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Abstract

We study the linear stability of multidimensional shock waves for systems of conservation
laws in the case where Majda’s uniform stability condition is violated. The linearized problem
is attacked using the “good unknown” of Alinhac. We prove an energy estimate and show
that the solutions to the linearized problem have singularities localized along bicharacteristic
curves originating from the boundary. The application to isentropic gas dynamics is detailed.

Contents

1 Introduction 1

2 The constant coefficients analysis 4
2.1 The weak stability condition . . . . . . . ... o oo L 6
2.2 The weak stability of planar shock waves . . . . . . . ... ... .. ........ 11
2.3 Proof of theorem 2.1 . . . . . . . . . . . ... e 12

3 The variable coefficients analysis 16
3.1 The linearized equations . . . . . . . . . ... 17
3.2 The paralinearized equations . . . . . . . . ... Lo Lo 18
3.3 Geometrical assumptions. . . . . . . ... 22
3.4 Energy estimates near instability points . . . . . .. ..o 25
3.5  Energy estimates far from instability points . . . . . . .. ... ... L. 32
3.6 Themainresult . . . . . . . . . . . . . . e 35

4 The example of gas dynamics 37

A Paradifferential calculus with a parameter 40

1 Introduction

In [25] and [24], Majda proved the existence of multidimensional shock waves for hyperbolic
systems of conservation laws. The analysis relied on a uniform stability assumption. However,
previous works [6, 13] have exhibited some examples where the uniform stability condition breaks



down. In [13], we have begun to extend Majda’s linear analysis to these particular examples,
namely we have proved an energy estimate on a constant coefficients linearized system. Here we
adopt a general approach and prove a complete linear stability result for a class of shock waves
that are not uniformly stable. The analysis is closely related to what was done in [13].

To avoid any possible confusion, we shall not include the case of non classical shock waves in
this work though this field has known a significant increase of interest over the past few years,
see e.g. [6, 7, 16, 17] and the references therein.

We shall focus in this paper on multidimensional hyperbolic systems: the one-dimensional
case is far different from the multidimensional case since shock waves are either uniformly stable
or violently unstable, see [26]. The scalar case is also known to be very different from the system
case since scalar conservation laws provide us with a unified theory of existence and uniqueness
of solutions in the large, see e.g. [14, 34].

We consider a system of N conservation laws in time-space R x R¢:

d
> 9ifi(w) =0, (1)
j=0

where xg is the time variable, also denoted by ¢ in the sequel, (z1,...,x4) is the space variable
and 0; stands for the partial derivative with respect to ;. The fluxes fo, ..., fq are C*° functions
defined on an open set U of R with values in RY. The jacobian matrix of f; at point u will
be denoted by A;(u).

We assume that the system (1) does not consist of a single conservation law (in one or several
space variables), that is N > 2. We also assume that the space dimension is d > 2 (see the
preceeding remarks). We first assume that (1) is a symmetric hyperbolic system of conservation
laws:

Assumption 1. There exists a C* mapping ¥ : U — My (R) such that
Vj=0,...,d YueU X(u)Aj;(u) is symmetric,
VK compact CU ek > 0 such that ¥(u) Ao(u) > cx I for allu € K.

Recall that assumption 1 is satisfied when there exists a strictly convex entropy, see [14, 34].
Assumption 1 is met by many physical examples such as Euler equations of gas dynamics,
Maxwell equations or the wave equation. Moreover, assumption 1 is the key tool to solve the
Cauchy problem associated to (1) for smooth initial data (namely in a Sobolev space of large
index), see [26, 34].

Because the system has been assumed to be symmetric hyperbolic, the matrix A(u,§) defined

by the formula:
d

VEERT, A(u,€) = Aog(u)' > & Aj(u) (2)

=1

is diagonalizable over R for all state u € U and all wave vector ¢ € R? (see [34]). However,
we shall need a little more than hyperbolicity to carry out the study of the linear stability of
shock waves. In [22], the system was assumed to be strictly hyperbolic but it has been shown in
[25] that a suitable “block structure condition” (that is met by strictly hyperbolic systems) is
sufficient to carry out the study of initial boundary value problems and the study of the linear
stability of shock waves, see also [12, 28, 30]. The block structure condition will be recalled
further in this paper. In [27], Métivier has shown that the block structure condition was met
by every hyperbolic system with constant multiplicity. We are thus naturally led to make the
assumption that (1) is a system with constant multiplicity:



Assumption 2. There exist C* real valued mappings M1, ..., \; defined on U x R4\ {0}, and
fized integers ma,...,mq such that the \;’s are the eigenvalues, with multiplicity m;, of the
matriz A(u,§) defined by (2). Furthermore, the \;’s satisfy

VueU, YEERI\{0}, M(u,&) < - < Ag(u,§).

We point out that assumption 2 is easily checked on the system. However, one could replace
assumption 2 by the more abstract block structure condition, as was made in [25, 28].

Example: consider Euler’s equations of isentropic gas dynamics in space dimension d:

dhp+V-(pv)=0,
I (pv)+V-(pvav)+Vp=0,

where p stands for the density of the fluid, v for the velocity, p for the pressure. Quantities p
and p are linked by an equation of state p = p(p). Euler’s equations form a nonlinear hyperbolic
system of conservation laws. In the domain {p > 0}, hyperbolicity (we mean assumption 1)
amounts to require that the pressure satisfies

As usual, ¢ denotes the sound speed in the fluid. Under this condition on the pressure law,
Euler’s equations are endowed with a strictly convex entropy. Moreover, the eigenvalues of the
corresponding matrix A(u,§) are given by

AM(u, &) =v-&—cl with multiplicity m; =1,
Ao(u,§) =v-§& with multiplicity mo =d — 1,
Asz(u, &) =v - &+l with multiplicity mg = 1.

and therefore assumption 2 is met. We shall detail in section 4 how the general analysis of this
paper applies in the context of isentropic gas dynamics.

Note that Lundquist’s equations of magnetohydrodynamics violate assumption 2. The study
of shock waves in MHD is a very intricate subject due to the appearance of many “pathologies”
(nonconstant multiplicity, occurrence of under- and over-compressive shocks, etc...). We refer
to [10] and to the references therein for some results on this subject.

Because of the natural development singularities in finite time [4], it appears natural to seek
solutions to (1) as functions that are smooth on either side of a hypersurface of R x R%. Recall
the following classical result:

Proposition 1.1. LetT' = {zq — ¢(x0,...,24_1) = 0} be a smooth hypersurface in R x R?, and
let u be a smooth function on either side of I'. Then u is a weak solution of (1) if and only if u
satisfies (1) (in the classical sense) on either side of I' and if the Rankine-Hugoniot conditions
hold at each point of T':

d—1
Vx = (20, za) €T, D 9 [fi(w)](x) = [fa(w)](x) = 0, 3)
=0
the partial derivatives of ¢ in the above formula being evaluated at (zg,...,x4-1). In (3), we
have let [fj(u)](x) denote the jump of the quantity f;j(u) across the hypersurface:
[fi(w)](x) = lim (f;(u(x+sn)) = fj(u(x = sn))) with n=(=Bop, ..., ~04-1,1).



The existence of such a solution to (1) is a free boundary problem since the function ¢
defining the hypersurface I' is part of the unknown of the problem. To overcome this first
difficulty, we begin by straightening the variables in order to work in a fixed domain: given a
smooth function ¢ on R%, we define a change of variables in R%*! by the formula:

(I)(:L‘Da s 7$d) = (330) sy Td—1,Td + 90($07 s 7$d_1)) .

We have chosen here the standard change of variables (as in [25, 28, 30]): it maps the hyperplane
{z4 = 0} onto the hypersurface I" and the two half-spaces {£x; > 0} on the two sides of T.
Other choices for the change of variables (that may be appropriate for characteristic problems)
may be found in [15]. We now perform a change of unknown functions. If  is a smooth function
on either side of I', then the function uy defined by

¥ (20,...,xq) € R wy(xo, ..., xq) i= u(®(20, ..., 24))

is smooth on either side of the hyperplane {z4 = 0}. Denoting by u; (respectively u, ) the
restriction of uy to the half-space {4 > 0} (respectively {z4 < 0}), proposition 1.1 asserts that
u is a weak solution of (1) if and only if

L(uét,go) uét =0 iftxzy>0,
B(u;',uﬁ_,gp) =0 ifzy=0,

where operators L and B are defined by the formulas:

d—1
Aj(v) Ojw + Aq(v, Vo) qw (ha)

7=0
with  Ag(v, Vi) : ZaﬂpA (5b)
B(w*,w™, ) : Zajw [f;(w)] = [fa(w)]. (5¢)

Now that the domain is fix, the problem reduces to the following question: given an initial
datum «® that is smooth on either side of a hypersurface {zqy = ¢©°(21,...,24-1)}, does there
exist a solution (uy, ) of (4) with initial value (ug, ©%), at least locally in time? This question
has received a positive answer in [24] under the so-called uniform stability condition (we shall
recall it in section 2), see [26, 35] for a description of the method. The main idea is that equations
(5a)-(5c) are satisfied for planar shocks and the linear uniform stability of these trivial solutions
implies the existence of nontrivial solutions. As detailed in [6, 13, 36], the uniform stability
condition breaks down in some cases and Majda’s nonlinear existence result can not be applied
anymore. Our purpose is therefore to derive a linear stability result under a weaker condition
than Majda’s one.

2 The constant coefficients analysis

We first examin the linear stability of a planar shock in order to formulate our “weak stability”
assumptions. A planar shock is a solution of (1) that takes the form

u:{uT ifxg>ot+v-y, (6)

w ifeg<ot+v-y,



where u, and u; are fixed vectors belonging to the open set U, y = (z1,...,24_1) is the vector
formed by the tangential space coordinates, v is a wave vector in R~! and ¢ is the normal speed
of propagation of the front. This corresponds to the equation

d—1

o(zo,y ..., Tq_1) = 00 + Z Vix;
i=1

for the shock front curve. We easily check that u is a solution of (1) if and only if the Rankine-
Hugoniot relations

d—1
o [fo(w)] + Y vi [fi(w)] = [fa(w)] (7)
j=1

are satisfied. Performing a rotation of the axis, we may assume v = 0. Changing last space
variable z4 into x4 — ot, we may also assume that the shock is stationary, that is o = 0. Note
that assumption 2 is still satisfied after this change of observer.

Following Lax [23], we assume that u is a p-shock:

Assumption 3. There exists an integer p € {1,...,q} such that the following inequalities hold:
Ap—1(ug,eq) <0< Ap(ug,eq) and Ap(up,eq) <0< Appi(uy, eq)

where eq := (0,...,0,1) € R? is the wave vector of propagation of the shock u. Moreover, Ap 18
a simple eigenvalue, that is m, = 1.

In the case p = 1 (respectively p = ¢), that is in the case of an extreme shock, the first
inequality on the left (respectively the last on the right) is ignored. Recall that assumption 3 is
made in order to avoid under- (or over-)determinacy of the boundary value problem (4). In view
of the number of jump conditions, the number of characteristics (counted with their multiplicity)
entering the shock front curve has to be equal to N + 1, see figure 1. Recall also that if A, is a
multiple eigenvalue, that is, m, > 1, the p-th field is linearly degenerate by Boillat’s theorem,
see [34]. This is a second reason why we assume that A, is a simple eigenvalue.

t
' Ty = ot
my + - +my
Ag(wy)
my =+ -+ My
Ap(wy)
" ' A (u,)
: Ap(uy)
uT
24

Figure 1: Characteristics entering the shock front



Remark: applying the implicit functions theorem, we easily see that the set of solutions
(o, v, up, u,) of the Rankine-Hugoniot relations (7) consists, in the vicinity of (0,0, u;, u,) of all
vectors of the form
(o,v,up, g(o,v,u))

where g is a C°° mapping defined on a neighbourhood of (0,0, ;) € R x R¥~! x U and satisfies
9(0,0,u;) = u,. Moreover, shock waves that are close to our reference shock wave u are p-shocks,
that is meet assumption 3. In all the sequel, we base most of our analysis on the reference shock
wave u but we shall also need to deal with shock waves that are close to u. These shock waves
share the main properties of u.

