0. (Otherwise,

use a translation t 7→ t− T0). We fix a function χ ∈ C∞(R) such that χ does not vanish and

χ(t) =

{
1 , if x ≤ 0 ,
exp(−t) , if x ≥ 1 .

The function (t, y, xd) ∈ Ω 7→ χ′(t)/χ(t) belongs to W 1,∞(Ω). Consequently, for all γ large
enough, the only solution in L2

γ(Ω) to the linear problemLV − χ′(t)
χ(t)

V = 0 , (t, x) ∈ Ω ,

B(t, y)V|xd=0
= 0 , (t, y) ∈ Rd ,

(17)

is the trivial solution V = 0, thanks to Theorem 4.2 (we use the essential fact that Theorem 4.2
holds for any zero order term in W 1,∞(Ω)).

Consider some data (f, g) ∈ Hγ(Ω) ×H1
γ(Rd) that vanish for t < 0. Then we have (f, g) ∈

Hγ+j(Ω) × H1
γ+j(Rd) for all integer j. Thanks to Theorem 4.2, we know that there exists a

unique Uj ∈ L2
γ+j(Ω) satisfying{

LUj = f(t, x) , (t, x) ∈ Ω ,
B(t, y)Uj |xd=0

= g(t, y) , (t, y) ∈ Rd .

The function χ(Uj+1 − Uj) belongs to L2
γ+j(Ω) and one checks that it is a solution to (17).

Therefore it equals zero, and Uj+1 = Uj = · · · = U0. Furthermore, we know that

sup
j∈N

1
γ + j

‖f‖Hγ+j(Ω) < +∞ and sup
j∈N

1
γ + j

‖g‖H1
γ+j(Rd) < +∞ ,
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because f and g vanish for t < 0. Thus Theorem 4.2 yields

sup
j
‖Uj‖L2

γ+j(Ω) = sup
j
‖U0‖L2

γ+j(Ω) < +∞ .

This implies that U0 vanishes for t < 0.

We introduce a few notations: for T > 0, let ΩT := Ω ∩ {t < T} =] −∞, T [×Rd
+, and let

ωT :=]−∞, T [×Rd−1. The spaces L2
γ(ΩT ), L2

γ(ωT ), and Hγ(ΩT ) are defined similarly as L2
γ(Ω)

etc. The definition of the norms in L2
γ(ΩT ) and L2

γ(ωT ) is clear. As regards the norm in Hγ(ΩT ),
it is defined by

‖f‖2
Hγ(ΩT ) := γ2‖f‖2

L2
γ(ΩT ) +

d−1∑
j=0

‖∂xjf‖2
L2

γ(ΩT ) .

The norm of H1
γ(ωT ) is defined in a similar way. We are now able to end the proof of Theorem

3.1.

Proof. We consider source terms f ∈ H(ΩT ), and g ∈ H1(ωT ), that vanish in the past. We note
that f and g belong to Hγ(ΩT ) and to H1

γ(ωT ) for all γ ≥ 1.
We extend f and g as functions f[ ∈ H(Ω) and g[ ∈ H1(Rd). Because f[ and g[ vanish for

t < 0, it is also straightforward that f[ ∈ Hγ(Ω) and g[ ∈ H1
γ(Rd) for all γ ≥ 1. Consequently,

for γ large enough, there exists a unique U[ ∈ L2
γ(Ω) such that{

LU[ = f[(t, x) , (t, x) ∈ Ω ,
B(U[)|xd=0

= g[(t, y) , (t, y) ∈ Rd ,

and U[ satisfies the corresponding energy estimate, see Theorem 4.2. Furthermore, U[ vanishes
in the past, thanks to Lemma 4.6. We also have

γ ‖U[‖2
L2

γ(ΩT ) + ‖(U[)|xd=0
‖2
L2

γ(ωT ) ≤ γ ‖U[‖2
L2

γ(Ω) + ‖(U[)|xd=0
‖2
L2

γ(Rd)

≤ C

(
1
γ3
‖f[‖2

Hγ(Ω) +
1
γ2
‖g[‖2

H1
γ(Rd)

)
≤ C ′

(
1
γ3
‖f‖2

Hγ(ΩT ) +
1
γ2
‖g‖2

H1
γ(ωT )

)
.

