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Abstract

We study the linear stability of multidimensional shock waves for systems of conservation
laws in the case where Majda’s uniform stability condition is violated. The linearized problem
is attacked using the “good unknown” of Alinhac. We prove an energy estimate and show
that the solutions to the linearized problem have singularities localized along bicharacteristic
curves originating from the boundary. The application to isentropic gas dynamics is detailed.
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1 Introduction

In [25] and [24], Majda proved the existence of multidimensional shock waves for hyperbolic
systems of conservation laws. The analysis relied on a uniform stability assumption. However,
previous works [6, 13] have exhibited some examples where the uniform stability condition breaks

1



down. In [13], we have begun to extend Majda’s linear analysis to these particular examples,
namely we have proved an energy estimate on a constant coefficients linearized system. Here we
adopt a general approach and prove a complete linear stability result for a class of shock waves
that are not uniformly stable. The analysis is closely related to what was done in [13].

To avoid any possible confusion, we shall not include the case of non classical shock waves in
this work though this field has known a significant increase of interest over the past few years,
see e.g. [6, 7, 16, 17] and the references therein.

We shall focus in this paper on multidimensional hyperbolic systems: the one-dimensional
case is far different from the multidimensional case since shock waves are either uniformly stable
or violently unstable, see [26]. The scalar case is also known to be very different from the system
case since scalar conservation laws provide us with a unified theory of existence and uniqueness
of solutions in the large, see e.g. [14, 34].

We consider a system of N conservation laws in time-space R × R
d:

d∑

j=0

∂jfj(u) = 0 , (1)

where x0 is the time variable, also denoted by t in the sequel, (x1, . . . , xd) is the space variable
and ∂j stands for the partial derivative with respect to xj . The fluxes f0, . . . , fd are C∞ functions
defined on an open set U of R

N with values in R
N . The jacobian matrix of fj at point u will

be denoted by Aj(u).
We assume that the system (1) does not consist of a single conservation law (in one or several

space variables), that is N ≥ 2. We also assume that the space dimension is d ≥ 2 (see the
preceeding remarks). We first assume that (1) is a symmetric hyperbolic system of conservation
laws:

Assumption 1. There exists a C∞ mapping Σ : U −→ MN (R) such that

∀ j = 0, . . . , d ∀u ∈ U Σ(u)Aj(u) is symmetric,

∀K compact ⊂ U ∃ cK > 0 such that Σ(u)A0(u) ≥ cK I for all u ∈ K.

Recall that assumption 1 is satisfied when there exists a strictly convex entropy, see [14, 34].
Assumption 1 is met by many physical examples such as Euler equations of gas dynamics,
Maxwell equations or the wave equation. Moreover, assumption 1 is the key tool to solve the
Cauchy problem associated to (1) for smooth initial data (namely in a Sobolev space of large
index), see [26, 34].

Because the system has been assumed to be symmetric hyperbolic, the matrix A(u, ξ) defined
by the formula:

∀ ξ ∈ R
d , A(u, ξ) := A0(u)

−1
d∑

j=1

ξj Aj(u) (2)

is diagonalizable over R for all state u ∈ U and all wave vector ξ ∈ R
d (see [34]). However,

we shall need a little more than hyperbolicity to carry out the study of the linear stability of
shock waves. In [22], the system was assumed to be strictly hyperbolic but it has been shown in
[25] that a suitable “block structure condition” (that is met by strictly hyperbolic systems) is
sufficient to carry out the study of initial boundary value problems and the study of the linear
stability of shock waves, see also [12, 28, 30]. The block structure condition will be recalled
further in this paper. In [27], Métivier has shown that the block structure condition was met
by every hyperbolic system with constant multiplicity. We are thus naturally led to make the
assumption that (1) is a system with constant multiplicity:
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Assumption 2. There exist C∞ real valued mappings λ1, . . . , λq defined on U × R
d \ {0}, and

fixed integers m1, . . . ,mq such that the λj ’s are the eigenvalues, with multiplicity mj, of the
matrix A(u, ξ) defined by (2). Furthermore, the λj’s satisfy

∀u ∈ U , ∀ ξ ∈ R
d \ {0} , λ1(u, ξ) < · · · < λq(u, ξ) .

We point out that assumption 2 is easily checked on the system. However, one could replace
assumption 2 by the more abstract block structure condition, as was made in [25, 28].

Example: consider Euler’s equations of isentropic gas dynamics in space dimension d:
{
∂t ρ+ ∇ · (ρv) = 0 ,

∂t (ρv) + ∇ · (ρv ⊗ v) + ∇ p = 0 ,

where ρ stands for the density of the fluid, v for the velocity, p for the pressure. Quantities ρ
and p are linked by an equation of state p = p(ρ). Euler’s equations form a nonlinear hyperbolic
system of conservation laws. In the domain {ρ > 0}, hyperbolicity (we mean assumption 1)
amounts to require that the pressure satisfies

c2 :=
dp

dρ
> 0 .

As usual, c denotes the sound speed in the fluid. Under this condition on the pressure law,
Euler’s equations are endowed with a strictly convex entropy. Moreover, the eigenvalues of the
corresponding matrix A(u, ξ) are given by

λ1(u, ξ) = v · ξ − c |ξ| with multiplicity m1 = 1 ,

λ2(u, ξ) = v · ξ with multiplicity m2 = d− 1 ,

λ3(u, ξ) = v · ξ + c |ξ| with multiplicity m3 = 1 .

and therefore assumption 2 is met. We shall detail in section 4 how the general analysis of this
paper applies in the context of isentropic gas dynamics.

Note that Lundquist’s equations of magnetohydrodynamics violate assumption 2. The study
of shock waves in MHD is a very intricate subject due to the appearance of many “pathologies”
(nonconstant multiplicity, occurrence of under- and over-compressive shocks, etc...). We refer
to [10] and to the references therein for some results on this subject.

Because of the natural development singularities in finite time [4], it appears natural to seek
solutions to (1) as functions that are smooth on either side of a hypersurface of R × R

d. Recall
the following classical result:

Proposition 1.1. Let Γ = {xd−ϕ(x0, . . . , xd−1) = 0} be a smooth hypersurface in R×R
d, and

let u be a smooth function on either side of Γ. Then u is a weak solution of (1) if and only if u
satisfies (1) (in the classical sense) on either side of Γ and if the Rankine-Hugoniot conditions
hold at each point of Γ:

∀x = (x0, . . . , xd) ∈ Γ ,
d−1∑

j=0

∂jϕ [fj(u)](x) − [fd(u)](x) = 0 , (3)

the partial derivatives of ϕ in the above formula being evaluated at (x0, . . . , xd−1). In (3), we
have let [fj(u)](x) denote the jump of the quantity fj(u) across the hypersurface:

[fj(u)](x) := lim
s→0+

(fj(u(x + sn)) − fj(u(x− sn))) with n = (−∂0ϕ, . . . ,−∂d−1ϕ, 1) .
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The existence of such a solution to (1) is a free boundary problem since the function ϕ
defining the hypersurface Γ is part of the unknown of the problem. To overcome this first
difficulty, we begin by straightening the variables in order to work in a fixed domain: given a
smooth function ϕ on R

d, we define a change of variables in R
d+1 by the formula:

Φ(x0, . . . , xd) := (x0, . . . , xd−1, xd + ϕ(x0, . . . , xd−1)) .