2.1 The weak stability condition

We now introduce the linearized operators around the shock u: consider a family us = uy + sv
and g = stp. Then we define the linearized operators

d
Eu(Uia¢) = EL(US!::@S) u;l: ’8207 (88‘)
d _
Bu('U, w) = % B(ujvus 7905) ‘SZO' (8b)

Since u is constant on either side of {x4 = 0}, the linearized operators read

d
Lo(vE, ) = Lyv® = ZAj(ur,l) v, Fxg>0,
=0

d—1
Bu(v,9) =Y 050 [fj(0)] = Ag(w,) vt + Ag(w)v™, 24=0.
j=0
We let b;(u) := [fj(u)] (for j=0,...,d—1) and

M (u) <Z+> = —Ag(u) v+ Ag(w) v

Then the linearized boundary value operator By reads

v

d—1 +
v
Bulo. ) = 3 0w + M(w) (21)
j=0
We are led to consider the boundary value problem for the unknown functions (v, ):
9)

LovT = fr  for 24> 0,
Bu(v,) =g forxzy=0,

where fi and g are source terms.

Note that system (9) is a constant coefficients hyperbolic boundary value problem; moreover,
the boundary {x4 = 0} is noncharacteristic because of assumption 3: both matrices A4,4(u,) and
Ag(w;) are regular. Kreiss’ theory [22] on this class of problems does not apply directly because
partial derivatives of ¥ are involved in the boundary conditions. Nonetheless, we attack problem
(9) by the same kind of arguments: formally, we perform a Laplace transform in zy and a Fourier



transform in the tangential space variables (z1,...,24_1). We also make the change of variables
(xg — —x4) in the evolution equation for v~. This yields the following system of ODEs:

— vt
T Ao(uy) +4 Y mj Aj(ue) | VT + Ag(uy) ——=F, (10a)
=1 T
- V-
A ] A Vo—-A — =F_ 10b
7 Ao(w) + ijl% j(w) d(u) i ; (10b)
in the domain {x4 > 0}, with the boundary conditions:
d—1
. V+(0) ~
Tbo(u)+12nj bi(u) | ¥4 M(u) (v-(O) =G, (11)
=
on {xy = 0}. The complex number 7 = v + iny has nonnegative real part and (71,...,74-1) 18
a wave vector in R9~!. In the sequel, we shall denote by 1 the vector (ng,n1,...,m4-1) € R%.

Because the boundary is noncharacteristic, we may rewrite (10a)-(10b) as an ODE system

of the form
d (V) v+ . (Fy
d_.Z'd (V_) - ./4(11, 7, 7) (V—) + Ad(u) <F>

A ) 0 (12)
. L r 0, 7,7
i A= (U 0
Matrices A,; and Ag in (12) are defined by
d—1
Ara(,n,7) = FAg(ur) ™" | v Ao(ury) +4 > my Aj(ugy) |
§=0
Ad(ur) 0 >
A = .
a(u) ( —Aq(w)
Defining
Aj(ur) 0 .
. i < i< d—=
A](u)' ( 0 Aj(ul)> ’ 0_.7_d 17
we find easily
d—1
Afa,n.7) = =Ag(w) ™ [ 7 Ao(w) +i ) n; Aj(w)
§=0
We also define the symbol associated to the shock front:
d—1
b(w,1,7) :==~vbo(w) +i Y n;bs(u). (13)
§=0

As pointed out by Hersh [18], the homogeneous part of the ODEs (12) is hyperbolic when
~ > 0, that is, the matrix A has no purely imaginary eigenmodes when v > 0. For v > 0, we
define £7(u,n,~) as the stable subspace of A, which is the set of initial values of solutions to
(12) that are square integrable on [0, 40o[ when F'y = F_ = (. Because of the decoupled nature
of (12), the stable subspace £ (u,n,7) is nothing but the product of the stable subspaces



of A, and A;. In the case of an extreme shock, one of these two stable subspaces is trivial.
The dimension of £ (u,n,7) is equal to the dimension of £~ (u,0,~) for all n (this is just a
continuity /connectedness argument). To compute the dimension of £ (u,0,7), we seek the
eigenmodes of A(u, 0,). These are the roots w of the dispersion equation

det [wl — A(u,0,7)] =0.

The definition of A shows that wl — A(u,0,~) is singular if and only if yA(u,) + wAg(u,) or
vA(u;) —wAg(u;) are singular. As a consequence, w satisfies the dispersion equation if and only
if there exists an integer k € {1,..., ¢} such that

Me(ureg)w=—y or Ag(u,eq)w="r,

where e4 := (0,...,0,1) € R?.  Assumption 3 shows that such values of w are negative for
k=p+1,...,q in the first case and k = 1,...,p — 1 in the second case. Taking multiplicities
into account, this shows that £~ (u,0,v) (and therefore £~ (u, 7, 7)) has dimension N —1 as long
as vy > 0.

For fixed n # 0, the stable subspace £~ (u,n,7) admits a continuous extension to (7,0),
see [9] (the argument makes use of the compactness of Grassmanian manifolds); we still denote
this extension by £~ (u,n,0). Note that for v = 0, vectors in the extended stable subspace are
not always boundary values of square integrable functions because of the possible occurence of
purely imaginary eigenmodes. This is widely detailed in [6, 13] for Euler equations of isentropic
gas dynamics.

We define the hemisphere of R*t! as

Yy ={(n,7) € R st. 42 +|n/>=1and v >0}.
The boundary of ¥, will be denoted by X, that is
Yo :={(n,0) e R st. |n2=1}.
Recall the following definition:

Definition 1 (Majda). [25]. The planar shock u is said to satisfy the uniform stability condi-
tion if there exists a positive constant ¢ > 0 such that for all (n,7v) € ¥4, one has

V(x,2) € Cx & (wmn,y), Ixblun,y)+ M) 2| > c(lx|+12]).

By compactness of >, the uniform stability condition is equivalent to the requirement that
for all (n,7v) € X4, the “critical” subspace

{(X,Z) € Cx & (u,n,7) st. xblu,n,vy)+M(u)Z = 0}

is trivial, that is reduced to {0}. The word “critical” is not standard but its use here intends
to show the major place that is occupied by this subspace in the normal modes analysis.

Recall that a planar shock is uniformly stable if and only if solutions of (9) satisfy a maximal
L? estimate as in the study of linear hyperbolic boundary value problems, see [25, proposition
1]. The uniform stability condition is thus the direct extension of Kreiss’ uniform condition [22].

As noted by Majda [25, lemma 4.1], the uniform stability condition enables to isolate the
shock front ¥ appearing in (11) in a single equation. We emphasize that this operation can not
be achieved for scalar conservation laws in space dimension more than 1.

Our approach is slightly different: we allow some instability but this instability can only
stem from the traces of solutions to the dynamical system (12) and not from the shock front
symbol defined by (13). More precisely, we make the following assumption:



Assumption 4. There exists a positive constant ¢ such that

V(Wﬁ) € Z+7 |b(u77777)| >c. (14)

Of course, an analogue estimate is valid for all states u,,u; close to u,,u;.

Remark: assumption 4 is equivalent (see [19, chapter 4]) to the requirement that there
exists a C° mapping P : ¥ — GIx(C) such that

V(%’Y) € Xy, P(uﬂ?ﬁ) b(u>7777) = <é> ’

and one can even choose P depending smoothly on the states u,, u;.

It is clear that (14) holds if u satisifes Majda’s uniform stability condition. In a pseudodif-
ferential setting, b is an overdetermined elliptic symbol (7 is seen as a parameter and we are thus
dealing with pseudodifferential symbols with a parameter). It is shown in [13] that assumption
4 is met in some cases where the uniform stability condition is violated: the main example
concerns shock waves in isentropic gas dynamics when the pressure law is not a convex function
of the density.

Assumption 4 enables to reformulate boundary conditions (11) by isolating the unknown
shock front ¥ in a single equation. Because of (14), we can define for all (,7v) € R% x Rt \ {0}
the orthogonal projector

(h, b(a, 1,7))

II(u,n,v)h:=h— b(u,n,7v).
( ) [b(w, n,7)[? ( )
Multiplying (11) by IT and b* yields the new boundary conditions
II(u, n,7)M(u) V(0) =1I(u,n,7) G, (15a)
[b(w, 7,7 ¥ = (G — M(u) V(0),b(u,7,7)) . (15b)

Observe that b is homogeneous of degree 1 in (1,7) so (14) is equivalent to
V() €RIXRY, e (92 +[nf?) < [o(w, 7).
Using Schwarz’ inequality in (15b), we obtain
V(n,7) €RTXRY, (97 + ) [¥]? < C (1G] +V(0)) (16)

for a suitable constant C' depending only on the shock u. It is thus sufficient to get an estimate
on V(0) and we shall get from (16) an estimate on ¥. In order to obtain the desired estimate
on V(0), we attack the following boundary value problem:

av 15

T A(a,n,7)V + Ag(a) F A for x4 > 0, (17)

I(u, n,7)M(a) V(0) = I(u,n,7) G-

Isolating the front yields a boundary value problem where the boundary operator takes the
form of a Fourier multiplier of order 0. Indeed, the homogeneity property of b implies that II is
homogeneous of degree 0 with respect to (n,v). More precisely, IT is a pseudodifferential symbol
of degree 0 (v is seen as a parameter). We refer to [2] and [12] for a detailed study of pseudo-
differential calculus with a parameter; the introduction of a parameter in Bony’s paradifferential
calculus [11, 29] has been achieved in [30], see also [28].

Our final assumption is that the boundary conditions defined by the symbol IIM satisfy
the Kreiss-Lopatinskii condition but violate the uniform Kreiss-Lopatinskii condition. It is
important for what follows that this assumption is met by all shock waves close to u:



Assumption 5. For all shock waves u close to the reference shock wave u, the following prop-
erties hold:

If (n,7) € ¥4 and v > 0, the reduced critical subspace
{Z €& (u,myy) s.t. M(u,n,v)M(u) Z = 0}
is trivial.
If (n,0) € Xg is a point where the reduced critical subspace
{Z €& (u,n,0) st. I(u,n,0)M(u)Z =0}

is montrivial, then there exists a neighbourhood V of (n,0) in ¥y and a constant ¢ > 0
such that

V(n,v) eV, VYZe& (un,y), [Muny)Mu)Zl >cylZ]. (18)

Furthermore, there exists a C*° mapping Q(u,-) : V — Glan(C) depending smoothly on u
such that for all z = (n,v) € V, one has

wy(2)

where at(2) (respectively a™(z)) is a square matriz whose spectrum is contained in the
half plane { Re ¢ > 0} (respectively { Re ( < 0}) and the w;’s are complex valued. These
quantities also satisfy w; € iR when v =0 and either

Re wj(z) > ¢vy

or
Re wj(z) < —cv,

forall z e V.

Before stating our main result on such weakly stable planar shocks (that is planar shock
waves satisfying assumptions 3-5) let us explain in a few words the meaning of assumption
5. The first condition asserts that the shock wave is not violently unstable: it must satisfy the
analogue of the Kreiss-Lopatinskii condition for linear hyperbolic boundary value problems. The
second condition asserts that the uniform stability condition is violated “at order 1”. Recall
that when Majda’s uniform stability condition is met, one has an estimate of the type

V(n,v)eV, YZe& (un,7), [Hunv)Mu)Zl >cl|Z|.

In our study, the allowed instability yields a power of v in (18).

When (7,7) tends to an instability point (7,0), part of the stable and unstable subspaces of
A(u,n,~) form a central subspace. The last re_quirement of assumption 5 is that the restriction
of A(u,n,7) to this subspace (that is central when v = 0) is smoothly diagonalizable. In gas
dynamics, there are examples of shock waves for which the uniform stability condition breaks
down at a point where the symbol is not smoothly diagonalizable, see [13, 25]. Unfortunately, we
have not been able to deal with this case: one major problem is the failure of the differentiability

10



of the eigenmodes at such points. We refer to the work of Okhubo and Shirota [31] for some
aspects of these phenomena.