The restriction U of U[ to ΩT belongs to L2(ΩT ) because U[ vanishes in the past and U[ ∈ L2
γ(ΩT )

when γ is large. We have thus constructed a solution in L2(ΩT ) to the localized problem:{
LU = f(t, x) , (t, x) ∈ ΩT ,

B(t, y)U|xd=0
= g(t, y) , (t, y) ∈ ωT .

(18)

We now show uniqueness of such a solution. Let U ∈ L2(ΩT ) have a trace in L2(ωT ), vanish
in the past, and satisfy {

LU = 0 , (t, x) ∈ ΩT ,

BU|xd=0
= 0 , (t, y) ∈ ωT .

Let ε > 0, and consider a function χ ∈ C∞(R) such that χ(t) = 1 if t ≤ T − 2ε, and χ(t) = 0 if
t ≥ T − ε. Define Uχ := χU . Then Uχ ∈ L2(Ω) and Uχ vanishes in the past, so Uχ ∈ L2

γ(Ω) for
all γ ≥ 1. Moreover, we compute:{

LUχ = χ′(t)U , (t, x) ∈ Ω ,
BUχ|xd=0

= 0 , (t, y) ∈ Rd .
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Observe that χ′U ∈ L2
γ(Ω) for all γ ≥ 1, and χ′U vanishes for t < T − 2ε. We can thus

apply Lemma 4.6 (with source terms in L2
γ)

7, and conclude that Uχ vanishes for t < T − 2ε.
Consequently, U vanishes for t < T , that is, U = 0.

To end the proof of Theorem 3.1, we show the continuity with respect to the time variable.
We consider source terms f ∈ H(ΩT ) and g ∈ H1(ωT ) that vanish in the past, and we continue
these functions as f[ ∈ H(Ω) and g[ ∈ H1(Rd). We already know that the unique solution
U ∈ L2(ΩT ) of (18) that vanishes in the past, is the restriction to ΩT of the solution U[ ∈ L2

γ(Ω)
to the global problem {

LU[ = f[ , (t, x) ∈ Ω ,
BU[|xd=0

= g[ , (t, y) ∈ Rd ,

Moreover, the trace of U[ on {xd = 0} belongs to L2(Rd), and vanishes in the past. To prove
Theorem 3.1, it is sufficient to show the continuity of U[ with respect to the time variable.
Thanks to Theorem 4.2, we know that there exists a sequence (Uν) in H1

γ(Ω) verifying

Uν −→ U[ in L2
γ(Ω) , Uν|xd=0

−→ U[|xd=0
in L2

γ(Rd) ,

LUν −→ LU[ = f[ in L2
γ(Ω) , B Uν|xd=0

−→ g[ in L2
γ(Rd) .

Using the Friedrichs symmetrizer S (see assumption 1), the classical energy estimate for sym-
metric hyperbolic systems in a half-space reads (see e.g. [11]):

e−2γt ‖Uν(t)‖2
L2(Rd

+)
+ γ ‖Uν‖2

L2
γ(Ωt)

≤ C

(
1
γ
‖LUν‖2

L2
γ(Ωt)

+ ‖Uν |xd=0
‖2
L2

γ(ωt)

)
,

and we also have

e−2γt ‖Uν(t)− Uν
′
(t)‖2

L2(Rd
+)

+ γ ‖Uν − Uν
′‖2
L2

γ(Ωt)

≤ C

(
1
γ
‖LUν − LUν

′‖2
L2

γ(Ωt)
+ ‖Uν |xd=0

− Uν
′
|xd=0

‖2
L2

γ(ωt)

)
.

Passing to the limit, we obtain the continuity of U[ with respect to the time variable. The
previous estimates for the trace of U on ωt yields the estimate stated in Theorem 3.1.

5 Some remarks

5.1 The IBVP with general initial data

Using Theorem 3.1, one would like to show well-posedness of the IBVP (1) with general initial
data. Assume first that the coefficients Aj ’s and D, as well as the Friedrichs’ symmetrizer S, are
C∞, bounded, and with bounded derivatives. Extend those coefficients to the whole space Rd+1,
so that the system remains symmetric hyperbolic. Then for all f ∈ L1(]0, T [;H2(Rd)), and for
all U0 ∈ H2(Rd), one can construct a solution U (1) ∈ C0([0, T ];H2(Rd)) ∩ C1([0, T ];H1(Rd)) to
the Cauchy problem{

∂tU
(1) +

∑d
j=1Aj(t, x) ∂xjU

(1) +D(t, x)U (1) = f(t, x) , t ∈ ]0, T [ , x ∈ Rd ,

U
(1)
|t=0

= U0(x) , x ∈ Rd .