We have chosen here the standard change of variables (as in [25, 28, 30]): it maps the hyperplane
{xd = 0} onto the hypersurface Γ and the two half-spaces {±xd > 0} on the two sides of Γ.
Other choices for the change of variables (that may be appropriate for characteristic problems)
may be found in [15]. We now perform a change of unknown functions. If u is a smooth function
on either side of Γ, then the function u] defined by

∀ (x0, . . . , xd) ∈ R
d+1 , u](x0, . . . , xd) := u(Φ(x0, . . . , xd))

is smooth on either side of the hyperplane {xd = 0}. Denoting by u+
] (respectively u−] ) the

restriction of u] to the half-space {xd > 0} (respectively {xd < 0}), proposition 1.1 asserts that
u is a weak solution of (1) if and only if

{
L(u±] , ϕ)u±] = 0 if ±xd > 0,

B(u+
] , u

−
] , ϕ) = 0 if xd = 0,

(4)

where operators L and B are defined by the formulas:

L(v, ψ)w :=

d−1∑

j=0

Aj(v) ∂jw + Ãd(v,∇ψ) ∂dw (5a)

with Ãd(v,∇ψ) := Ad(v) −
d−1∑

j=0

∂jψAj(v) (5b)

B(w+, w−, ψ) :=
d−1∑

j=0

∂jψ [fj(w)] − [fd(w)] . (5c)

Now that the domain is fix, the problem reduces to the following question: given an initial
datum u0 that is smooth on either side of a hypersurface {xd = ϕ0(x1, . . . , xd−1)}, does there
exist a solution (u], ϕ) of (4) with initial value (u0

] , ϕ
0), at least locally in time? This question

has received a positive answer in [24] under the so-called uniform stability condition (we shall
recall it in section 2), see [26, 35] for a description of the method. The main idea is that equations
(5a)-(5c) are satisfied for planar shocks and the linear uniform stability of these trivial solutions
implies the existence of nontrivial solutions. As detailed in [6, 13, 36], the uniform stability
condition breaks down in some cases and Majda’s nonlinear existence result can not be applied
anymore. Our purpose is therefore to derive a linear stability result under a weaker condition
than Majda’s one.

2 The constant coefficients analysis

We first examin the linear stability of a planar shock in order to formulate our “weak stability”
assumptions. A planar shock is a solution of (1) that takes the form

u =

{
ur if xd > σt+ ν · y,
ul if xd < σt+ ν · y,

(6)
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where ur and ul are fixed vectors belonging to the open set U , y = (x1, . . . , xd−1) is the vector
formed by the tangential space coordinates, ν is a wave vector in R

d−1 and σ is the normal speed
of propagation of the front. This corresponds to the equation

ϕ(x0, . . . , xd−1) = σx0 +
d−1∑

j=1

νjxj

for the shock front curve. We easily check that u is a solution of (1) if and only if the Rankine-
Hugoniot relations

σ [f0(u)] +
d−1∑

j=1

νj [fj(u)] = [fd(u)] (7)

are satisfied. Performing a rotation of the axis, we may assume ν = 0. Changing last space
variable xd into xd − σt, we may also assume that the shock is stationary, that is σ = 0. Note
that assumption 2 is still satisfied after this change of observer.

Following Lax [23], we assume that u is a p-shock:

Assumption 3. There exists an integer p ∈ {1, . . . , q} such that the following inequalities hold:

λp−1(ul, ed) < 0 < λp(ul, ed) and λp(ur, ed) < 0 < λp+1(ur, ed)

where ed := (0, . . . , 0, 1) ∈ R
d is the wave vector of propagation of the shock u. Moreover, λp is

a simple eigenvalue, that is mp = 1.

In the case p = 1 (respectively p = q), that is in the case of an extreme shock, the first
inequality on the left (respectively the last on the right) is ignored. Recall that assumption 3 is
made in order to avoid under- (or over-)determinacy of the boundary value problem (4). In view
of the number of jump conditions, the number of characteristics (counted with their multiplicity)
entering the shock front curve has to be equal to N + 1, see figure 1. Recall also that if λp is a
multiple eigenvalue, that is, mp > 1, the p-th field is linearly degenerate by Boillat’s theorem,
see [34]. This is a second reason why we assume that λp is a simple eigenvalue.

xd

t

xd = σt

m1 + · · · + mp

mp + · · · + mq

ul

ur

λq(ul)

λp(ul)
λ1(ur)

λp(ur)

Figure 1: Characteristics entering the shock front
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Remark: applying the implicit functions theorem, we easily see that the set of solutions
(σ, ν, ul, ur) of the Rankine-Hugoniot relations (7) consists, in the vicinity of (0, 0,ul,ur) of all
vectors of the form

(σ, ν, ul, g(σ, ν, ul))

where g is a C∞ mapping defined on a neighbourhood of (0, 0,ul) ∈ R× R
d−1 ×U and satisfies

g(0, 0,ul) = ur. Moreover, shock waves that are close to our reference shock wave u are p-shocks,
that is meet assumption 3. In all the sequel, we base most of our analysis on the reference shock
wave u but we shall also need to deal with shock waves that are close to u. These shock waves
share the main properties of u.

2.1 The weak stability condition

We now introduce the linearized operators around the shock u: consider a family us = u] + sv
and ϕs = sψ. Then we define the linearized operators

Lu(v±, ψ) :=
d

ds
L(u±s , ϕs)u

±
s |s=0 , (8a)

Bu(v, ψ) :=
d

ds
B(u+

s , u
−
s , ϕs) |s=0 . (8b)

Since u is constant on either side of {xd = 0}, the linearized operators read

Lu(v±, ψ) = Luv
± =

d∑

j=0

Aj(ur,l) ∂j v
± , ±xd > 0 ,

Bu(v, ψ) =

d−1∑

j=0

∂jψ [fj(u)] − Ad(ur) v
+ + Ad(ul) v

− , xd = 0 .

We let bj(u) := [fj(u)] (for j = 0, . . . , d− 1) and

M(u)

(
v+

v−

)
:= −Ad(ur) v+ + Ad(ul) v

− .

Then the linearized boundary value operator Bu reads

Bu(v, ψ) =
d−1∑

j=0

∂jψ bj(u) +M(u)

(
v+

v−

)
.

We are led to consider the boundary value problem for the unknown functions (v, ψ):

{
Luv

± = f± for ±xd > 0 ,

Bu(v, ψ) = g for xd = 0 ,
(9)

where f± and g are source terms.
Note that system (9) is a constant coefficients hyperbolic boundary value problem; moreover,

the boundary {xd = 0} is noncharacteristic because of assumption 3: both matrices Ad(ur) and
Ad(ul) are regular. Kreiss’ theory [22] on this class of problems does not apply directly because
partial derivatives of ψ are involved in the boundary conditions. Nonetheless, we attack problem
(9) by the same kind of arguments: formally, we perform a Laplace transform in x0 and a Fourier
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transform in the tangential space variables (x1, . . . , xd−1). We also make the change of variables
(xd → −xd) in the evolution equation for v−. This yields the following system of ODEs:


τ A0(ur) + i

d−1∑

j=1

ηj Aj(ur)


V + +Ad(ur)

dV +

dxd
= F̂+ , (10a)


τ A0(ul) + i

d−1∑

j=1

ηj Aj(ul)


V − −Ad(ul)

dV −

dxd
= F̂− , (10b)

in the domain {xd > 0}, with the boundary conditions:


τ b0(u) + i

d−1∑

j=1

ηj bj(u)


Ψ +M(u)

(
V +(0)
V −(0)

)
= Ĝ , (11)

on {xd = 0}. The complex number τ = γ + iη0 has nonnegative real part and (η1, . . . , ηd−1) is
a wave vector in R

d−1. In the sequel, we shall denote by η the vector (η0, η1, . . . , ηd−1) ∈ R
d.

Because the boundary is noncharacteristic, we may rewrite (10a)-(10b) as an ODE system
of the form

d

dxd

(
V +

V −

)
= A(u, η, γ)

(
V +

V −

)
+ Ad(u)−1

(
F+

F−

)

with A(u, η, γ) :=

(
Ar(u, η, γ) 0

0 Al(u, η, γ)

)
.

(12)

Matrices Ar,l and Ad in (12) are defined by

Ar,l(u, η, γ) := ∓Ad(ur,l)−1


γ A0(ur,l) + i

d−1∑

j=0

ηj Aj(ur,l)


 ,

Ad(u) :=

(
Ad(ur) 0

0 −Ad(ul)

)
.

Defining

Aj(u) :=

(
Aj(ur) 0

0 Aj(ul)

)
, 0 ≤ j ≤ d− 1 ,

we find easily

A(u, η, γ) = −Ad(u)−1


γA0(u) + i

d−1∑

j=0

ηj Aj(u)


 .