Remark: making assumption 5 for all shock waves close to u is not very restrictive (first
because it is satisfied in both examples we study). In fact, if assumption 5 is satisfied by the
shock wave u, then it is automatically satisfied by all shock waves close to u provided the
whole stable and unstable subspaces form a central space when v = 0 in the vicinity of the
instability points, see [8]. In such a case, there are no blocks a® and @~ in the reduction of A
in the vicinity of the instability points. This theoretical result applies to weakly stable shock
waves in isentropic gas dynamics, see [13]. In the case of phase transitions in a van der Waals
fluid, instability modes belong to a region of the parameters (7, ) where some eigenmodes have
negative real part and it is not a direct consequence of [8] that assumption 5 is satisfied by all
planar shock waves close to u (but fortunately the calculations show that it is true).

2.2 The weak stability of planar shock waves

In this paragraph, we show that if u satisfies the weak stability condition, then the constant
coefficients boundary value problem (9) is “well-posed” in the sense that solutions to (9) satisfy
an energy estimate. Since we deal with shock waves that violate Majda’s uniform stability
condition, the energy estimate will involve losses of derivatives with respect to the right hand-
side terms f and ¢ in (9).

We need first of all to introduce a few notations. Denote by Q and w the domains

Q.= Rﬂlfl = {(z0,...,2q) € R st. 24 >0} and w:=R%Y=9Q.
For v > 0 and s € R we define the following symbols
VEER!, N = (v + g1

The usual Sobolev spaces H*(w) are equipped with the weighted norms (depending on the
positive parameter ~):

1
2 2s V)2
= A= d¢ .
ol = gz [ AT O B e
We shall write || - ||o instead of || - [|o,y since there is no dependance on the parameter v of

the L? norm. These weighted norms enable to construct a parameter version of the classical
pseudodifferential calculus which is of constant use in the study of hyperbolic boundary value
problems, see [2, 22, 25, 28].

The space L?(RT, H*(R%)) is also equipped with the weighted norm:

9 400 )
o= [ ool doa. (19

llo

We shall also write || - [lo instead of || - [lo,,. Typically, we shall use the spaces L?(f2) and
L*(R*, HY(R?)).

The Laplace transform performed in the normal modes analysis amounts to work with the
new functions v = exp(—yt)v and 1; = exp(—~t)1, with v > 0. This leads to the introduction
of the “weighted” operators:

LU0 := Lal+7Ao(w) T and  BL(T, 1) := Bu(T,1) + v bo(u) .

One easily checks that (9) is equivalent to

L30 = exp(—~t)f for zqg >0,
BL(,7) = exp(—t)g for 74 =10.

11



For convenience, we drop the tilda from v and 1) (keeping in mind that these functions have been
multiplied by a decreasing exponential function and therefore also depend on the parameter ).
Our result on weakly stable planar shock waves can be stated as follows:

Theorem 2.1. Let u be a planar shock wave that satisfies assumptions 3-5. Then for all
v € H*(Q), for all yp € H*(w) and for all v > 1, one has:

1 1
YIIG + vy, o5 + 1117, < 3 I£3 (v, I, + 2 1B (v, D)IE - (20)

Energy estimates in Sobolev spaces of higher order are available, provided that v and ¢ are
sufficiently reqular. Similar estimates also hold for shock waves u close to u.

2.3 Proof of theorem 2.1

The proof of theorem 2.1 follows the earlier works of Kreiss [22] and Majda [25] with suitable
modifications. It can be found in [13] in the case of isentropic gas dynamics.

Recall first that assumption 2 ensures that (1) satisfies the so-called block structure condition.
More precisely, we have:

Proposition 2.1 (Block structure condition). [27]. If assumption 2 is satisfied, then for all
shock wave u close to u, for all z € ¥, there exists a neighbourhoodV of z in ¥4 and invertible
matrices Q(u, z) depending smoothly on u and z € V such that

VeV, Qu,2)A(u,2)Qu,z) ! = a1(z)

aj(z)

Furthermore, the spectrum of a™ (z) (respectively a™*(z)) is contained in the half-plane {Re ¢ < 0}
(respectively {Re ¢ > 0}), and for all j = 1,...,J, the matriz aj(z) has purely imaginary
coefficients when v = 0 and a;j(z) satisfies

aj(z) = wjl +iN; with wj € iR and N; =

)
)
SO = O O

: 0

0 0

Finally, the lower left-hand corner coefficient of 0a;/0v (z) is real and does not vanish. Note
that the dimensions of the blocks a* and a; depend on z but not on z € V.

Let us go back to assumption 5: if z is a point of ¥ such that the critical subspace
{Z €& (u,2) st. M(u,z)M(u) Z =0}

is nontrivial, then we have assumed that all the blocks a; (defined by proposition 1.1) are of
dimension 1. In particular, when z belongs to a suitable neighbourhood of z, a;(2) is a complex
number w; such that w; € (R when v = 0 and Jw;/0v (z) is real and does not vanish. If Re
wj < 0 when v > 0, we obtain

Re wj(z) < —c7, (21)

whereas we obtain
Re w;j(z) > ¢v (22)
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if Re wj > 0 when v > 0. In both cases, c is a positive constant depending on v and z. We
refer to [13] for a detailed study of the block structure condition in the case of isentropic gas
dynamics.

We are going to construct a microlocal symmetrizer in order to prove (20).

e Let z € ¥4\ ¥g. Since A(u, z) has no purely imaginary eigenvalue (by Hersh’s result [18]),
there exists a neighbourhood V of z in ¥ and invertible matrices Q(u, z) depending smoothly
on z € V (and also smoothly on u close to u) such that

VzeV, Qu,2)A(u,z)Qu,z) ! = (a_éz) aJrO(Z)) ,
with Spa~(2) C{Re (<0} andSpa*(z) C{Re(>0}.

Matrices a~(z) and a™(z) are defined by Dunford’s formula, see [12, 21]. As noted in [27], this
reduction explains why the block structure condition needs only to be checked in the neigh-
bourhood of points belonging to ¥y. By Lyapunov’s theorem, see [5], there exists two positive
definite hermitian matrices H* and H~ such that

Re (H* a®(2)) = +I.

For convenience, we define the real part of a square matrix N as (N + N*)/2 and we do the
same for operators on a Hilbert space. Following Kreiss [22] (see also [12]), we choose r of the

fOI'IH
(e (CHT O
s 0 aH')’

where « is a real number greater than 1, to be chosen large enough. Because the critical subspace
is trivial when z belongs to a neighbourhood of z, it is proved in [12] that for « large enough,
the following estimates hold

Re (r(2) Q(u, 2)A(u, 2) Q(u, 2) 1) > 1/21,
r(z) +C B(u,2)" B(u,z) > ¢I, where B(u,z) :=(u,z) M(u) Q(u,z)"".
Constants ¢ and C' are positive and depend on (u, 2).

e Let now z € ¥y be a point where the critical subspace is trivial. It appears from propo-
sition 2.1 that Jordan blocks may occur in the reduction of the symbol 4. In such a case, the
construction of the symmetrizer is rather technical. We refer to [22, 32] and [12, 13, 30] for the
details. Following these anterior works, we conclude that there exists a neighbourhood V of z

in ¥ and C* matrix valued mappings r and Q(u,-) defined on V such that for all z € V, r(z)
is hermitian, Q(u, z) is invertible and

Re (r(2) Q(u, 2)A(u, 2) Q(u,2) ™) > e 1,
r(z) + Cg(u, z)*B(u, z)>ecl.

e Let z € ¥y be a point where the critical subspace is nontrivial. From assumption 5, we
know that there exists a neighbourhood V of z in ¥ and invertible matrices Q(u, z), depending
smoothly on z € V, such that

a”(2)

w1(2)

Qo 7) Al ) Q(u,2) ™ = o e ,

wy(2)

13



where the w;’s have negative real part when v > 0 and j = 1,...,J’ and have positive real part
when v > 0 and j = J' +1,...,J. We have just reordered the diagonal blocks appearing in
assumption 3. Let us remark that the stable subspace £ (u, z) (that has dimension N — 1 for
all 2) is spanned by the N — 1 first column vectors of Q(u, z)~!. For z € V, we choose r(z) of
the form
2> H- 0
2
r(2) —y* Ly

aHT '
0 OéIJ_J/

where « is a real number greater than 1, to be fixed, and H* are chosen as in the case v > 0.
Because of the local behavior of the eigenmodes wj’s, see (21) and (22), we have
v H™ 0
1 vV Ly
VzeV, Re (r(2)Qu,2)A(u,2)Qu,2) ") > ¢ ;

aHT
0 Oé’)/IJ_J/

for a suitable constant ¢ > 0. If W € C2V, we denote by W~ the vector composed by the N —1
first coordinates of W and W™ the vector composed by the N + 1 last coordinates of W (this
corresponds to a decomposition between the incoming part and the outgoing part), so we can
write

B6:2) QL 2) W = 50, Q) () + Blw ) Q) (1))

B(u, z) := (u, z) M(u),
and from (18), we have

62 Q) ()] 2 er .

which implies
VWS W+ 18w, 2) W2, Blu,2) = B(u, 2) Q(u, 2) "
Choosing « large enough yields
r(2) + CBu, 2)*B(u, z) > cv* 1T,

for all z € V. This completes the microlocal construction of the symmetrizer.

e We now turn to the proof of (20). For all z € X, the previous analysis establishes
the existence of a neighbourhood V of z in ¥, and of smooth mappings r and @) with suitable
properties. Because X, is a smooth compact manifold, there exists a finite covering V;, 1 <4 < I,
of ¥4+ by such neighbourhoods and a smooth partition of unity x;, 1 < ¢ < I, subordinated to
this covering. Functions y; are C'°*°, nonnegative and satisfy

I
Vi=1,...,1 Suppx; CV; and ZX?El.
i=1

Let now v € H?(Q) and v € H?(w). We denote by V(n,z4) the Fourier transform of v with
respect to the d first variables (xg,...,z4-1). We also define

F:=L)l(v,¢) € H(Q), G:=Bl(v,v)ec H'(w).
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We extend all mappings r; and @; on all ¥, assuming them to be constant outside of V; (this
is of pure convenience since only the value of these mappings on Supp x; will be involved in
the following calculations). Then we extend x; and @; as homogeneous functions of degree 0 in
(n,7). For z = (n,7) € RY x R*, we define

V%(Z, wd) = X’L(z) Qi(ua Z) V(na :Ud) :
We thus get the relation

dvi
da:d

= Qi(u,2) A(u, 2) Q;(u, z)*l Vi(z,zq) + xi(2) Qi(u, 2) Ad(u)*1 ]5(77, xq) - (23)

If V; is a neighbourhood of a point z where the critical subspace is trivial, we extend r;
as a homogeneous function of degree 0 in (n,7). We multiply (16) by 7i(2) Vi(z,z4) and then
integrate with respect to (1, z4), v being fixed. Using the inequalities

Re (ri(2) Qi(u,2) A(u, 2) Qi(u,2)~") > ¢y 1,
ri(2) + C Bilw, =) B, 2) > e,

we obtain Kreiss’ maximal L? inequality

1 _
3 lIx:F|

1, = . 1.
YaVIIE + 1V, 13 < ;H\XZ-F!H% + IG5 < T+ 2 Gl -

If V; is a neighbourhood of a point z where the critical subspace is nontrivial, we extend r;
as a homogeneous function of degree 2 in (n,7). We have

ri(z) + C A (n) Bi(w, 2)* Bi(w, 2) > ¢y 1,

and therefore, multiplying (23) by r;(z) Vi(z,z4) and integrating with respect to (1, z4) yields
the inequality

~2 Re (ri Vi, xi Qi A7 F) 12(0) = ¢ iV, LolI3 = C IG5 + 2 Re (Vi riQiAQ ' Vi) 2o

Recall that r; has diagonal form

—72H~ 0
2
_ —v*IN-1
rile) = QN2 ()
0 a X (n) Iny1
YWH™ 0 2
YIN-1 2
< =: .
= N () ETF )
0 VaXh I (n) Inti

Recall that H~ and H™ are hermitian poisitive definite which justifies the introduction of their
positive definite square roots vV H~ and vV H*. We have

2Re (Vi 1iQiAQ; Vi) r2(0) = ey Is(2) Villg,

and Schwarz’ inequality yields
-17 ¢ » C =2 o € » C 7512
—2 Re {(riVi, xiQiAy F)) 120 = 57 Is(2)Villo + 5 Ixis(2)Fllo < 5 v lls(=)Villg + 5 Ix:FllY -
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Eventually, we obtain
1 ~ ~
P I VIE + 77 11XV, I8 < 5 i F1I% -, + i GIIE -
Since the y;’s form a partition of unity, we get
2 2 < 1 Yo, lll2 1 y 2
Yollo + 1oy, llo < 7 I1£avll, + 7 1Ba(v, )1 -
To conclude the proof, we integrate (16) with respect to € R%:

1
113 5 < oy, oI5+ 1BL W, ) IF < vy, |17 + 2 1B (v, )17

and this gives (20).
]

Remark: in [25, proposition 2], Majda stated an energy estimate similar to (20) for isen-
tropic Euler equations. We point out that his result was obtained under the assumption £3v = 0.
Theorem 2.1 thus extends this earlier result and indicates that losses of derivatives occur both
in the interior domain and on the boundary. This shows a major difference between our analysis
and earlier works such as [31, 33].