For the IBVP (1), one seeks the solution under the form U = U (1) +U (2), with U (2) solution to
∂tU

(2) +
∑d

j=1Aj(t, x) ∂xjU
(2) +D(t, x)U (2) = 0 , t ∈ ]0, T [ , x ∈ Rd

+ ,

B(t, y)U (2)
|xd=0

= g −BU
(1)
|xd=0

, t ∈ ]0, T [ , y ∈ Rd−1 ,

U
(2)
|t=0

= 0 , x ∈ Rd .

7It is crucial here to have a well-posedness result for source terms in L2
γ .

20



Consequently, if the source term g belongs to H1(]0, T [×Rd−1), and if the initial data U0 ∈
H2(Rd

+) satisfy the compatibility condition

g|t=0
= B(0, y)(U0)|xd=0

,

then one can solve the IBVP (1) with a source term f ∈ L1(]0, T [;H2(Rd
+)), thanks to Theorem

3.1.
However, this strategy hardly applies when the Aj ’s are in W 2,∞(Ω) and D is only in

W 1,∞(Ω). The problem is to solve the Cauchy problem with initial data, for instance in H2(Rd),
and to obtain a solution on ]0, T [×Rd, such that its trace on ]0, T [×Rd−1 belongs to H1. This
does not seem possible with a zero order coefficient in W 1,∞. We therefore prefer not to pursue
this issue, which is a little beyond the scope of this paper. However, for C∞ bounded coefficients,
and with data that satisfy the above mentioned compatibility condition, the techniques of [18]
should yield a well-posedness result for the IBVP (1). The result of [19] even suggests that,
under this compatibility condition, the IBVP is well-posed with initial data in H1(Rd

+).
When dealing with nonlinear problems, one usually solves the nonlinear equations by a

sequence of linearized problems with zero initial data and source terms that vanish in the past,
see e.g. [12, 14, 17]. This is another reason why we do not pursue the study of general initial
data.

5.2 Uniformly characteristic IBVP

In applications, it often happens that the boundary is characteristic, that is, the determinant
of the matrix Ad vanishes on the boundary. In many of these cases (at least in many physically
relevant problems), the rank of Ad is constant only on the boundary, and the boundary conditions
are maximally dissipative. In such situations, the corresponding IBVP has been studied in
great details by many authors, even at the level of quasilinear equations, see e.g. [8, 21] and
the references cited therein. When the boundary conditions satisfy the uniform Lopatinskii
condition, and when the rank of Ad is constant in a neighborhood of the boundary, the linear
IBVP was studied in [13].

When losses of tangential derivatives occur, and when the boundary is uniformly characteris-
tic (this happens for instance in the study of contact discontinuities, see [6]), one can reproduce
the analysis developed above. More precisely, assume that there exist two invertible matrices
Q1,2(t, x) ∈W 2,∞(Ω), such that

∀ (t, x) ∈ Ω , Q1(t, x)Ad(t, x)Q2(t, x) =

0n0

In+

−In−

 ,

where Ik is the identity matrix in Rk, and n0, n± are fixed integers. Then the problem{
∂tU +

∑d
j=1Aj(t, x) ∂xjU +D(t, x)U = f(t, x) , (t, x) ∈ ΩT ,

B(t, y)U|xd=0
= g(t, y) , (t, y) ∈ ωT ,

with source terms f ∈ H(ΩT ) and g ∈ H1(ωT ) that vanish in the past, satisfies a well-posedness
result that is entirely analogous to Theorem 3.1, provided that the analogues of assumptions 2
and 3 for characteristic problems are satisfied. The only difference is that we can control only
the noncharacteristic part of the trace of the solution U on the boundary.

With the help of our analysis, the verification of the well-posedness of the linearized equations
for the vortex sheets problem (as studied in [6]) is thus essentially reduced to the calculation of
the Lopatinskii determinant for a suitable dual problem.
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A Some properties of anisotropic Sobolev spaces

In Rd+1, a generic point is denoted by x = (x0, . . . , xd). We use the notation x = (x′, xd) with
x′ ∈ Rd and xd ∈ R. We also use the notation Ω = Rd+1

+ = {x ∈ Rd+1 s.t. xd > 0}. We define
the following spaces

H(Rd+1) := {f ∈ L2(Rd+1) s.t. ∂x0f, . . . , ∂xd−1
f ∈ L2(Rd+1)} ,

H(Rd+1) := {f ∈ H(Rd+1) s.t. ∂x0f, . . . , ∂xd
f ∈ H(Rd+1)} ,

H(Ω) := {f ∈ L2(Ω) s.t. ∂x0f, . . . , ∂xd−1
f ∈ L2(Ω)} ,

H(Ω) := {f ∈ H(Ω) s.t. ∂x0f, . . . , ∂xd
f ∈ H(Ω)} .