We also define the symbol associated to the shock front:

b(u, η, γ) := γ b0(u) + i
d−1∑

j=0

ηj bj(u) . (13)

As pointed out by Hersh [18], the homogeneous part of the ODEs (12) is hyperbolic when
γ > 0, that is, the matrix A has no purely imaginary eigenmodes when γ > 0. For γ > 0, we
define E−(u, η, γ) as the stable subspace of A, which is the set of initial values of solutions to
(12) that are square integrable on [0,+∞[ when F+ = F− = 0. Because of the decoupled nature
of (12), the stable subspace E−(u, η, γ) is nothing but the product of the stable subspaces
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of Ar and Al. In the case of an extreme shock, one of these two stable subspaces is trivial.
The dimension of E−(u, η, γ) is equal to the dimension of E−(u, 0, γ) for all η (this is just a
continuity/connectedness argument). To compute the dimension of E−(u, 0, γ), we seek the
eigenmodes of A(u, 0, γ). These are the roots ω of the dispersion equation

det [ωI −A(u, 0, γ)] = 0 .

The definition of A shows that ωI − A(u, 0, γ) is singular if and only if γA(ur) + ωAd(ur) or
γA(ul)−ωAd(ul) are singular. As a consequence, ω satisfies the dispersion equation if and only
if there exists an integer k ∈ {1, . . . , q} such that

λk(ur, ed)ω = −γ or λk(ul, ed)ω = γ ,

where ed := (0, . . . , 0, 1) ∈ R
d. Assumption 3 shows that such values of ω are negative for

k = p + 1, . . . , q in the first case and k = 1, . . . , p − 1 in the second case. Taking multiplicities
into account, this shows that E−(u, 0, γ) (and therefore E−(u, η, γ)) has dimension N−1 as long
as γ > 0.

For fixed η 6= 0, the stable subspace E−(u, η, γ) admits a continuous extension to (η, 0),
see [9] (the argument makes use of the compactness of Grassmanian manifolds); we still denote
this extension by E−(u, η, 0). Note that for γ = 0, vectors in the extended stable subspace are
not always boundary values of square integrable functions because of the possible occurence of
purely imaginary eigenmodes. This is widely detailed in [6, 13] for Euler equations of isentropic
gas dynamics.

We define the hemisphere of R
d+1 as

Σ+ := {(η, γ) ∈ R
d+1 s.t. γ2 + |η|2 = 1 and γ ≥ 0} .

The boundary of Σ+ will be denoted by Σ0, that is

Σ0 := {(η, 0) ∈ R
d+1 s.t. |η|2 = 1} .

Recall the following definition:

Definition 1 (Majda). [25]. The planar shock u is said to satisfy the uniform stability condi-
tion if there exists a positive constant c > 0 such that for all (η, γ) ∈ Σ+, one has

∀ (χ,Z) ∈ C × E−(u, η, γ) , |χ b(u, η, γ) +M(u)Z| ≥ c (|χ| + |Z|) .

By compactness of Σ+, the uniform stability condition is equivalent to the requirement that
for all (η, γ) ∈ Σ+, the “critical” subspace

{
(χ,Z) ∈ C × E−(u, η, γ) s.t. χ b(u, η, γ) +M(u)Z = 0

}

is trivial, that is reduced to {0}. The word “critical” is not standard but its use here intends
to show the major place that is occupied by this subspace in the normal modes analysis.

Recall that a planar shock is uniformly stable if and only if solutions of (9) satisfy a maximal
L2 estimate as in the study of linear hyperbolic boundary value problems, see [25, proposition
1]. The uniform stability condition is thus the direct extension of Kreiss’ uniform condition [22].

As noted by Majda [25, lemma 4.1], the uniform stability condition enables to isolate the
shock front Ψ appearing in (11) in a single equation. We emphasize that this operation can not
be achieved for scalar conservation laws in space dimension more than 1.

Our approach is slightly different: we allow some instability but this instability can only
stem from the traces of solutions to the dynamical system (12) and not from the shock front
symbol defined by (13). More precisely, we make the following assumption:
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Assumption 4. There exists a positive constant c such that

∀ (η, γ) ∈ Σ+ , |b(u, η, γ)| ≥ c . (14)

Of course, an analogue estimate is valid for all states ur, ul close to ur,ul.

Remark: assumption 4 is equivalent (see [19, chapter 4]) to the requirement that there
exists a C∞ mapping P : Σ+ → GlN (C) such that

∀ (η, γ) ∈ Σ+ , P (u, η, γ) b(u, η, γ) =

(
1
0

)
,

and one can even choose P depending smoothly on the states ur,ul.

It is clear that (14) holds if u satisifes Majda’s uniform stability condition. In a pseudodif-
ferential setting, b is an overdetermined elliptic symbol (γ is seen as a parameter and we are thus
dealing with pseudodifferential symbols with a parameter). It is shown in [13] that assumption
4 is met in some cases where the uniform stability condition is violated: the main example
concerns shock waves in isentropic gas dynamics when the pressure law is not a convex function
of the density.

Assumption 4 enables to reformulate boundary conditions (11) by isolating the unknown
shock front Ψ in a single equation. Because of (14), we can define for all (η, γ) ∈ R

d ×R
+ \ {0}

the orthogonal projector

Π(u, η, γ)h := h− 〈h, b(u, η, γ)〉
|b(u, η, γ)|2 b(u, η, γ) .

Multiplying (11) by Π and b∗ yields the new boundary conditions

Π(u, η, γ)M(u)V (0) = Π(u, η, γ)G , (15a)

|b(u, η, γ)|2 Ψ = 〈G−M(u)V (0), b(u, η, γ)〉 . (15b)

Observe that b is homogeneous of degree 1 in (η, γ) so (14) is equivalent to

∀ (η, γ) ∈ R
d × R

+ , c (γ2 + |η|2) ≤ |b(u, η, γ)|2 .

Using Schwarz’ inequality in (15b), we obtain

∀ (η, γ) ∈ R
d × R

+ , (γ2 + |η|2) |Ψ|2 ≤ C (|G|2 + |V (0)|2) (16)

for a suitable constant C depending only on the shock u. It is thus sufficient to get an estimate
on V (0) and we shall get from (16) an estimate on Ψ. In order to obtain the desired estimate
on V (0), we attack the following boundary value problem:





dV

dxd
= A(u, η, γ)V + Ad(u)−1 F̂ for xd > 0,

Π(u, η, γ)M(u)V (0) = Π(u, η, γ) Ĝ .
(17)

Isolating the front yields a boundary value problem where the boundary operator takes the
form of a Fourier multiplier of order 0. Indeed, the homogeneity property of b implies that Π is
homogeneous of degree 0 with respect to (η, γ). More precisely, Π is a pseudodifferential symbol
of degree 0 (γ is seen as a parameter). We refer to [2] and [12] for a detailed study of pseudo-
differential calculus with a parameter; the introduction of a parameter in Bony’s paradifferential
calculus [11, 29] has been achieved in [30], see also [28].

Our final assumption is that the boundary conditions defined by the symbol ΠM satisfy
the Kreiss-Lopatinskii condition but violate the uniform Kreiss-Lopatinskii condition. It is
important for what follows that this assumption is met by all shock waves close to u:
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Assumption 5. For all shock waves u close to the reference shock wave u, the following prop-
erties hold:

If (η, γ) ∈ Σ+ and γ > 0, the reduced critical subspace

{
Z ∈ E−(u, η, γ) s.t. Π(u, η, γ)M(u)Z = 0

}

is trivial.

If (η, 0) ∈ Σ0 is a point where the reduced critical subspace

{
Z ∈ E−(u, η, 0) s.t. Π(u, η, 0)M(u)Z = 0

}

is nontrivial, then there exists a neighbourhood V of (η, 0) in Σ+ and a constant c > 0
such that

∀ (η, γ) ∈ V , ∀Z ∈ E−(u, η, γ) , |Π(u, η, γ)M(u)Z| ≥ c γ |Z| . (18)

Furthermore, there exists a C∞ mapping Q(u, ·) : V → Gl2N (C) depending smoothly on u
such that for all z = (η, γ) ∈ V, one has

Q(u, z)A(u, z)Q(u, z)−1 =




a−(z)
a+(z) 0

ω1(z)

0
. . .