3 The variable coefficients analysis

Let u be a planar shock as in (6) satisfying assumption 3. We know that there exists an open
set U in RY x RY x R x R%! containing the origin such that for all (wy,wy,0,v) €U, we have

uw+w, €U, uwy+weU,
Mp—1(w+w, &) <o < Ap(w+w;, &) and  Ap(u, +wp, &) < o < Appa(ur +wp, §)

where ¢ := (—v, 1) € R% In other words, U is an open set such that all planar shocks associated
to elements of U are p-shocks. Shrinking U if necessary, all shock waves in U meet assumption 5.
We fix a compact subset X C U and consider mappings .., @i, ¢ such that ¢ is defined on R¢, 1,
(resp. 1) is defined on {x4 > v(xg,...,xq-1)} (resp. {zq < @(x0,...,24-1)}). Eventually, we
assume that (1,4, V) takes its values in K and is compactly supported. We define a function

— u’f‘ —|—'l:[,r(x) if xd > c)0(’1“07‘"’de—].)7 (24)
uy +2'Ll(X) if zg < (p(ﬂjo,...,md_l),
and make the following assumption:
Assumption 6. For all point x = (zg,...,xq) such that x4 = ¢(xg,...,x4-1), the function

o JUr T (x) i ya> Ve (yo,. .. Y1),
w+w(x)  ifya <Ve- (Yo, Yi-1),

is a planar shock wave, that is satisfies the Rankine-Hugoniot jump conditions. In the above
definition of ax, the gradient Vi is evaluated at (xo,...,Tq—1).

The regularity of wu,,%; and ¢ has not been precised. One can think of them as mild per-
turbations of the stationary shock wave u (some kind of first order correction in an asymptotic
expansion). We shall be more precise in the sequel.
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3.1 The linearized equations

As in paragraph 2.1, we introduce the linearized operators around a: consider a family us =
a; + sv and ¢ = ¢ + s10. Then we define

Lalv™, ) = 5 L ) |omo (250)
d
(U 7/’) == B(us Uy 7903) |s 0 - (25b)

Recall that ay is the function deduced from a after the change of variables ®, see section 1. A
direct computation shows that

d—1 d—1
La(*,9) =Y Aj(af) 9;,vF + Y [VAj(af) - v 05 af + Ag(af, Vi) 0gv*
j=0 j=0
d—1 _
=Y 0 Aj(a)) daaf + [VuAa(ay, Vo) -vF| 040,  +24>0,
j=0
and
Ba(v,v) = > 00 [fi(ay)] — Aa(af, Vo) vt + Ag(a;, V)v™,  24=0,
j=0

We decompose the linearized operator L, as

La(v:,0) = Zaij . —Clag,p)v*

C(af, o) vF == =Y [VA;(af) - v¥] 9 af — [Vuda(ar, Vo) - vF] dyaf (26)

is the zero order part (in v¥) of L.
As was done in section 2, we write the linearized equations as a first order system in v :=
(vF,v7) and v in the domain x4 > 0. Define

Ai(af) 0 ‘ Agla, Vo) 0
Aja) =7 | foro<j<d—1, Aya):= N —~ :
i@ ( 0 A >> rosgs @) ( 0 Ay Vo)
bi(a) = [fy(ag)] for 0<j<d—1 and Ma):= (~As(af,Ve) Agla;,Ve)) .
The linearized operators read

d
ﬁa(v,zp)zz 87}—28]1/1/1 a)dgay —C(a)v xq >0,

7=0 7=0

d—1
v, ) = Oppbj(a) + M(a)v xq=0.
j=0

Recall that the perturbation (4., 4, V) takes its values in the compact set K C U so the matrix
Ag(a) is regular.
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We now introduce the positive weight v, that is, we change functions v and ¢ and deal with
v := exp(—yt)v and 1) := exp(—7t)1). As in section 2, we introduce the weighted operators

LI, P) = La(@,0) +7Ao(a) T — v Ao(a) daay ,

and  BY(U, ) := Ba(0, ) + v bo(a) .

For simplicity, we drop the tildas and the f index. We fix an integer m > d/2 + 3 and assume
that ¢ € H™(R?) and a € H™(2). Using some classical properties of Sobolev spaves, see [1],
we have Vi € W2®(R?), a € W2>(Q) and a € L2(Rt, W2>(R9)).

Because the coefficients of the linearized operators have limited smoothness, a convenient
way to derive an energy estimate analogous to (20) is to use the paradifferential calculus of
Bony, see [11, 28, 29]. With this strategy in mind, we are going to estimate the error between
the linearized operators and their paralinearized version.

3.2 The paralinearized equations

We refer to appendix A for the definition of paradifferential symbols and for the main results of
paradifferential calculus.

1) Paralinearization of the boundary conditions

Define the following symbols:

d—1
b(.%'(), e 7xd717777’y> = 7b0(x07 e 7xd71) + [ 277] bj(x(): e 7md71)
j=0
where bj;(zg,...,z4-1) := bj(alxo,...,2z4-1,0)).
Then we have b; € W2 (RY) and as a consequence b € I'l. Theorem A.5 yields

lvbo ¥ — Ty ¥lly < ollwrree ¥ llllo < M1ehll1y s
;0590 = T3 ¥l = [1(bj = Ty )95 )y S 105 ¢llo S Ml

and we thus obtain J
-1

Ivbow + ) 05wy = Tytlliy < 4y - (27)
j=0

We also define
M(zg, ..., 2q_1) := M(a(zo,...,zq_1,0)) € W (R?),

and theorem A.5 yields
”M U‘zd:O - T];//Iv‘zd:O ||17’Y S ||v|zd:0 ||0 : (28)

Combining (27) and (28), we get

1BY(0,) — To® — Tgup, oy S 1%l + o, ol (29)

We shall therefore replace the linearized boundary operator (v,) — Ba(v,%) by its paralin-
earized version (v, ) — T v + Tyv.

2) Paralinearization of the evolution equations
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We are now going to paralinearize the evolution equations after multiplying by .A;l. Define
Aj(zo,...,zq) = Aj(alzo,...,zq)), Cl(zo,...,zq) :=C(alzo,...,zq))-
Because Vo € W2®(R?) and a € W2%°(Q), we have A; € W2®(Q) and C € Wh>(Q).
Recall that first order derivatives of a appear in the definition of C, see (26), so we do not have
C € W2>2(Q).
The matrix valued mapping A, is uniformly invertible, namely
-1
A lw2ee@) < C.
Using the definition (19) and theorem A.5, we obtain the following estimates
-1
A Ao v =1T) .y vl S el
-1 .
A A;0j0 =T, iy vy Slollo for0<j<d-1,
-1
1A7'Co = T] 1 cvlha S Bello:
Those estimates are obtained by a simple integration of the paraproduct estimates in R% and

from the definition of the paradifferential operators in a half-space, see appendix A.
As in (12), for x € Q, n € R? and v > 0, we define the symbol

d—1

A(x,1,7) = —Aq(x) " [ YAo(x) +i Y0y Aj(x)
=0

It is clear that A € T'} and the previous inequalities yield

d—1
YA Agu+ Y ATTA; 00 —AC;ICU+TXU+TX;1CU <lllo- (30)
§=0 Ly

We have thus estimated the error terms in v when paralinearizing £4 (v, ). We now turn to the
error terms in 1. There are two such terms that are

’WAd Apdga ’YTA(;le@daw
1 .
and Ad Ajada(‘?jq/;—TX;leada@jw, Ogjgdfl
Using theorem A.5 and the property a € L?(R*, W2>(R%)), we obtain
vy Ayt Agdaa — YTt agoua Pl S 71¥l0 S 19111y
147" 4002056 ~ T}y o 05l S 105 ¥l S 91

We thus get the estimate

d—1
VWA Aodga+ Y A'A; 0,200+ TR, 0| S Ivly (31)
7=0 Ly
Combining (30) and (31), we have proved
IAZ £3 (v, %) — Do+ TRv + Ta16? ~ Thouatllia S lollo + ([ (32)

As for the boundary conditions, we shall therefore replace the linearized operator (v,v) —
A1 L3 (v,) by its paralinearized version (v,) — dgv — TAv — Tlglcv + T_Xadaw'

19



3) Change of unknown function

Unlike in the uniformly stable case, the linearized operator involves in our case a zero order
operator in v and a first order operator in ¢». We shall use a change of unknown functions, that
is due to Alinhac [3] and that simplifies the expression of L. If we let v = 0 + 1 94a, we have

La(v, ) = L(a, ) 0 = C(a,¢) 0 + ¢ da [L(a, p)a] .

The function v is referred to as the “good unknown” of the problem. We emphasize that this
change of unknown functions yields an operator in (v, ) with only zero order term in 1: roughly
speaking, the operator £, reduces to an operator with first and zero order term in v only since
the zero order terms in ¢ will be easily estimated.

As regards the paralinearized equations, the previous result suggests to make the change of
unknown functions v := v + T gdad;. We are going to show that the paralinearized operator is
equal to Ogv — T Xi} — Tl,l Ci} plus some error terms whose norm can be controlled.

A straightforward congputation shows that

dgv—TRv— Tv_lcv —i—TXadaw g0 — TR0 — Tv_lcv +e1—ey+es

where
€1 = nga% €9 1= Tlglc Sdawv €3 = (TXa a TXnga)w )

Because a € H™() and m > d/2 + 3, we have

leilliy S Wl 1<i<3,

and therefore

As a consequence, we shall focus our attention on the operator 940 — T 0 — T v v and try to

S 19l

1y

‘(8,17) —TXU—TZ_lCU—FTXadaK/J) <8dU—TXU_T7_1C~>
d

derive an energy estimate for this operator.

Remark: after changing unknown functions, the paralinearized boundary operator reads
Ty + T&@\zd:o + T&ngaw and we see that the last term satisifies

1T T 5,08y S 111y

To summarize, we have proved

S lollo + 114111
Loy (33)

10.0) = (B + By, )|, 2 lesollo+ 1

H‘A;lﬁ'g(v, w) — (8d1) - TX@ — TZ;10®>

Furthermore, the definition of © gives

’fy'

ool < 2 (I, o I3 + ClIZ) < (md ol + ||¢||m) ,

lollg < 2 (9015 + Cllv13) < 2 (H’DHﬁ + 3 \\w\ﬁﬁ) :
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and we thus get

. . 1 C
W+ 161,018 > 5 (W3 + ot 1) = Z IR, (34)

It is now clear that the change of unknown function is appropriate because an energy estimate
of the same type as (20) for (v,1) will yield a similar energy estimate for (v, ).