The spaces H(Rd+1) and H(Rd+1) are equipped with the following norms8:

‖f‖2
H(Rd+1) :=

1
(2π)d+1

∫
Rd+1

(1 + |ξ′|2)|f̂(ξ)|2 dξ ,

‖f‖2
H(Rd+1) :=

1
(2π)d+1

∫
Rd+1

(1 + |ξ|2)(1 + |ξ′|2)|f̂(ξ)|2 dξ ,

where we have decomposed ξ = (ξ′, ξd) ∈ Rd×R. The spaces H(Ω) and H(Ω) are equipped with
the norms:

‖f‖2
H(Ω) := ‖f‖2

L2(Ω) + ‖∂x0f‖2
L2(Ω) + · · ·+ ‖∂xd−1

f‖2
L2(Ω) ,

‖f‖2
H(Ω) := ‖f‖2

H(Ω) + ‖∂x0f‖2
H(Ω) + · · ·+ ‖∂xd

f‖2
H(Ω) .

The following density result is standard, and is proved by a truncation/regularization argu-
ment (see [2] for details):

Proposition A.1. The space C∞0 (Rd+1) is dense in both H(Rd+1) and H(Rd+1).
The space C∞0 (Ω) is dense in both H(Ω) and H(Ω).

The following result is also very classical:

Proposition A.2. There exist two continuous linear mappings

E : H(Ω) −→ H(Rd+1) and E : H(Ω) −→ H(Rd+1)

such that for all u ∈ H(Ω) (resp. u ∈ H(Ω)), Eu = u (resp. Eu = u) almost everywhere in Ω.

Observe that for the extension operator E, it is sufficient to consider a continuation by 0
outside of Ω (this is because there is no “normal” derivative ∂xd

in the definition of H(Ω)).
We end this short appendix with the following result:

Theorem A.1. The mapping Γ : u ∈ C∞0 (Ω) 7→ u(x′, 0) ∈ C∞0 (Rd) can be continued in a unique
way as a continuous linear mapping Γ : H(Ω) → H3/2(Rd).

8Here we take γ = 1 for the sake of simplicity, but it is clear that introducing the parameter γ in the definition
of the norms does not change the results stated below.

22



Proof. With the help of Proposition A.1 and Proposition A.2, it is sufficient to show that the
mapping

Γ : C∞0 (Rd+1) −→ C∞0 (Rd) ,
u 7−→ u(x′, 0) ,

satisfies the estimate
‖Γu‖H3/2(Rd) ≤ C ‖u‖H(Rd+1) ,

for a suitable constant C. The following formula is classical:

Γ̂u(ξ′) =
1
2π

∫
R
û(ξ′, ξd) dξd .

Using Cauchy-Schwarz’ inequality, we thus obtain

|Γ̂u(ξ′)| ≤ C

(∫
R

dξd
1 + |ξ′|2 + ξ2d

)1/2 (∫
R
(1 + |ξ|2)|û(ξ)|2 dξd

)1/2

≤ C

(1 + |ξ′|2)1/4

(∫
R
(1 + |ξ|2)|û(ξ)|2 dξd

)1/2

.

This bound immediately yields the estimate∫
Rd

(1 + |ξ′|2)3/2|Γ̂u(ξ′)|2 dξ′ ≤ C

∫
Rd

(1 + |ξ′|2)
∫

R
(1 + |ξ|2)|û(ξ)|2 dξd dξ′ = C ‖u‖H(Rd+1) .

The result follows.

B Estimates for commutators

In this appendix, we give the proof of Lemma 4.5. First, let a ∈ W 1,∞(Ω). Decompose the
commutator as

[a,Θγ
ε ] v = [a− T γa ,Θ

γ
ε ] v + [T γa ,Θ

γ
ε ] v .

Using Theorem 2.3 and Lemma 4.4, we have

|||[a− T γa ,Θ
γ
ε ] v|||1,γ ≤ |||(a− T γa )Θγ

εv|||1,γ + |||Θγ
ε (a− T γa )v|||1,γ

≤ C‖a‖W 1,∞(Ω) |||Θγ
εv|||0 +

1
γ2
|||(a− T γa )v|||1,γ ≤

C

γ2
|||v|||0 .