ωJ(z)



,

where a+(z) (respectively a−(z)) is a square matrix whose spectrum is contained in the
half plane { Re ζ > 0} (respectively { Re ζ < 0}) and the ωj’s are complex valued. These
quantities also satisfy ωj ∈ iR when γ = 0 and either

Re ωj(z) ≥ c γ

or
Re ωj(z) ≤ −c γ ,

for all z ∈ V.

Before stating our main result on such weakly stable planar shocks (that is planar shock
waves satisfying assumptions 3-5) let us explain in a few words the meaning of assumption
5. The first condition asserts that the shock wave is not violently unstable: it must satisfy the
analogue of the Kreiss-Lopatinskii condition for linear hyperbolic boundary value problems. The
second condition asserts that the uniform stability condition is violated “at order 1”. Recall
that when Majda’s uniform stability condition is met, one has an estimate of the type

∀ (η, γ) ∈ V , ∀Z ∈ E−(u, η, γ) , |Π(u, η, γ)M(u)Z| ≥ c |Z| .

In our study, the allowed instability yields a power of γ in (18).
When (η, γ) tends to an instability point (η, 0), part of the stable and unstable subspaces of

A(u, η, γ) form a central subspace. The last requirement of assumption 5 is that the restriction
of A(u, η, γ) to this subspace (that is central when γ = 0) is smoothly diagonalizable. In gas
dynamics, there are examples of shock waves for which the uniform stability condition breaks
down at a point where the symbol is not smoothly diagonalizable, see [13, 25]. Unfortunately, we
have not been able to deal with this case: one major problem is the failure of the differentiability
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of the eigenmodes at such points. We refer to the work of Okhubo and Shirota [31] for some
aspects of these phenomena.

Remark: making assumption 5 for all shock waves close to u is not very restrictive (first
because it is satisfied in both examples we study). In fact, if assumption 5 is satisfied by the
shock wave u, then it is automatically satisfied by all shock waves close to u provided the
whole stable and unstable subspaces form a central space when γ = 0 in the vicinity of the
instability points, see [8]. In such a case, there are no blocks a+ and a− in the reduction of A
in the vicinity of the instability points. This theoretical result applies to weakly stable shock
waves in isentropic gas dynamics, see [13]. In the case of phase transitions in a van der Waals
fluid, instability modes belong to a region of the parameters (η, γ) where some eigenmodes have
negative real part and it is not a direct consequence of [8] that assumption 5 is satisfied by all
planar shock waves close to u (but fortunately the calculations show that it is true).

2.2 The weak stability of planar shock waves

In this paragraph, we show that if u satisfies the weak stability condition, then the constant
coefficients boundary value problem (9) is “well-posed” in the sense that solutions to (9) satisfy
an energy estimate. Since we deal with shock waves that violate Majda’s uniform stability
condition, the energy estimate will involve losses of derivatives with respect to the right hand-
side terms f and g in (9).

We need first of all to introduce a few notations. Denote by Ω and ω the domains

Ω := R
d+1
+ = {(x0, . . . , xd) ∈ R

d+1 s.t. xd > 0} and ω := R
d = ∂Ω .

For γ > 0 and s ∈ R we define the following symbols

∀ ξ ∈ R
d, λs,γ(ξ) := (γ2 + |ξ|2)s/2 .

The usual Sobolev spaces Hs(ω) are equipped with the weighted norms (depending on the
positive parameter γ):

‖v‖2
s,γ :=

1

(2π)d

∫

Rd

λ2s,γ(ξ) |v̂(ξ)|2 dξ .

We shall write ‖ · ‖0 instead of ‖ · ‖0,γ since there is no dependance on the parameter γ of
the L2 norm. These weighted norms enable to construct a parameter version of the classical
pseudodifferential calculus which is of constant use in the study of hyperbolic boundary value
problems, see [2, 22, 25, 28].

The space L2(R+,Hs(Rd)) is also equipped with the weighted norm:

|||v|||2s,γ :=

∫ +∞

0
‖v(·, xd)‖2

s,γ dxd . (19)

We shall also write ||| · |||0 instead of ||| · |||0,γ. Typically, we shall use the spaces L2(Ω) and
L2(R+,H1(Rd)).

The Laplace transform performed in the normal modes analysis amounts to work with the
new functions ṽ = exp(−γt)v and ψ̃ = exp(−γt)ψ, with γ > 0. This leads to the introduction
of the “weighted” operators:

Lγuṽ := Luṽ + γA0(u) ṽ and Bγu(ṽ, ψ̃) := Bu(ṽ, ψ̃) + γψ̃ b0(u) .

One easily checks that (9) is equivalent to
{
Lγuṽ = exp(−γt)f for xd > 0 ,

Bγu(ṽ, ψ̃) = exp(−γt)g for xd = 0 .

11



For convenience, we drop the tilda from v and ψ (keeping in mind that these functions have been
multiplied by a decreasing exponential function and therefore also depend on the parameter γ).
Our result on weakly stable planar shock waves can be stated as follows:

Theorem 2.1. Let u be a planar shock wave that satisfies assumptions 3-5. Then for all
v ∈ H2(Ω), for all ψ ∈ H2(ω) and for all γ ≥ 1, one has:

γ |||v|||20 + ‖v|xd=0
‖2
0 + ‖ψ‖2

1,γ .
1

γ3
|||Lγu(v, ψ)|||21,γ +

1

γ2
‖Bγu(v, ψ)‖2

1,γ . (20)

Energy estimates in Sobolev spaces of higher order are available, provided that v and ψ are
sufficiently regular. Similar estimates also hold for shock waves u close to u.

2.3 Proof of theorem 2.1

The proof of theorem 2.1 follows the earlier works of Kreiss [22] and Majda [25] with suitable
modifications. It can be found in [13] in the case of isentropic gas dynamics.

Recall first that assumption 2 ensures that (1) satisfies the so-called block structure condition.
More precisely, we have:

Proposition 2.1 (Block structure condition). [27]. If assumption 2 is satisfied, then for all
shock wave u close to u, for all z ∈ Σ+, there exists a neighbourhood V of z in Σ+ and invertible
matrices Q(u, z) depending smoothly on u and z ∈ V such that

∀ z ∈ V , Q(u, z)A(u, z)Q(u, z)−1 =




a−(z)
a+(z) 0

a1(z)

0
. . .

aJ(z)



.

Furthermore, the spectrum of a−(z) (respectively a+(z)) is contained in the half-plane {Re ζ < 0}
(respectively {Re ζ > 0}), and for all j = 1, . . . , J , the matrix aj(z) has purely imaginary
coefficients when γ = 0 and aj(z) satisfies

aj(z) = ωjI + iNj with ωj ∈ iR and Nj =




0 1 0 0

0 0
. . . 0

...
. . . 0 1

0 . . . 0 0



.

Finally, the lower left-hand corner coefficient of ∂aj/∂γ (z) is real and does not vanish. Note
that the dimensions of the blocks a± and aj depend on z but not on z ∈ V.

Let us go back to assumption 5: if z is a point of Σ0 such that the critical subspace

{
Z ∈ E−(u, z) s.t. Π(u, z)M(u)Z = 0

}

is nontrivial, then we have assumed that all the blocks aj (defined by proposition 1.1) are of
dimension 1. In particular, when z belongs to a suitable neighbourhood of z, aj(z) is a complex
number ωj such that ωj ∈ iR when γ = 0 and ∂ωj/∂γ (z) is real and does not vanish. If Re
ωj < 0 when γ > 0, we obtain

Re ωj(z) ≤ −c γ , (21)

whereas we obtain
Re ωj(z) ≥ c γ (22)

12



if Re ωj > 0 when γ > 0. In both cases, c is a positive constant depending on u and z. We
refer to [13] for a detailed study of the block structure condition in the case of isentropic gas
dynamics.