4) Eliminating the shock front
Using assumption 4, we know that there exists a positive constant ¢ > 0 such that

b*('an R 7xd—17777’7) b(x()?‘ . 'axd—lanﬂ’}/) > 6(72 + |77|2) .

The constant ¢ only depends on the compact set K. The symbol b*b is of degree 2 and elliptic
so applying Garding’s inequality (theorem A.3), we obtain

Vy >0, 0I5, S Re (T, )2 SITRwlg + Re (R4, 1) e

where {R} is a family of order < 1. We thus get

1
11T 5 S ITgwlE + 1l lello S 5 1l + 17513 -

Up to a greater choice of vy, we finally get
Yy =0, 912, S ITR0IR S 1T + TRgon, o3+ oy, o2

1 . . (35)
S 5 176 + T, 17 + 119,013

which is the variable coefficients version of (16).
Introducing the orthogonal projector II(y,n,v) on b(y,n,7v)*, we have IT € T, TTb = 0 so
theorem A.2 gives

1Ty S s ITRTRE o — Tt ollin S o, ollo-
Using the decomposition
Tam -0 = Toa = TR 0 + T (e 0 + To¥) = Ta Ty ¢
we end up with

TPy 11 S 191, —ollo + IT5 8 + TR0, o 1y + 19012 (36)

From now on, we focus on the system

-1
Ajlc

(3611')—/121’[)—71’y v=F x4>0,
Tl"YIM@:G .%'dzo,

and try to derive an energy estimate of the type
YIoll5 + 19y, ,—oll6 S 5 I1F17, + = G175,
g v
for all v > 70. Using (33),(34), (35),(36) and a greater choice of the constant -y, we shall obtain

the variable coefficients analogue of our basic estimate (20). A precise result will be stated in
paragraph 3.6.
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3.3 Geometrical assumptions

Let us go back to assumption 5. For all shock waves u close to u, we define the set of critical
frequencies X (u) as the set of those (n,7v) € X such that the critical subspace

{Z € & (u,n,7) s.t. I(u,n,7)M(u)Z =0}

is not reduced to {0}. From assumption 5, we know that frequencies (n,~) € X (u) verify v = 0.
A reasonable assumption is that X..(u) has a finite number, say K, of connected components
where K is independent of u. In the sequel, we shall make as if there were only one connected
component. Another requirement of assumption 5 is that there exists a neighbourhood V., (u)
of ¥¢r(u) in X4 and a smooth mapping Qo defined on V., (u) with values in Glon(C) such that

wiln, 0
QuAQy" =

0 (UJInJ

To simplify the subsequent calculations, we shall assume that the whole symbol A is diagonal-
izable and not only its central part. However, the proof would yield the same result if one took
into account the blocks a~ and a™ that may appear when reducing A.

To deal with the variable coefficients case, we need to assume that 3..(u) is endowed with
an ‘“equation”. More precisely, we assume that there exists a smooth real valued function &
(defined for all shock waves u close to u) such that

Yer(u) = {(n,7) € 2y s.t. v +ic(u,n,v) =0}
={(n,0) € ¥y s.t. o(u,n,0)=0}.

We refer to section 4 for an example. The function ¢ is extended as an homogeneous mapping
of degree 1 with respect to (1, 7).
Given the function a defined by (24), we define the set of the so-called “critical points” as

Yo :={(z,n,7) €0 x Xy st. (n,7) € Eer(alz))}. (37)

We already know from assumption 5 that there exists an open set Ve C Q x ¥ of the form

Ve=J{z} x Ve, VuC3Zy,

z€Q
and a mapping Qo : Ve — Glan(C) such that
Ye CVeN {:Ed = O},

Qo is a symbol of degree 0 and regularity 2 (because A is of regularity 2 and (¢ has same
regularitry as A),

for all z € V., one has

Qo(2) A(2) Qo(2) " =

. : D1<Z> .
0 wy(2)Iy,
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The set of space-frequency variables Q x ¥ is thus decomposed as the union of a set V. that
contains all the unstable points and a set that contains only uniformly stable points. In the
constant coefficients case, one can choose Ve as Q x Ve.(u) (the critical frequencies are the same
at any point in the space domain).

For (x,7,7) € 9 x R? x R, define

o(z,n,v) =o(a(x),n,7),

so we have o € I'}(R%). In the subsequent analysis, we shall show that the instabilities originat-
ing from the critical points propagate in the interior domain along bicharacteristic curves. In
order to control where these instabilities propagate, we are led to make the following important
assumption:

Assumption 7. Let w; be an eigenvalue of A that has negative real part when v > 0, and
decompose w; as w; = vej + ih; (all mappings are defined on V). Then the solutions of the
hamiltonian ODEs system

d.%'k 8hj

= k=0,...,d—1

dmd 677k ("I’.’n77)’ ) ) )
dny, Oh; (38)
k- k=0,...,d—1
dmd 8$k (x7 7]77)7 ) ) 9

(':EOa ce s Ld—1,70y - - -a77d—17’7)|zd:0 € VC N {':Ud = O}

are defined for all xq > 0 (that is, stay in Ve for all 4 > 0). These solutions are referred to as
bicharacteristic curves.

Note that assumption 7 is met in the constant coefficients case because (38) then reduces to

dry _ Oh

] k=0.... .d—1
dll?d 877k; (1“;7777)’ ) ) )
e _ o k=0 d-1,

dzg

(.’130, e d—15105 - - - s 77d—17’Y)|md:0 S VC N {.’Bd - O}

and V. is nothing but the cartesian product  x V,, (u) so the bicharacteristic curves stay in V..
Furthermore, we recall that the perturbation (4,,;) has compact support. So if (zg,n;) is a
solution of (38), 7y is constant for x4 large enough. From standard ODEs arguments, we claim
that assumption 7 is satisfied when a is a sufficiently small perturbation of a planar shock wave.
We refer to figure 2 for a schematic picture of the situation.

With the help of assumption 7, it is possible to construct a solution of the transport equation

d—1
0,05 + Z&tkaj Opuhj — Oy0j 0 hy =0, (x,1,7) € Ve,
k=0 (39)

05, _, =0, (x77777)evcﬂ{xd:0}7
‘zdfo

and the solution o; of this equation is homogeneous of degree 1 with respect to (7, y). Note that
(39) reads

02,05 + {0, b} =0,
where {0}, h;} is the Poisson bracket of o; and h;.

For convenience, we extend all mappings wj, 1 < j < J (and thus D;) as symbols of degree 1
and regularity 2 defined for all (z,7, ). We therefore have w; € I'l. We choose these extensions
such that one has either

ej2c>0 or e <—c<0
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Support of (u,., ;)

Figure 2: Bicharacteristic curves originating from the boundary

where w; = ve; + ih;. Extending the w;’s allows to define a global solution o; of (39) that also
belongs to I's. What is important is that we have not changed the value of o; on the set V¢
since o; is constant along the bicharacteristic curves. The functions o; are weights that vanish
only on the curves originating from the critical points. We shall see in the sequel that they are
appropriate in the derivation of an energy estimate.

Finally, we need to precise the behavior of the restriction of the boundary symbol § to the
stable subspace. Recall that the first N — 1 column vectors of the matrix Qo(z)~! span the
stable subspace £7(z). We write:

Qo(2) ' = (Qin(2) Qow(z)) , Qin(2) € Mann-1(C),
and make the following assumption:
Assumption 8. There exist two mappings Py and Py defined on Ve N {xqy = 0} such that
for all z € Ve N{xg =0}, Pi(z) € Glon(C) and Py is a symbol of degree 0 and regularity 1,
for all z € Ve N{xy =0}, Pa(2) € Gin-1(C) and Py is a symbol of degree 0 and regularity 1,

for all z € Ve N {xq =0}, one has
-1, -
PG Qo) o) = (VTG Y s )
and the reactangular matriz E(z) satisfies
VzeVen{zg=0}, E(2)'E(z)>cl. (41)

In the constant coefficients case, assumption 8 implies (18). The meaning of assumption 8
is that the restriction of 3 to the stable subspace has a kernel of dimension 1 (this was not part
of assumption 5) and “# vanishes at order 1 on this kernel”.

With these preliminary reductions in mind, we can turn to the derivation of our energy
estimates. We fix a nonnegative cut-off function x verifying
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X is a smooth (that is, C*°) symbol of degree 0 and Supp x C Ve,

x = 1 in a neighbourhood of the bicharacteristic curves starting from .. In other words, out
of the region where x =1, one has |oj| > ¢ > 0 for all j.

Define xo := (1 — x) and observe that x( has its support in the set of uniformly stable points.

3.4 Energy estimates near instability points

The aim of this paragraph is to derive three different energy estimates in the neighbourhood of
instability points. We show how to control the H! norm of the outgoing modes. For the incoming
modes, we show how to control the L? norm and the H' norm far from the bicharacteristic curves
starting from the critical set Y.

Before establishing our main energy estimates, we state a reduction result that will help us
to deal with the zero order terms in the equations. In terms of symbolic calculus, we look for a
symbol @)_1 of degree —1 and regularity 1 such that

(Qo+ Q-1)#(0a+ A+ A 'C) = (9a+ D1 + Do)#(Qo + Q—1)

where the composition of symbols is to be understood as the expansion to first or second order,
see theorem A.2. Recall that our symbols have finite smoothness in the space variable so the
expansions of adjoints or composed symbols are only finite and not asymptotic. The existence
of (Q_1 is given by the following lemma:

Lemma 1. Let Q¢ and D be defined as in the preceeding paragraph. There exists a symbol (Q_1
of degree —1 and regularity 1, defined on V¢, such that

d—1

(Qo+ Q-1)(A+A;'C) + 94Q0 + % Z(@kaoaxkA — O D10,, Qo) — (D1 + Do) (Qo + Q1)
k=0

is a symbol of degree —1 and Dy is a block diagonal symbol (of degree 0 and regularity 1) whose
blocks have dimension ni,...,ny as those of Dy.

Proof. Using the equality QoA = D1, the problem reduces to finding a symbol (_; of degree
—1 such that

d—1

_ _ _ 1
[Q-1Q5". D1] + QuA;'CQy " + 0aQo + Z Z O @00z, A — Oy, D104, Qo
k=0

is block diagonal (it will automatically be a symbol of degree 0). Here above [M, N] denotes
the commutator of two matrices M and N. Using that D; is diagonal, a simple calculation
shows that one can choose Q_1Q) ! (and therefore Q1) such that the extra diagonal blocks of
[Q_lQo_l, D] cancel those of

d—1

1
QuA;1CQ;" + 84Qo + - > 03, Qo0 A — 0y, D104, Qo -
k=0

Because the diagonal blocks of [Q_1Q L D] are identically zero, one can only cancel the extra
diagonal blocks. It stems from this simple calculation that ) _1Q) s of degree —1 and regularity
1, and therefore so is @ _1. O
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Note that Q_1 and Dy are only defined for space-frequency variables belonging to V. but as
was done for D;, we extend Dy as a global symbol of degree 0 and regularity 1.

In all the sequel, we denote by @ the sum Qg + @—_1. The following calculations heavily use
the fact that @) defines a “good diagonalization basis” of the paralinearized operator

O Og0 — TR0 — Tv_lc'
Let © € H%(Q) and define
= g0 — TR0 — TV_ICU € HY(Q).