The symbols ϑε are bounded in Γ0
1(Ω), hence the commutators [T γa ,Θ

γ
ε ] are a bounded family

of order ≤ −1, that is,
|||[T γa ,Θγ

ε ] v|||1,γ ≤ C |||v|||0 ,

for a constant C that does not depend on ε. The uniform bound in Lemma 4.5 is thus clear.
When v ∈ C∞0 (Ω), it is clear that

a(Θγ
εv)−Θγ

ε (av) and ∂xj (a(Θγ
εv)−Θγ

ε (av))

tend toward zero in L2(Ω). This yields the convergence toward zero for all functions v ∈ L2(Ω),
using the density of C∞0 (Ω) in L2(Ω).

Consider now a ∈W 2,∞(Ω). Then we have

|||(a∂xj − T γa ∂xj )Θ
γ
εv|||1,γ ≤ C ‖a‖W 2,∞(Ω) |||Θγ

εv|||0 ≤
C

γ2
‖a‖W 2,∞(Ω) |||v|||0 ,
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and similarly, we have

|||Θγ
ε (a∂xj − T γa ∂xj )v|||1,γ ≤

C

γ2
‖a‖W 2,∞(Ω) |||v|||0 .

The uniform bound is proved. When v ∈ C∞0 (Ω), one shows that

[a∂xj − T γa ∂xj ,Θ
γ
ε ]v and ∂xk

[a∂xj − T γa ∂xj ,Θ
γ
ε ]v

tend toward zero in L2(Ω). The density of C∞0 (Ω) in L2(Ω) ends the proof.

C A trace lemma in H−1(Ω)

Recall the notation

Lu = ∂x0u+
d∑
j=1

Aj ∂xju+Du ,

where Aj ∈W 2,∞(Ω) and D ∈W 1,∞(Ω). Let E denote the vector space {u ∈ H−1(Ω) s.t. Lu ∈
H−1(Ω)}. It is equipped with the norm

‖u‖E :=
(
‖u‖2

H−1(Ω) + ‖Lu‖2
H−1(Ω)

)1/2
.

The result is the following:

Lemma C.1. The space C∞0 (Ω) is dense in E, and the mapping Γ : u ∈ C∞0 (Ω) 7→ u(x′, 0) ∈
C∞0 (Rd) can be uniquely continued as a continuous linear mapping Γ : E → H−3/2(Rd). More-
over, the following Green’s formula holds for all u ∈ E and all v ∈ C∞0 (Ω):

〈〈u, L∗v〉〉H−1(Ω),H1(Ω) = 〈〈Lu, v〉〉H−1(Ω),H1(Ω) + 〈Adu|xd=0
, v|xd=0

〉H−3/2(Rd),H3/2(Rd) .

Proof. The Green’s formula is clear when u is in C∞0 (Ω), and it is therefore directly obtained by
a continuity/density argument, provided that the first statement of the Lemma holds.

Let u ∈ C∞0 (Ω), and let ǔ denote the continuation of u by 0 for xd < 0. Then we have

A−1
d L(ǔ) = ˇA−1

d Lu+ Γu⊗ δxd=0 .

We thus have

‖Γu⊗ δxd=0‖H−2(Rd+1) ≤ ‖A−1
d L(ǔ)‖H−2(Rd+1) + ‖ ˇA−1

d Lu‖H−2(Rd+1)

≤ C ‖ǔ‖H−1(Rd+1) + C ‖A−1
d Lu‖H−1(Ω) ≤ C ‖u‖E .

We also know that there exists a constant c > 0 such that

‖Γu⊗ δxd=0‖H−2(Rd+1) = c ‖Γu‖H−3/2(Rd) ,

see e.g. [3, chapter 2]. Consequently, it is now sufficient to prove the density of C∞0 (Ω) in E and
the Lemma will follow. The proof is done, as usual, by truncation and regularization. We refer
to [3, chapter 7] for the details. The only difference with [3] is that, here, we use the property

‖[L, %ε] v‖H−1(Rd+1) −→ 0 ,

for all v ∈ H−1(Rd+1) (%ε denotes a mollifier with all the usual properties).

24



References

[1] J. M. Bony. Calcul symbolique et propagation des singularités pour les équations aux
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