We are going to construct a microlocal symmetrizer in order to prove (20).
• Let z ∈ Σ+ \Σ0. Since A(u, z) has no purely imaginary eigenvalue (by Hersh’s result [18]),

there exists a neighbourhood V of z in Σ+ and invertible matrices Q(u, z) depending smoothly
on z ∈ V (and also smoothly on u close to u) such that

∀ z ∈ V , Q(u, z)A(u, z)Q(u, z)−1 =

(
a−(z) 0

0 a+(z)

)
,

with Sp a−(z) ⊂ { Re ζ < 0} and Sp a+(z) ⊂ { Re ζ > 0} .
Matrices a−(z) and a+(z) are defined by Dunford’s formula, see [12, 21]. As noted in [27], this
reduction explains why the block structure condition needs only to be checked in the neigh-
bourhood of points belonging to Σ0. By Lyapunov’s theorem, see [5], there exists two positive
definite hermitian matrices H+ and H− such that

Re (H± a±(z)) = ±I .
For convenience, we define the real part of a square matrix N as (N + N ∗)/2 and we do the
same for operators on a Hilbert space. Following Kreiss [22] (see also [12]), we choose r of the
form

r(z) :=

(
−H− 0

0 αH+

)
,

where α is a real number greater than 1, to be chosen large enough. Because the critical subspace
is trivial when z belongs to a neighbourhood of z, it is proved in [12] that for α large enough,
the following estimates hold

Re (r(z)Q(u, z)A(u, z)Q(u, z)−1) ≥ 1/2 I ,

r(z) + C β̃(u, z)∗β̃(u, z) ≥ c I , where β̃(u, z) := Π(u, z)M(u)Q(u, z)−1 .

Constants c and C are positive and depend on (u, z).
• Let now z ∈ Σ0 be a point where the critical subspace is trivial. It appears from propo-

sition 2.1 that Jordan blocks may occur in the reduction of the symbol A. In such a case, the
construction of the symmetrizer is rather technical. We refer to [22, 32] and [12, 13, 30] for the
details. Following these anterior works, we conclude that there exists a neighbourhood V of z
in Σ+ and C∞ matrix valued mappings r and Q(u, ·) defined on V such that for all z ∈ V, r(z)
is hermitian, Q(u, z) is invertible and

Re (r(z)Q(u, z)A(u, z)Q(u, z)−1) ≥ c γ I ,

r(z) + C β̃(u, z)∗β̃(u, z) ≥ c I .

• Let z ∈ Σ0 be a point where the critical subspace is nontrivial. From assumption 5, we
know that there exists a neighbourhood V of z in Σ+ and invertible matrices Q(u, z), depending
smoothly on z ∈ V, such that

Q(u, z)A(u, z)Q(u, z)−1 =




a−(z)
ω1(z)

. . .

ωJ ′(z)
a+(z)

ωJ ′+1(z)
. . .

ωJ(z)




,
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where the ωj ’s have negative real part when γ > 0 and j = 1, . . . , J ′ and have positive real part
when γ > 0 and j = J ′ + 1, . . . , J . We have just reordered the diagonal blocks appearing in
assumption 3. Let us remark that the stable subspace E−(u, z) (that has dimension N − 1 for
all z) is spanned by the N − 1 first column vectors of Q(u, z)−1. For z ∈ V, we choose r(z) of
the form

r(z) :=




−γ2H− 0
−γ2 IJ ′

αH+

0 α IJ−J ′


 ,

where α is a real number greater than 1, to be fixed, and H± are chosen as in the case γ > 0.
Because of the local behavior of the eigenmodes ωj ’s, see (21) and (22), we have

∀ z ∈ V , Re (r(z)Q(u, z)A(u, z)Q(u, z)−1) ≥ c




γ2H− 0
γ3 IJ ′

αH+

0 αγ IJ−J ′


 ,

for a suitable constant c > 0. If W ∈ C
2N , we denote by W− the vector composed by the N − 1

first coordinates of W and W+ the vector composed by the N + 1 last coordinates of W (this
corresponds to a decomposition between the incoming part and the outgoing part), so we can
write

β(u, z)Q(u, z)−1W = β(u, z)Q(u, z)−1

(
W−

0

)
+ β(u, z)Q(u, z)−1

(
0
W+

)
,

β(u, z) := Π(u, z)M(u) ,

and from (18), we have ∣∣∣∣β(u, z)Q(u, z)−1

(
W−

0

)∣∣∣∣ ≥ c γ |W−| ,

which implies

γ2 |W−|2 . |W+|2 + |β̃(u, z)W |2 , β̃(u, z) := β(u, z)Q(u, z)−1 .

Choosing α large enough yields

r(z) + Cβ̃(u, z)∗β̃(u, z) ≥ c γ2 I ,

for all z ∈ V. This completes the microlocal construction of the symmetrizer.
• We now turn to the proof of (20). For all z ∈ Σ+, the previous analysis establishes

the existence of a neighbourhood V of z in Σ+ and of smooth mappings r and Q with suitable
properties. Because Σ+ is a smooth compact manifold, there exists a finite covering Vi, 1 ≤ i ≤ I,
of Σ+ by such neighbourhoods and a smooth partition of unity χi, 1 ≤ i ≤ I, subordinated to
this covering. Functions χi are C∞, nonnegative and satisfy

∀ i = 1, . . . , I Supp χi ⊂ Vi and
I∑

i=1

χ2
i ≡ 1 .

Let now v ∈ H2(Ω) and ψ ∈ H2(ω). We denote by V (η, xd) the Fourier transform of v with
respect to the d first variables (x0, . . . , xd−1). We also define

F := Lγu(v, ψ) ∈ H1(Ω) , G := Bγu(v, ψ) ∈ H1(ω) .
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We extend all mappings ri and Qi on all Σ+ assuming them to be constant outside of Vi (this
is of pure convenience since only the value of these mappings on Supp χi will be involved in
the following calculations). Then we extend χi and Qi as homogeneous functions of degree 0 in
(η, γ). For z = (η, γ) ∈ R

d × R
+, we define

Vi(z, xd) := χi(z)Qi(u, z)V (η, xd) .

We thus get the relation

dVi
dxd

= Qi(u, z)A(u, z)Qi(u, z)
−1 Vi(z, xd) + χi(z)Qi(u, z)Ad(u)−1 F̂ (η, xd) . (23)

If Vi is a neighbourhood of a point z where the critical subspace is trivial, we extend ri
as a homogeneous function of degree 0 in (η, γ). We multiply (16) by ri(z)Vi(z, xd) and then
integrate with respect to (η, xd), γ being fixed. Using the inequalities

Re (ri(z)Qi(u, z)A(u, z)Qi(u, z)
−1) ≥ c γ I ,

ri(z) + C β̃i(u, z)
∗ β̃i(u, z) ≥ c I ,

we obtain Kreiss’ maximal L2 inequality

γ|||χiV |||20 + ‖χiV|xd=0
‖2
0 .

1

γ
|||χiF̂ |||20 + ‖χiĜ‖2

0 .
1

γ3
|||χiF̂ |||21,γ +

1

γ2
‖χiĜ‖2

1,γ .

If Vi is a neighbourhood of a point z where the critical subspace is nontrivial, we extend ri
as a homogeneous function of degree 2 in (η, γ). We have

ri(z) + C λ2,γ(η) β̃i(u, z)
∗ β̃i(u, z) ≥ c γ2 I ,

and therefore, multiplying (23) by ri(z)Vi(z, xd) and integrating with respect to (η, xd) yields
the inequality

−2 Re 〈〈ri Vi, χiQiA−1
d F̂ 〉〉L2(Ω) ≥ c γ2 ‖χiV|xd=0

‖2
0 −C ‖χiĜ‖2

1,γ + 2 Re 〈〈Vi, riQiAQ−1
i Vi〉〉L2(Ω) .

Recall that ri has diagonal form

ri(z) =




−γ2H− 0
−γ2IN−1

αλ2,γ(η)H+

0 αλ2,γ(η) IN+1




≤




γ
√
H− 0

γIN−1 √
αλ1,γ(η)

√
H+

0
√
αλ1,γ(η) IN+1




2

=: s(z)2 .