We also define
. Y
w = TXQv

and we first show that w satisfies a paradifferential equation whose first and zero order symbol
are block diagonal. The paradifferential equation involves error terms that will be absorbed at
the very end of the analysis. In all this paragraph, R” always denotes an operator of order < —1
that represents the current error terms in the computations. We have

Y v . . v
T(adX)Q o+ Ty aonv + T QA+A] 1C)U + a0+ R+ TXQF ’
where

U

-1

1
rti= i 87% (xQo) O
0

B
Il

Lemma 1 implies that

d—1
1
X0uQo + XQ(A + A;1C) + 7! <<D1 + Do)XQ + = (O x)Q0 O A + x (3. D) asz())
k=0

is of degree —1, and we thus get

8dw:T&)dX)Q02}+(Tgl+Tg)w+T v+ Tho+ R0+ T F,
where
1 d—1
7"2 = ; (aﬁkX)QO aCEkA_'_X(a'r]le) aer()?
k=0
= =
—3 Z O D1) Oz, (xQo) = — (O, D1) Oy, (x Qo) -
=0 k=0
After simplifying 72 + 73, we get the relation
Oaw=ThH w+Tp w+T)o+ R+ T),F, (42)
with
=
= (dax) Qo+ - > (9x) Qo 9 A = (9, x) (93, D1) Qo (43)
k=0

As a consequence, r is of order 0 and is identically zero in the domain where xy = 1, therefore r
has its support far from the “unstable” points.
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Recall that D; is diagonal and Dy is block diagonal:

wi In, Cy
D1: ) DO: ’
wy Iy, Cy

so (42) can be written as a collection of J equations
Oqw; = TJ wj + T wj + T+ R0+ T F, (44)

with Re w; <0 wheny>0and 1<j<J and Rew; >0 wheny>0and J +1<j<J.

1) Estimate for the outgoing modes

We first deal with the case where Re w; > 0 when v > 0. Recall that w; is defined for all
(n,7) and satisfies
V(n,7) eRIxRY,  Rew; >cry.

We choose A7 as a symmetrizer for (44), where A27 is the Fourier multiplier of symbol A%7(n).
Taking the scalar product in L?(Q2) of (44) with A*Yw;, we get

~[lw; (0)II3 = 2 Re (AMT] wj, A wj) 12y + 2 Re (AMTTE wj, A wj)) 20
+2 Re <<A1’7T%1'),A1’“’wj>>Lz(Q) +2 Re (AM R0, A17’ij>>L2(Q)
+2 Re (AT F,AY w) 20 -
Taking the order of the different operators into account and using Young’s inequality, we obtain
—2 Re (AYTE wj, AV wj) 12y < C llwyllf , .

: C :
=2 Re (AMT7 0, A wj)) 2y < — 1179

J

Ty el

—2Re (AR, A ws)) p2(g) < — 0lI5 + ey Jlwsli

¢
v

N 21

—2Re (AT F A w))) 120 IT3oF I3 + ey llwsllf -

Using theorem A.2, the difference
AT T AN

is of order < 1 so we have
2 Re (AT wj, AV wi)) o) > 2 Re (T A wy, A wi) pay — C flwyf -
Applying Garding’s inequality (theorem A.3), we finally get
2 Re (AT wj, A Twi)) o) = (e = O) w3, -

It is now clear that an appropriate choice of ¢ yields the H'! estimate

1 . .
Y llwsllE 5 + 1w 017 < S 1T FIE  + = (Iolg + 17903 ) - (45)

1
v
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2) Estimate for the incoming modes

We now deal with the case where Re w; < 0 when v > 0 (and therefore Re w; < —c¢v). We
first choose the identity as a symmetrizer and perform the same computation as above. One
can indeed proceed in a similar way because the symmetrizer is a constant coefficients operator
(that is, a Fourier multiplier). Because of the sign of Re w;, we have

= (B + 162,

1
7 w5 < Hlwj (0)13 + 3 1750
and we rewrite this estimate as

7 llwjllg < % llw; (0 )Ho+ \H oF I, + (HWH\%Jr 1770113 ) - (46)

The right-hand terms in (45) and (46) have similar expressions. The only difference is that the
boundary value of w; is on the right-hand side of the inequality when we deal with an incoming
mode.

We now prove a more subtle estimate for the incoming modes. We choose S; := (T7,)*T,, as
a symmetrizer for (44). Recall that S; is of order < 2 since o; € I'}. We take the scalar product
in L?(2) of (44) with Sjw;. This yields

—[I1T7w; () = Re {(@aSj)wj, ws)) r2() + 2 Re (S;T3,wj, wi)r2(a)
+2 Re (S;T wj,w]» @) + 2 Re (S50, w;)) 12(a)
+2 Re (S;R? U,wj»LQ(Q) + 2 Re <<SijQjF’ wj)>L2(Q) .

First observe that
04S; = (Ty,, )" T3, + (T7,)" T,

8d0' ’

so we have
Re (((0aS;)wj; wj) 12(0) =2 Re (T3, w;, T w;) 12(a) -
We recall that o; € R, hence the difference

T(;*j ng — ng ng

is of order < 0, and we get

2 Re (T3, 77, w;, T7, wj>>L2( < O3, willg + C lwsllo 177, wyl

< CITZwillf + = !ng 15 + ey 175, w3 -

Because ng is of order < 1, we obtain thanks to Young’s inequality

2 Re (T3 T, 0, TJ wj) 12(0) < — W Vol ey 175 wil

2 Re (T5 R0, T wj)) 12(q) << Hlvlllo +ey 175wl

C
2 Re (T, T, F, T wj) 12(0) < > ITFIR  + v 175, w13 -

Collecting these first inequalities, we already have

—2 Re (T3, w; + 17,13, waV wi) r20) < NT7w;i ()5 + (C + 4e ) 177, wyI3

%:7) :

C C
LS F . + S+ € oz +
5 173 FI S llw; G . (Iolg + N1z
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We are now going to derive a lower bound for the left-hand term in (47). Write w; = vye; + ih;
with e;,h; € R and e; € ry, hj € I'}. From theorem A.2, we have

ngng = ’)/ngng + ’yTzi{Uj’ej} +vRY + Tngng 7Y ayt R},

{o;

where R still denotes an operator of order < —1 and Rg denotes an operator of order < 0.
Recall that o; is a solution to the transport equation

Oqoj+{oj hj} =0 z4>0,
O-j|Zd:0 =0,
so we get
—2 Re <(ngojwj + T3, T3 wj, T7 wi) r2(q) = —2v Re (T2 17 w;, T3 w;)) 12(0)
=2y Re (T2, ywy, T wj)r2(e) — 27 Re {(RMwj, T wi) r2o)

=2 ((Re T}, )T wj, T wj)) r2() — 2 Re (Rjw;, T7 w;)) r2(q) -

Let us first examine the last three terms of the right-hand side. Because ih; € iR, the operator
Re T;,’LJ is of order < 0 and we have

—2(((Re T}, ) T3 w;, T3 ws)) r2(0) = —C 117, wjl3.
—2 Re (Rgw;, TJ wi) r2(0) = —C lwjllo 175, w;llo (48)

J

=2y Re (RMw;, T7 w;) 12(0) = =C lwjll-14 175 wjllo = —=C flwjllo 175, w;lo -
Applying Garding’s inequality (theorem A.3), we obtain
—27 Re (T2 T w;, T wi)) 20 = e 175, w3 (49)
so it only remains to derive a lower bound for the term
—27 Re <<Tji{gj,ej}wj7 T3 wir2() -
Because o0; € '}, the operator Tji{g_ e} is of order < 0 and therefore
VRS
=2y Re (17, ywi, T wi)r2) > =Cy lwillo 1T wille > —e v 177, wjl5—Cy w5 - (50)

Choosing € appropriately and taking the sum of (47)-(48)-(49)-(50), we get the second estimate
for the incoming modes:

1 1. .
YT, wills < 175 w; (0)][5 + 5 1T FIIT A + v sl + 5 (Wolg + 1T7o03 ) - (51)
Take the sum of (46) and (51). Choosing ~ large enough, we have

1 1, .
Y w5+ 1T, w55 <~ ij(0)||3+IITij(U)H%Jr; |”T;QF”|%,7+; (Wolls + 1ol ,) - (52)
Let us decompose the vector w in

wj _
w = o) wy, € CNTL gy € CVTL
Wout
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The vector wjy, is the collection of the w;’s that correspond to incoming modes and wg,; is the
collection of the w;’s that correspond to outgoing modes. Taking the sum of (45) and (52), we
obtain

Y llwoutlli o + 7 Nwinllg + >~ A ITZ willg + lwour (O)I1F
incoming (53)
< 2w O + 1T win (O + ~ T PR, + (ol + 177013 )
~ 7 in 0 o Win 0 ~ vQL 1y ~ 0 rUll1y) 5

and we want to show an estimate of the type

¥ win(0)I5 + 177 win(O)I§ < NGIIE -, + lwour (O] -

3) Estimate for the boundary terms
We fix four cut-off functions x1, x2, X3, x4 such that

X1 = 1 on a neighbourhood of Supp x N {zx4 =0},
x2 = 1 on a neighbourhood of Supp x1,
x3 = 1 on a neighbourhood of Supp x2,
x4 = 1 on a neighbourhood of Supp xs,

and Supp x4 C VeN{zqs = 0}. These cut-off functions are introduced in order to use the localized
Garding’s inequality (theorem A.4). We write

T)ZQBQO_IM(O) = TQQﬁQmwi"(O) + T)’CYQﬂQoutwOUt(O) .

Using the definition w = T, ;Qz'), we obtain

Y — T Vg
szﬁQalwm) )G + R"9(0),

where RY is an operator of order < —1. We thus get

173,50, win(O)llLy S NGy + llwout (0) 11y + [19(0) o (54)

We are now going to introduce the basis of the stable subspace in which # has a reduced
expression. Because x4x2 = X2, we have

X28Qin = (xaPy 1) (x2P1BQin P2) (xaPy t).
T
X2

We therefore obtain

T’Y

XQﬁanwin(O) = T’y T T’Y lwm(o) + R’Ywin (0) 9

4P 1 X208~
and this yields the inequality

173 o1 Tns- Ty 1 win (Ol S Gl + wout (0) 1y + [12(0) o (55)

We first show that we have an estimate of the type

”T7 WP szg—Tv 1wm( My = elIT] X268~ T; P—lwin(o)”lﬁ — Cllwin(0)]lo-
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Define

z = T)ZQﬁ,T;PZ_lwm(O) )

We first check that

IT? izl = AT izllo > (T, A z]lo = C lJwin (0)]lo -
Xxa Py xaP; xa Py

We also note that
T;?)Alﬁz =AYz 4+ R}z,

where R} is of order < 0. We thus get

1T pr 2l Z 1T s T A 2l = Cllwin(0) o

We are now going to use the ellipticity of (P, 1)*P1_ L on the support of x4. We write
Y 1, 2 _ 2l *rY 1, 1,
Ty TLAMER = (77, )T, T A2, T AN )

> Re (T".