Recall that H− and H+ are hermitian poisitive definite which justifies the introduction of their
positive definite square roots

√
H− and

√
H+. We have

2Re 〈〈Vi, riQiAQ−1
i Vi〉〉L2(Ω) ≥ c γ |||s(z)Vi|||20 ,

and Schwarz’ inequality yields

−2 Re 〈〈riVi, χiQiA−1
d F̂ 〉〉L2(Ω) ≤

c

2
γ |||s(z)Vi|||20 +

C

γ
|||χis(z)F̂ |||20 ≤ c

2
γ |||s(z)Vi|||20 +

C

γ
|||χiF̂ |||21,γ .
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Eventually, we obtain

γ3 |||χi V |||20 + γ2 ‖χiV|xd=0
‖2
0 .

1

γ
|||χi F̂ |||21,γ + ‖χi Ĝ‖2

1,γ .

Since the χi’s form a partition of unity, we get

γ |||v|||20 + ‖v|xd=0
‖2
0 .

1

γ3
|||Lγuv|||21,γ +

1

γ2
‖Bγu(v, ψ)‖2

1,γ .

To conclude the proof, we integrate (16) with respect to η ∈ R
d:

‖ψ‖2
1,γ . ‖v|xd=0

‖2
0 + ‖Bγu(v, ψ)‖2

0 . ‖v|xd=0
‖2
0 +

1

γ2
‖Bγu(v, ψ)‖2

1,γ ,

and this gives (20).

�

Remark: in [25, proposition 2], Majda stated an energy estimate similar to (20) for isen-
tropic Euler equations. We point out that his result was obtained under the assumption Lγuv ≡ 0.
Theorem 2.1 thus extends this earlier result and indicates that losses of derivatives occur both
in the interior domain and on the boundary. This shows a major difference between our analysis
and earlier works such as [31, 33].

3 The variable coefficients analysis

Let u be a planar shock as in (6) satisfying assumption 3. We know that there exists an open
set U in R

N × R
N × R × R

d−1 containing the origin such that for all (wr, wl, σ, ν) ∈ U , we have

ur + wr ∈ U , ul + wl ∈ U ,

λp−1(ul + wl, ξ) < σ < λp(ul + wl, ξ) and λp(ur + wr, ξ) < σ < λp+1(ur + wr, ξ)

where ξ := (−ν, 1) ∈ R
d. In other words, U is an open set such that all planar shocks associated

to elements of U are p-shocks. Shrinking U if necessary, all shock waves in U meet assumption 5.
We fix a compact subset K ⊂ U and consider mappings u̇r, u̇l, ϕ such that ϕ is defined on R

d, u̇r
(resp. u̇l) is defined on {xd ≥ ϕ(x0, . . . , xd−1)} (resp. {xd ≤ ϕ(x0, . . . , xd−1)}). Eventually, we
assume that (u̇r, u̇l,∇ϕ) takes its values in K and is compactly supported. We define a function

a :=

{
ur + u̇r(x) if xd > ϕ(x0, . . . , xd−1),

ul + u̇l(x) if xd < ϕ(x0, . . . , xd−1),
(24)

and make the following assumption:

Assumption 6. For all point x = (x0, . . . , xd) such that xd = ϕ(x0, . . . , xd−1), the function

ax :=

{
ur + u̇r(x) if yd > ∇ϕ · (y0, . . . , yd−1),

ul + u̇l(x) if yd < ∇ϕ · (y0, . . . , yd−1),

is a planar shock wave, that is satisfies the Rankine-Hugoniot jump conditions. In the above
definition of ax, the gradient ∇ϕ is evaluated at (x0, . . . , xd−1).

The regularity of u̇r, u̇l and ϕ has not been precised. One can think of them as mild per-
turbations of the stationary shock wave u (some kind of first order correction in an asymptotic
expansion). We shall be more precise in the sequel.
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3.1 The linearized equations

As in paragraph 2.1, we introduce the linearized operators around a: consider a family us =
a] + sv and ϕs = ϕ+ sψ. Then we define

La(v
±, ψ) :=

d

ds
L(u±s , ϕs)u

±
s |s=0 , (25a)

Ba(v, ψ) :=
d

ds
B(u+

s , u
−
s , ϕs) |s=0 . (25b)

Recall that a] is the function deduced from a after the change of variables Φ, see section 1. A
direct computation shows that

La(v
±, ψ) =

d−1∑

j=0

Aj(a
±
] ) ∂j v

± +
d−1∑

j=0

[∇Aj(a±
] ) · v±] ∂j a

±
] + Ãd(a

±
] ,∇ϕ) ∂d v

±

−
d−1∑

j=0

∂jψAj(a
±
] ) ∂d a±

] + [∇uÃd(a
±
] ,∇ϕ) · v±] ∂d a±

] , ±xd > 0 ,

and

Ba(v, ψ) =
d−1∑

j=0

∂jψ [fj(a])] − Ãd(a
+
] ,∇ϕ) v+ + Ãd(a

−
] ,∇ϕ) v− , xd = 0 .

We decompose the linearized operator La as

La(v
±, ψ) = L(a±

] , ϕ) v± −
d−1∑

j=0

∂jψAj(a
±
] ) ∂d a±

] − C(a±
] , ϕ) v±

where L is defined by (5a)-(5b) and

C(a±
] , ϕ) v± := −

d−1∑

j=0

[∇Aj(a±
] ) · v±] ∂j a

±
] − [∇uÃd(a

±
] ,∇ϕ) · v±] ∂d a±

] (26)

is the zero order part (in v±) of La.
As was done in section 2, we write the linearized equations as a first order system in v :=

(v+, v−) and ψ in the domain xd > 0. Define

Aj(a) :=

(
Aj(a

+
] ) 0

0 Aj(a
−
] )

)
for 0 ≤ j ≤ d− 1, Ad(a) :=

(
Ãd(a

+
] ,∇ϕ) 0

0 −Ãd(a−
] ,∇ϕ)

)
,

bj(a) := [fj(a])] for 0 ≤ j ≤ d− 1 and M(a) :=
(
−Ãd(a+

] ,∇ϕ) Ãd(a
−
] ,∇ϕ)

)
.

The linearized operators read

La(v, ψ) =
d∑

j=0

Aj(a) ∂j v −
d−1∑

j=0

∂jψAj(a) ∂d a] − C(a) v xd > 0 ,

Ba(v, ψ) =
d−1∑

j=0

∂jψ bj(a) +M(a) v xd = 0 .

Recall that the perturbation (u̇r, u̇l,∇ϕ) takes its values in the compact set K ⊂ U so the matrix
Ad(a) is regular.
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We now introduce the positive weight γ, that is, we change functions v and ψ and deal with
ṽ := exp(−γt)v and ψ̃ := exp(−γt)ψ. As in section 2, we introduce the weighted operators

Lγa(ṽ, ψ̃) := La(ṽ, ψ̃) + γA0(a) ṽ − γ ψ̃A0(a) ∂d a] ,

and Bγa(ṽ, ψ̃) := Ba(ṽ, ψ̃) + γ ψ̃ b0(a) .

For simplicity, we drop the tildas and the ] index. We fix an integer m > d/2 + 3 and assume
that ϕ ∈ Hm(Rd) and a ∈ Hm(Ω). Using some classical properties of Sobolev spaves, see [1],
we have ∇ϕ ∈W 2,∞(Rd), a ∈W 2,∞(Ω) and a ∈ L2(R+,W 2,∞(Rd)).

Because the coefficients of the linearized operators have limited smoothness, a convenient
way to derive an energy estimate analogous to (20) is to use the paradifferential calculus of
Bony, see [11, 28, 29]. With this strategy in mind, we are going to estimate the error between
the linearized operators and their paralinearized version.

3.2 The paralinearized equations

We refer to appendix A for the definition of paradifferential symbols and for the main results of
paradifferential calculus.

1) Paralinearization of the boundary conditions

Define the following symbols:

b(x0, . . . , xd−1, η, γ) := γ b0(x0, . . . , xd−1) + i

d−1∑

j=0

ηj bj(x0, . . . , xd−1)

where bj(x0, . . . , xd−1) := bj(a(x0, . . . , xd−1, 0)) .

Then we have bj ∈W 2,∞(Rd) and as a consequence b ∈ Γ1
2. Theorem A.5 yields

‖γb0 ψ − T γγb0
ψ‖1,γ . ‖b0‖W 1,∞ γ ‖ψ‖0 . ‖ψ‖1,γ ,

‖bj ∂j ψ − T γiηjbj
ψ‖1,γ = ‖(bj − T γbj

)(∂j ψ)‖1,γ . ‖∂j ψ‖0 . ‖ψ‖1,γ ,

and we thus obtain

‖γb0 ψ +

d−1∑

j=0

∂jψ bj − T γbψ‖1,γ . ‖ψ‖1,γ . (27)

We also define

M(x0, . . . , xd−1) := M(a(x0, . . . , xd−1, 0)) ∈W 2,∞(Rd) ,

and theorem A.5 yields
‖M v|xd=0

− T γMv|xd=0
‖1,γ . ‖v|xd=0

‖0 . (28)

Combining (27) and (28), we get

‖Bγa(v, ψ) − T γbψ − T γMv|xd=0
‖1,γ . ‖ψ‖1,γ + ‖v|xd=0

‖0 . (29)

We shall therefore replace the linearized boundary operator (v, ψ) 7→ Bγa(v, ψ) by its paralin-
earized version (v, ψ) 7→ T γbψ + T γMv.

2) Paralinearization of the evolution equations
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We are now going to paralinearize the evolution equations after multiplying by A−1
d . Define

Aj(x0, . . . , xd) := Aj(a(x0, . . . , xd)) , C(x0, . . . , xd) := C(a(x0, . . . , xd)) .

Because ∇ϕ ∈ W 2,∞(Rd) and a ∈ W 2,∞(Ω), we have Aj ∈ W 2,∞(Ω) and C ∈ W 1,∞(Ω).
Recall that first order derivatives of a appear in the definition of C, see (26), so we do not have
C ∈W 2,∞(Ω).

The matrix valued mapping Ad is uniformly invertible, namely

‖A−1
d ‖W 2,∞(Ω) ≤ C .

Using the definition (19) and theorem A.5, we obtain the following estimates

|||γA−1
d A0 v − γT γ

A
−1

d
A0

v|||1,γ . |||v|||0 ,

|||A−1
d Aj ∂j v − T γ

iηjA
−1

d
Aj
v|||1,γ . |||v|||0 for 0 ≤ j ≤ d− 1 ,

|||A−1
d C v − T γ

A
−1

d
C
v|||1,γ . |||v|||0 .

Those estimates are obtained by a simple integration of the paraproduct estimates in R
d and

from the definition of the paradifferential operators in a half-space, see appendix A.
As in (12), for x ∈ Ω, η ∈ R

d and γ ≥ 0, we define the symbol

A(x, η, γ) := −Ad(x)−1


γA0(x) + i

d−1∑

j=0

ηj Aj(x)


 .

It is clear that A ∈ Γ1
2 and the previous inequalities yield

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
γA−1

d A0 v +
d−1∑

j=0

A−1
d Aj ∂j v − A−1

d C v + T γAv + T γ
A

−1

d
C
v

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
1,γ

. |||v|||0 . (30)

We have thus estimated the error terms in v when paralinearizing Lγa(v, ψ). We now turn to the
error terms in ψ. There are two such terms that are

γψA−1
d A0 ∂d a− γ T γ

A
−1

d
A0∂da

ψ

and A−1
d Aj ∂d a ∂j ψ − T γ

A
−1

d
A0∂da

∂j ψ , 0 ≤ j ≤ d− 1 .

Using theorem A.5 and the property a ∈ L2(R+,W 2,∞(Rd)), we obtain

|||γ ψA−1
d A0 ∂d a− γ T γ

A
−1

d
A0∂da

ψ|||1,γ . γ ‖ψ‖0 . ‖ψ‖1,γ ,

|||A−1
d Aj∂d a ∂j ψ − T γ

A
−1

d
Aj∂da

∂j ψ|||1,γ . ‖∂j ψ‖0 . ‖ψ‖1,γ .

We thus get the estimate
∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
γψA−1

d A0 ∂d a +
d−1∑

j=0

A−1
d Aj ∂d a ∂j ψ + T γA∂da

ψ

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
1,γ

. ‖ψ‖1,γ . (31)

Combining (30) and (31), we have proved

|||A−1
d Lγa(v, ψ) − ∂d v + T γAv + T γ

A
−1

d
C
v − T γA∂da

ψ|||1,γ . |||v|||0 + ‖ψ‖1,γ . (32)

As for the boundary conditions, we shall therefore replace the linearized operator (v, ψ) 7→
A−1
d Lγa(v, ψ) by its paralinearized version (v, ψ) 7→ ∂d v − T γAv − T γ

A
−1

d
C
v + T γA∂da

ψ.
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3) Change of unknown function

Unlike in the uniformly stable case, the linearized operator involves in our case a zero order
operator in v and a first order operator in ψ. We shall use a change of unknown functions, that
is due to Alinhac [3] and that simplifies the expression of La. If we let v = v̇ + ψ ∂da, we have

La(v, ψ) = L(a, ϕ) v̇ − C(a, ϕ) v̇ + ψ ∂d [L(a, ϕ)a] .

The function v̇ is referred to as the “good unknown” of the problem. We emphasize that this
change of unknown functions yields an operator in (v̇, ψ) with only zero order term in ψ: roughly
speaking, the operator La reduces to an operator with first and zero order term in v̇ only since
the zero order terms in ψ will be easily estimated.

As regards the paralinearized equations, the previous result suggests to make the change of
unknown functions v := v̇ + T γ∂da

ψ. We are going to show that the paralinearized operator is

equal to ∂d v̇ − T γAv̇ − T γ
A

−1

d
C
v̇ plus some error terms whose norm can be controlled.

A straightforward computation shows that

∂d v − T γAv − T γ
A

−1

d
C
v + T γA∂da

ψ = ∂d v̇ − T γAv̇ − T γ
A

−1

d
C
v̇ + e1 − e2 + e3

where
e1 := T γ

∂2
d
a
ψ , e2 := T γ

A−1

d
C
T γ∂da

ψ , e3 := (T γA∂da
− T γAT

γ
∂da

)ψ .

Because a ∈ Hm(Ω) and m > d/2 + 3, we have

|||ei|||1,γ . ‖ψ‖1,γ 1 ≤ i ≤ 3 ,

and therefore
∣∣∣∣
∣∣∣∣
∣∣∣∣
(
∂d v − T γAv − T γ

A
−1

d
C
v + T γA∂da

ψ

)
−
(
∂d v̇ − T γAv̇ − T γ

A
−1

d
C
v̇

)∣∣∣∣
∣∣∣∣
∣∣∣∣
1,γ

. ‖ψ‖1,γ .

As a consequence, we shall focus our attention on the operator ∂d v̇− T γAv̇− T γ
A

−1

d
C
v̇ and try to

derive an energy estimate for this operator.

Remark: after changing unknown functions, the paralinearized boundary operator reads
T γbψ + T γMv̇|xd=0

+ T γMT γ∂da
ψ and we see that the last term satisifies

‖T γMT γ∂da
ψ‖1,γ . ‖ψ‖1,γ .

To summarize, we have proved
∣∣∣∣
∣∣∣∣
∣∣∣∣A−1

d Lγa(v, ψ) −
(
∂d v̇ − T γAv̇ − T γ

A
−1

d
C
v̇

)∣∣∣∣
∣∣∣∣
∣∣∣∣
1,γ

. |||v|||0 + ‖ψ‖1,γ ,

∥∥∥Bγa(v, ψ) −
(
T γbψ + T γMv̇|xd=0

)∥∥∥
1,γ

. ‖v|xd=0
‖0 + ‖ψ‖1,γ .