Lty g AT 2 TLAM) = C T3, A 2] [T3,A1 2] -1

and we apply Garding’s inequality (theorem A.4) to obtain

1T, pr TAN 206 > eI TLAM 25 = Cllwim(0)[§ = ¢ [AM2]1§ = C [lwin(0)

Plugging this inequality in (55) yields

||A1’VT;25_T;4P2_1wm(0)||o S Gy + l[wout (0) 1,4 + [[9(0)]fo - (56)
Observe that the difference
1,yY _ 77
A szﬂ_ szx\l”yﬁ_
is of order < 0 so (56) also reads
||T>Z2,\17’75—T;4P2—1win(0)||0 S Gy + l[wout (0)][1,4 + [[9(0)]fo - (57)

It is time to use the particular structure of 3~ to derive a lower bound for the left-hand term

in (57). Recall that
1y a— _ [ X2(y +io) 0
XQ)\ ﬂ - ( 0 XQ)\l,'yE :
We have
T>Z4P2,1wm(0) = T;1T>Z4P{1wm(0) + vain(o) ,

so we rewrite (57) as
x5~ TO T, prrwin(O)llo S NGl + wout(0) 1y + [19(0) o (58)
The decomposition

w1 _
T;P_lwm(O) = (w’) , weC, weCcVN2,
2

gives
2
1T i T T 0in O = 1T, i TRyt 4 1T, 0 T3 0.
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Because E*F is elliptic, we obtain
1T, 310 5T @ o = e l[w'll1y = C fwin(0)llo = ¢ [T7w'llo = C lwin(0)llo
and using that ¢ € R, we also obtain

1T, iy T willo = ¢ (v lwillo + |1 T7willo) — € [|win (0)lo -

Eventually, we get the lower-bound

1T 05 TUT, o win(O)lo = ¢ (V1T i)l +IT3T s win(O)lo) = C15(0) o
(59)
To conclude, we perform the same kind of calculations as those already done with x4P; Lto
show that

177, 1 w0in ()l = e fwin(0)lfo = C (01,
1737 s win(0)lo > e[ T3win(0)o = C [[2(0) o

The boundary terms thus satisfy:
2 Jlwin (013 + 1 T3 win ()15 S IGIE , + [1wour (0)IIF  + 10(0) 5 (60)
Y | Win 0 o Win 0~ 1,9 Wout 1, v 0-

Combining (53) and (60), we obtain our main energy estimate localized near the instability
points:

Y lwoutll? o+ Nwillg + D AN w55 + llwout (I + 7 lwin (O[5 + 1T win (0)15

incoming
. 1 1, .
SIGIE, + 1o(0))1F + 5 I3 F I + 5 (ol + 177 o0 ) -
(61)
3.5 Energy estimates far from instability points

In this paragraph, we show how to estimate the H! norm of ¥ far from the instability points.
We fix a smooth cut-off function X such that

X = 1 on Supp xo N {zq = 0},

so we have XXOI%Z:O = X0, =0’ and we also ask that the support of X does not meet the set of
critical points .. This is possible because the support of X0l =0 does not meet Y. With this
requirement, the uniform stability condition is met at all point in the support of x. The cut-off
function X is introduced in order to use a localized Garding’s inequality.

To derive the desired energy estimate, we shall use a classical Kreiss’ symmetrizer, as in
[25, 28].

Proposition 3.1 (Kreiss’ symmetrizers). There exists a mapping
S: 0 x (RYx RY \ {0}) — My, (C)

satisfying the following properties:

Y z, the matriz S(z) is hermitian,

S is a symbol of degree 2 and regularity 2,
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Vz e 00 x (RYx R \ {0}), one has
X(2)7 S(2) + CX(2)* A7 () B(2)*B(2) = eX(2)* N7 () I , (62)

there exists a finite set of matriz valued mappings such that

Re ( ZV (’YHZ z) El(()z)) Vi),

where V; and E; are homogeneous of degree 1 with respect to (n,7) (and belong to T'}), H,
is homogeneous of degree 0 with respect to (n,7) (and belongs to T'Y), and the following
inequalities hold:

Zv 2) > e XN I, Hi(z)>cl, Efz)>ecX (). (63)

We define w := Ty, v and compute the equation satisfied by w. The calculations are entirely
similar to those done in the preceeding paragraph, namely

adw:Tgw+TX;10w+T$@+RM+T;QF, (64)
with
=
= daxo + {X07A} daxo + Z e X0) Oz, A — (O, A) Oy X0 - (65)
k=0

Let {S7(x4)} be given by
1
¥ — - 7o) i

Because S € I'2, {S"} is a bounded Lipschitzean family of selfadjoint operators from H?(R%) to
L*(R%) (the bounds are uniform with respect to the parameter v > 1). The starting point to
derive the energy estimate is to take the scalar product of (64) with S”w and integrate with
respect to (zg,...,xq) € Q. We find

(87(0)w(0),w(0)) 2 +2 Re (ST w, w))r2(q) = — Re <<%W7W>>L2(Q)

—2 Re <<SVT7 oW 0) 120y — 2 Re (STTé, w)) p2(0) — 2 Re (STR7é,w)) 12 (66)
—2 Re (ST} F,w))r2(q) -
The right-hand side of (66) is easily estimated. We write S7 as
ST =AM AT ST
and use that A" is self-adjoint. Because A~17S7 is of order < 1, we obtain

a8
dzg
~2 Re (ST}, s w) e < C mwm%w

= Re {(——w, w)) p2(q) < C w3 , .

2 Re (8"T%0,w)) 20 < = ||\Tov|

1, +evlwli,,

. C .
—2 Re (S"R"0, w) r2(q) < - ol + ey llwlii, .

C
—2 Re (ST, F,w)) 12(q) < - 173,713 + v lwl

33



So we get

(87(0)w(0), w(0)) 2 +2 Re (STTZw, w)r2() < (C +3e7) [Jwllf , o
67

C .. .
+ T Tt 5 (Iollg + 17759013 ) -

We are now going to derive a lower bound for the left-hand side of (67) by means of Garding’s
inequalities. We first deal with the boundary term. First note that

S(0) — T3,

is of order < 1, so we have
(87(0)w(0), w(0))r2 = Re (Tgp (0)w(0), w(0))r2 + O([|w(0)]|1, [w(0) o) -
Using (62), we can apply Garding’s inequality (theorem A.4) and derive
Re (T (0)w(0),w(0)) 2 + C Re (T3, 4. w(0),w(0)) 2 = cllw(0)]i , = C [[o(0) 13-
Observe that

T’Y

1, A,
A2IBEG {A 7Tﬁw] [A WTﬁq

is of order < 1 so we have

Re (T} 5. 50(0),w(0)) 2 = [T3w(0)|1 , + O(|w(0)

|17 [lw(0)[lo) -

For « large enough, we therefore obtain
(S7(0)w(0), w(0)) > > ¢l|w(0)|[i , — C | TZw(0)[I3,, = C 2(0)[I3 , (68)
and we can now deal with the interior term. Since

Re 7T} — Ty, (SA)

is of order < 2, we have
2 Re (S"TRw, w)) 20y = 2 Re (Tf, (gaywswhrz() — Cllwlli, -

Define

VzeQx (RExRTA\{0D), ai(z) = (VH(Z')(Z) EO(Z)> .

Then the remainders
T%*az% — (T%)*TJZT%
are of order < 2, so we get
2 Re (S"TXw, w)) 2y > Re Y (Towi,wi) o) — Cllwlli ,
l

where w; := T‘le. Using the block decomposition of a; and Garding’s inequality (theorem A.3)
on each block, we obtain
Re (T wi, wi) p2y > e [lwillg

and the ellipticity of the symbol ), V*V] yields, for v large enough, the estimate

1
lwll, S Re (T w,w)) 2y S lwllf + S flwll? -
l l
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Combining all these inequalities, we conclude that
Re (S"T3w,w) 120 = e Jwlff (69)

for v large enough. We now use (68) and (69) to derive a lower bound for the left-hand term of
(67). Choosing ¢ appropriately, we end up with

' 1 1. .
Yllwlli  + lwO)IF , = 175w O, = [2(0)II5 < - ITFl Tt 5 (ollg + 1775203 ) -

To conclude, observe that the remainder
v y
Ty T — T3 T;
is of order < —1 so we have
IT3w(0)[IF,, S Gl + [10(0)]3 -

Eventually, we have proved

. . . 1 Lo .
YT 0l + 1T, 201 S IGIR, + N2(0)5 + 5 I3, F1I% -, + 5 (Iollg + 170003 ,) - (70)

3.6 The main result

This paragraph is devoted to the very end of the analysis. We first prove the following:

Theorem 3.1. For all v € HY(Q), we define the localized norm of ¥ as

2 . , . .
loll™ = T30  + Wooutlli , + 72 loinll + 173,951
J
1<j<J’

where we keep the notations of paragraph 3.3:
U1

. V; . _ . .
T)?Qv = (1') mt> »  Vin € ch-t »  Vout € CN* and Vin =
ou:

1.)J/
For 9(0) € HY(R?) we define in a similar way the localized norm of ¥(0) as
18O = 1T, 6O)IIF  + oout O)IIF  +77 18in (O3 + 17 8in (015
v : xol 1y Vout 1y T 7 lVin 0 o Vin 0-

Then there exist two constants C' > 0 and vy > 1 such that for all v > 7o and for all (v,v) €
H2(Q) x H*(R?), the following estimate holds:

T2 1
vl + o) < © (;IHFIII?,Wr IIGII?ﬁ) : (71)

where
S v — . v ol : Y
vi=v—Ty b, F:= Oqv — T TAglcv and G := Tl‘Ilezd:o .

Proof. Using (61) and (70), we have already proved that there exists two constants C' and ~q
such that for all v > 7, one has

52 . 1 . c . ) .
vlIell” + lo(0)]* < € (; IFI3,, + !GII%ﬁ) +C[o(0)|l5 + 5 (oI5 + 1T 005 + 1T %0l5) (72)
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where 7 is given by (43) and r° is given by (65). We first show that the localized norm verifies
Yllollo < C ol (73)
for v large enough and C' > 0. Write

I=x0l +xI=x0l +(XQy")xQo,

where X is a suitable cut-off function such that xx = x. Then we have

Ylollo < AT bllo + CylITeg,llo < T30l + Cy 1T gdllo + CyIITyg_, vllo
<1730l + Nooutlli gy + v ldinllo + C llollo < Clloll + C o]0

and this gives (73) when + is large enough. In a completely similar way, we get

YI[9(0)[lo < Cllo(0)] - (74)
Using (73) and (74), (72) reads

52 T 1 C . .
vl + 1o (0)])* < C (; 1713, + HGII%,V> + > W7o, + ITHol3 ) (75)

and we need to absorb the last two terms.

To absorb the term 7}/, we decompose the symbol r as a linear combination of x¢ and the
0;’s. Recall that r is a symbol of degree 0 and regularity 1 that is identically zero in the region
{x = 1}. In the region {x < 1/2}, we have xo > 1/2 so we can write

r=ap(xol),
with « a symbol of degree 0. In the region {x > 1/2}, we can write

o1 o1ly,

ri= : (x Qo) ,

CYJI ay In_,/
Qout 1

because the two last matrices are regular in the region where r is not identically zero. Up to
introducing new cut-off functions, we can decompose r as

a1 o1ln,
r=ap(xol)+ | - h (x Qo) ,
Qg UJ’InJ/
Aoyt 1
where ag and gy are of degree 0 and a4, ..., are of degree —1 (because the o;’s are of

degree 1). At this stage, we easily derive

Il

1y ST, 00y + l1Poutlly + Z 175 5llo < M9l -
1<5<

The same kind of arguments also work for the term TTVO because ¥ is identically zero near the
bicharacteristic curves. Eventually, (75) yields, for v large enough:

T2 1
yllol™ + 10(0)[1* < S 1713, + G175 - (76)
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Theorem 3.1 gives a precise statement of the location of the possible singularities of ¥, that
is, where ¥ is less regular that the source terms F' and G. However, an important consequence
of theorem 3.1 is that our constant coefficients energy estimate holds for variable coefficients
system:

Theorem 3.2. Let a, defined by (24), satisfy assumptions 6-8. Then for all v € H?*(Q),
Y € H*(R?) and for all v >~y (where vy only depends on a), one has

1 1
YIIG + 1oy, oI5 + 11175 < -3 I£3(0, )1, + 2 1B (v, )IE - (77)

Proof. The result is a direct consequence of the paralinearization estimates. Let v and v be
given and define © as the good unknown of the problem. Let

F =040 — T}0— T

. e ’y .
A;lcv and G := THleacd:o .

Using (76) and (73)-(74), we get

, , 1 1
ol + ()5 < 7 1713, + o IGI3 -

We know from (36) that G satisfies

1G]

1 SO + 1Ty + Tagoy, o lIT + 1914,

so we have

. . 1 1 , 1
Yol + 15 < 7 1713, + o IT5 0 + TRgty, ol + 2 ¥ T

Using (33), we obtain

. . 1
Y9l + 10(0)1F < =

1 1
5 171, + 2 1B, DI, + 2 Il

and using once again (33) (for the interior term || F'|1,) yields

A

. . 1 1
YlIolS + 190) 13 < = 1€ (v, 9)IIE , + 2 I1Ba(v, DI, + 2 13 -

gl

Estimate (34) yields the estimate for v (and not v) while (35) enables to recover the estimate
on the shock front ¢ and to derive (77). O

4 The example of gas dynamics

When dealing with a concrete example, it is more convenient to have distinct notations for the
Laplace variable and the Fourier variable. We shall thus denote by 7 the Laplace dual variable
of t (7 is a complex number of positive real part) and by n € R%~! the Fourier dual variable of
(z1,...,24-1). Consequently, the stable subspace will be denoted by £~ (7,n), the front symbol
will be denoted by b(7,7) and so on.

Consider Euler’s equations of isentropic gas dynamics:

Ohp+V-(pv)=0,
O (pv)+V-(pvev)+Vp=0,
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where p is an increasing function of p > 0 but which is not convex. System (78) satisfies both
assumptions 1 and 2. For a planar shock wave

(p1,vi) ifz-v<ot,
u =
(pr,vy) ifz-v>ot,

where v is a unit vector in R?, the Rankine-Hugoniot conditions read
pr(vi-v—0o)=p(vi-v—0)=:7,
jlvl+ [plv =0,

and we shall assume j # 0. Then the tangential velocity is continuous across the shock front
and, up to changing observer, we may assume

V:<07"'7071)7 VT‘,l:<07"'7ouvr,l)7 j:PrUr:Plvl>0-

The Mach number on both sides of the shock front is defined by

(2
M, = - with cri i =1\/P (pryp) -

Tl

As usual, ¢ denotes the sound speed in the fluid. One easily checks that u is a 1-shock if and
only if
My >1, M,<1, p.>p;.

In such a case, the following is proved in [25]:

Proposition 4.1 (Majda). [25]. The shock u is uniformly stable if and only if

M? (ﬁ - 1) <1.
Pl
Otherwise, the shock is only weakly linearly stable.
When p is not a convex function of p, one may have

M? (%—1) >1. (79)
!

In this case, the following is proved in [13]:

Proposition 4.2. [13]. There exists Vi > 0 such that for all (t,n) € C x R4! satisfying Re
720, (1,m) # (0,0) and T # £iVi|n|, one has

{(Z,X) €& (r,n) xC st. xb(r,n)+MZ = O} = {0},
and form #£ 0, the set
{(Z, x) € € (xiVa|n|,n) x C s.t. xb(£Vi|n|,n)+ M Z = O}

is a one dimensional subspace of C24+3,
By definition, Vi is the smallest root of the polynomial

Pi(X) = (2 —u?)(X? + uu?) + [4u$c§ — 2upuy (2 + uz)] X,

that has two distinct positive roots (the greatest is denoted Vi ). Furthermore we have

2 _ 2
2 —u < VE < uy 5
¢+ ux

T

<V§.
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We recall a few results of [13]. The eigenvalues w;’s of A(u, 7,7) are wh := —T/u,, wh := 7/
and the roots wy 5, wll73 of the polynomial equations:

(T + ww)? = (W = ), (80a)
2
i

(1 — ww)? = f(w? = [n]*). (80b)

We choose wj as the root of negative real part of (80b) when Re 7 > 0. We also define
al = Tu, — (2 — u)wi.

It is proved in [13] that assumptions 4 and 5 hold as long as (79) is satisfied. Moreover, in a
suitable neighbourhood of the critical frequencies ., (u), there exists a C° basis (that we write

under the form of a rectangle matrix Q);;,) of the stable subspace £~ such that

pr(CgT + uray) 2ijnt >
T, mn =11 ' 51
/6( 77) Qin (ZJU(CZT+ulag) —,OT(T2Id—1 +Urul77®77) ( )

Simple calculations on matrices will show that assumption 8 holds. Let us first look at the
2-dimensional case: 7 is a real number and (¢;, is a 2 x 2 matrix. For all complex numbers

£1,&9,&3,&4, &5 such that £, #£ 0 and &5 # 0, the identity

(57 e (8 g) (B 1) = (G D) (32)

is a straightforward calculation. If we write

(& &
5(7—7 77) Qin = <€3 54) ,

we can easily check that &4 does not vanich in the neighbourhood of the critical frequencies. In
the neighbourhood of (iVi|n|,n) € X4, the determinant of 5(7,7n) Qi reads

§1€4 — 283 = (1 —iValn|) h(,n) or  det(5(7,n) Qin) = (7 +iVi|nl) h(7,n)
for a suitable C*° function h that does not vanish [13]. Setting &5 := h(7,7n), we obtain two
regular matrices P;(7,n) and P»(7,7n) such that

Pi(1,n) B(1,n) Qin P2(7,m) = (T o %Vl|77| (1]) _

This is nothing but assumption 8 since the set of critical frequencies is precisely defined by
7 = iViln| or 7 = —iVi|n|. In this case, the set of critical frequencies ¥..(u) has exactly four
connected components and we have a real equation of each of them.

In space dimension 3, the computations are similar. Observe that the matrix 7211 +u,un®
7 is regular (near the critical frequencies) according to proposition 4.2. Hence SQ;, reads

& & &
o= (& & &)= (T L),
& & & B

where Z := (721;_1 + u,un ®n). Therefore, one has det Z # 0 near the critical frequencies. We
check the identity

1 =1y (& & & §589 —&6és 0 0 det(8Qin) 0 0
<0 Z > §4 & &6 §6§7 — &8 1 0] = 0 10
§r & &9 4 — 6587 0 1 0 0 1

and we can conclude that assumption 8 is also satisfied in the 3-dimensional case.

=1
=
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A Paradifferential calculus with a parameter

In this appendix, we collect the main results of the paradifferential calculus of Bony and Meyer
[11, 29] that we use in this paper. The introduction of a positive parameter was achieved by
Mokrane [30], see also [28]. We refer to these papers for the proofs of the results stated below.
We first recall the classification of paradifferential symbols:

Definition 2. A paradifferential symbol of degree m € R and reqularity k (k=0 ork=1) is a
function a(z,€,7) : R x R? x [0, +00[— CN*N such that a is C™ smooth with respect to & and
for all a € N%, there exists a constant Cy, verfying

V(E), 108at &l < CaN10(€) = Ca (v + [€2) 10072,

The set of paradifferential symbols of degree m and regularity k is denoted by I'}'. We denote
by X} the set of paradifferential symbols a such that for a suitable € €]0, 1] one has

V(&7), Supp Fra(-,&7) C {ne€RY/|n| <e(r*+[¢*)?).

Of course, the symbols in X7" are C'° functions with respect to both variables x and £, and
for all a € X7*, we have the estimates

V(@,67), 107080 (,6,7)] < Cap NI ().

Thus any symbol a € ' belongs to Hérmander’s class ST [20] and defines an operator P7(a)
on the Schwartz’ class & by the usual formula

Vues. Plau(e)= g [ e ale ) ale) de.

We shall use the following terminology:

Definition 3. A family of operators { P} defined for v > 1 will be said of order < m (m € R)
if the operators P7 are uniformly bounded from H§+m to H3:

Yy 1, Vue P, [Pl < Clsm) [ullsimy -
The following theorem is crucial for the sequel of the analysis:
Theorem A.1l. Ifa € X}, the family {PY(a)} is of order < m.

The regularization of symbols in the class I'}* is achieved by a convolution with admissible
cut-off functions:

Definition 4. Let ¢ : R? x R? x [1, +o0[— [0, 4+00[ be a C* function such that the following
estimates hold for all o, 8 € N¢:

V(1,67), 10500% (1,6,7)| < CapATII=18(g).

We shall say that v is an admissible cut-off function if there exist real numbers 0 < €1 < €3 < 1
satisfying

b =1 i Il <al’+E",
W, EY) =0 if  |nl > ey + |2,
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An example of cut-off function is the following: let y be a nonnegative C'*° function on
R? x R such that

7+ G1? > + 1L = x(&,m) < x(&2,72)

X&) =1 if (2 + g3 < 1/2,
X&) =0 if (2 +¢2) 2> 1.

We define a function ¢(&,v) := x(£/2,7/2) — x(§,7). Then the function ¢ defined by

Yo(n,6,7) = x(2°77n,0) p(27P¢,27Pr)

p>0

is an admissible cut-off function (one can take €7 = 1/16 and ez = 1/2).
If 1) is an admissible cut-off function, the inverse Fourier transform K% of (-, ¢, ) satisfies

V(€7), 08KV (6 < CaX7().

These L! bounds on 8¢ K¥ enable to establish the following proposition:
€ g prop

Proposition A.1. Let ¢ be an admissible cut-off function. The mapping

ar— oy (:1: &) Z/Rdbi(ﬂf—yafa’Y)a(y»fﬂ)dy

is continuous from I'[* to X" for all m.
If a € T, then a — JZf € mel. In particular, if 11 and 9 are two admissible cut-off
functions and a € I'(", then oq" — ol e Xyt

Fixing an admissible cut-off function v, we define the paradifferential operator T, v by the
formula
TV .= PY(c¥).

If 41 and 15 are two admissible cut-off functions and a € I'", then proposition A.1 and theorem
A.1 show that the family {T¥"" — T¥27} is of order < (m — 1).
The symbolic calculus is based on the following theorem:

Theorem A.2. Leta €T and b€ I‘ﬁ"/. Then ab € FTJFm/ and the family
{TV7 o T = Tiy "o
is of order < m +m' — 1 for all admissible cut-off function 1.
Let a € I'T*. Then for all admissible cut-off function 1), the family
{(TY7) =T
is of order <m — 1.

Let a € TS and b € I‘g”l. Then ab € Fg”m/ and the family
; ), b, Py
(T o Ty — T = T" 052 O¢;00s b}’Y>1

is of order < m +m' — 2 for all admissible cut-off function 1.
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Let a € I's'. Then the family

by yE _ Y oy
{(Ta ’Y) Ta* T—i Ej ngazja* }’YZl

1s of order < m — 2 for all admissible cut-off function .
The next theorem is the parameter version of Garding’s inequality:

Theorem A.3. Let a € T3™ and 1 be and admissible cut-off function. Assume that there exists
a constant ¢ > 0 such that

Y (z,€,7), Rea(z, &) >cA2™V(€)Id.
Then there exists vg > 1 such that
Vy>n0.Vue H', Re (TPMuu)pe > 3 ull, -
We also have a localized version of Garding’s inequality:

Theorem A.4. Let a € T2, x € T and ¥ be and admissible cut-off function. Assume that
there exists X € TV and a constant ¢ > 0 such that Y >0, X x = x and

V(2,6,7), XP(,€7) Re a(w,€,7) > exP(z,&,7) A7) 1.
Then there exists v > 1 and C > 0 such that
c
¥y >90,Yu € HP'(RY),  Re (TP VT, T ) from > 5 1T 0l = C ullfen -

We now study the case of paraproducts: they are defined by the particular choice of ¥q as
cut-off function. We shall write 7)) instead of T.° for the paradifferential operators obtained
after smoothing by the function 5. We have the important result:

Theorem A.5. Let a € WH°(R?), u € L2(R?) and v > 1. Then we have
C
law=Taullo < = llallwe llullo,
ladju = T5 (9ju)llo < Clallwr.ee [lullo

for a suitable constant C' that is independent of (a,u,y).
If a € W2*(RY), we have

C
law—T)ull1 4 < ; lallp2.e0 [[ullo s

ladju = T5 (9ju)]

1y < Cllallwze [[ullo,
for a suitable constant C that is independent of (a,u,"y).

We can extend the paradifferential calculus to symbols defined on a half-space in the following
way: we still denote by I'7* the set of symbols a(zq, . . ., ¥4, 7,7) defined on Qx (R%x [0, +o0[ \{0})
such that the mapping x4 — a(-,z4,-) is bounded into I'}?. We define the paradifferential
operator T, by

Vue OP@), Yag>0, (Tu)(,aq):=T"

‘l(i?d)u(.’ Ta) -

Using theorem A.5 and integrating with respect to z4, we obtain for all symbol a € W1>(Q)
and all u € L?(Q) the estimates:

c
o = T3ullo < = llallw=(o) lulo.

lla8ju = T3 (B5u)llo < Cllallwroe) llullo, 0<j<d-—1.
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