(33)

Furthermore, the definition of v̇ gives

‖v|xd=0
‖2
0 ≤ 2

(
‖v̇|xd=0

‖2
0 + C‖ψ‖2

0

)
≤ 2

(
‖v̇|xd=0

‖2
0 +

C

γ2
‖ψ‖2

1,γ

)
,

|||v|||20 ≤ 2
(
|||v̇|||20 + C‖ψ‖2

0

)
≤ 2

(
|||v̇|||20 +

C

γ2
‖ψ‖2

1,γ

)
,
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and we thus get

γ|||v̇|||20 + ‖v̇|xd=0
‖2
0 ≥ 1

2

(
γ|||v|||20 + ‖v|xd=0

‖2
0

)
− C

γ
‖ψ‖2

1,γ . (34)

It is now clear that the change of unknown function is appropriate because an energy estimate
of the same type as (20) for (v̇, ψ) will yield a similar energy estimate for (v, ψ).

4) Eliminating the shock front

Using assumption 4, we know that there exists a positive constant c > 0 such that

b∗(x0, . . . , xd−1, η, γ)b(x0, . . . , xd−1, η, γ) ≥ c (γ2 + |η|2) .

The constant c only depends on the compact set K. The symbol b∗b is of degree 2 and elliptic
so applying G̊arding’s inequality (theorem A.3), we obtain

∀ γ ≥ γ0 , ‖ψ‖2
1,γ . Re 〈T γb∗bψ,ψ〉L2 . ‖T γbψ‖2

0 + Re 〈Rγψ,ψ〉L2

where {Rγ} is a family of order ≤ 1. We thus get

‖ψ‖2
1,γ . ‖T γbψ‖2

0 + ‖ψ‖1,γ ‖ψ‖0 .
1

γ
‖ψ‖2

1,γ + ‖T γbψ‖2
0 .

Up to a greater choice of γ0, we finally get

∀ γ ≥ γ0 , ‖ψ‖2
1,γ . ‖T γbψ‖2

0 . ‖T γbψ + T γMv̇|xd=0
‖2
0 + ‖v̇|xd=0

‖2
0

.
1

γ2
‖T γbψ + T γMv̇|xd=0

‖2
1,γ + ‖v̇|xd=0

‖2
0 ,

(35)

which is the variable coefficients version of (16).
Introducing the orthogonal projector Π(y, η, γ) on b(y, η, γ)⊥, we have Π ∈ Γ0

2, Πb ≡ 0 so
theorem A.2 gives

‖T γΠT
γ
bψ‖1,γ . ‖ψ‖1,γ , ‖T γΠT

γ
Mv̇|xd=0

− T γΠMv̇|xd=0
‖1,γ . ‖v̇|xd=0

‖0 .

Using the decomposition

T γΠMv̇|xd=0
= (T γΠM − T γΠT

γ
M)v̇|xd=0

+ T γΠ(T γMv̇|xd=0
+ T γbψ) − T γΠT

γ
bψ ,

we end up with

‖T γΠMv̇|xd=0
‖1,γ . ‖v̇|xd=0

‖0 + ‖T γbψ + T γMv̇|xd=0
‖1,γ + ‖ψ‖1,γ . (36)

From now on, we focus on the system

{
∂d v̇ − T γAv̇ − T γ

A
−1

d
C
v̇ = F xd > 0,

T γΠMv̇ = G xd = 0,

and try to derive an energy estimate of the type

γ |||v̇|||20 + ‖v̇|xd=0
‖2
0 .

1

γ3
|||F |||21,γ +

1

γ2
‖G‖2

1,γ ,

for all γ ≥ γ0. Using (33),(34), (35),(36) and a greater choice of the constant γ0, we shall obtain
the variable coefficients analogue of our basic estimate (20). A precise result will be stated in
paragraph 3.6.
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3.3 Geometrical assumptions

Let us go back to assumption 5. For all shock waves u close to u, we define the set of critical
frequencies Σcr(u) as the set of those (η, γ) ∈ Σ+ such that the critical subspace

{
Z ∈ E−(u, η, γ) s.t. Π(u, η, γ)M(u)Z = 0

}

is not reduced to {0}. From assumption 5, we know that frequencies (η, γ) ∈ Σcr(u) verify γ = 0.
A reasonable assumption is that Σcr(u) has a finite number, say K, of connected components
where K is independent of u. In the sequel, we shall make as if there were only one connected
component. Another requirement of assumption 5 is that there exists a neighbourhood Vcr(u)
of Σcr(u) in Σ+ and a smooth mapping Q0 defined on Vcr(u) with values in Gl2N (C) such that

Q0 AQ−1
0 =



ω1In1

0
. . .

0 ωJInJ


 .

To simplify the subsequent calculations, we shall assume that the whole symbol A is diagonal-
izable and not only its central part. However, the proof would yield the same result if one took
into account the blocks a− and a+ that may appear when reducing A.

To deal with the variable coefficients case, we need to assume that Σcr(u) is endowed with
an “equation”. More precisely, we assume that there exists a smooth real valued function σ̃
(defined for all shock waves u close to u) such that

Σcr(u) = {(η, γ) ∈ Σ+ s.t. γ + iσ̃(u, η, γ) = 0}
= {(η, 0) ∈ Σ0 s.t. σ̃(u, η, 0) = 0} .

We refer to section 4 for an example. The function σ̃ is extended as an homogeneous mapping
of degree 1 with respect to (η, γ).

Given the function a defined by (24), we define the set of the so-called “critical points” as

Σc := {(x, η, γ) ∈ ∂Ω × Σ+ s.t. (η, γ) ∈ Σcr(a(x))} . (37)

We already know from assumption 5 that there exists an open set Vc ⊂ Ω × Σ+ of the form

Vc =
⋃

x∈Ω

{x} × Vx , Vx ⊂ Σ+ ,

and a mapping Q0 : Vc → Gl2N (C) such that

Σc ⊂ Vc ∩ {xd = 0},

Q0 is a symbol of degree 0 and regularity 2 (because A is of regularity 2 and Q0 has same
regularitry as A),

for all z ∈ Vc, one has

Q0(z)A(z)Q0(z)
−1 =



ω1(z)In1

0
. . .

0 ωJ(z)InJ


 =: D1(z) .
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The set of space-frequency variables Ω × Σ+ is thus decomposed as the union of a set Vc that
contains all the unstable points and a set that contains only uniformly stable points. In the
constant coefficients case, one can choose Vc as Ω×Vcr(u) (the critical frequencies are the same
at any point in the space domain).

For (x, η, γ) ∈ ∂Ω × R
d × R

+, define

σ(x, η, γ) := σ̃(a(x), η, γ) ,

so we have σ ∈ Γ1
2(R

d). In the subsequent analysis, we shall show that the instabilities originat-
ing from the critical points propagate in the interior domain along bicharacteristic curves. In
order to control where these instabilities propagate, we are led to make the following important
assumption:

Assumption 7. Let ωj be an eigenvalue of A that has negative real part when γ > 0, and
decompose ωj as ωj = γej + ihj (all mappings are defined on Vc). Then the solutions of the
hamiltonian ODEs system

dxk
dxd

=
∂hj
∂ηk

(x, η, γ) , k = 0, . . . , d− 1 ,

dηk
dxd

= −∂hj
∂xk

(x, η, γ) , k = 0, . . . , d− 1 ,

(x0, . . . , xd−1, η0, . . . , ηd−1, γ)|xd=0
∈ Vc ∩ {xd = 0}

(38)

are defined for all xd ≥ 0 (that is, stay in Vc for all xd ≥ 0). These solutions are referred to as
bicharacteristic curves.

Note that assumption 7 is met in the constant coefficients case because (38) then reduces to

dxk
dxd

=
∂hj
∂ηk

(x, η, γ) , k = 0, . . . , d− 1 ,

dηk
dxd

= 0 , k = 0, . . . , d− 1 ,

(x0, . . . , xd−1, η0, . . . , ηd−1, γ)|xd=0
∈ Vc ∩ {xd = 0}

and Vc is nothing but the cartesian product Ω×Vcr(u) so the bicharacteristic curves stay in Vc.
Furthermore, we recall that the perturbation (u̇r, u̇l) has compact support. So if (xk, ηk) is a
solution of (38), ηk is constant for xd large enough. From standard ODEs arguments, we claim
that assumption 7 is satisfied when a is a sufficiently small perturbation of a planar shock wave.
We refer to figure 2 for a schematic picture of the situation.

With the help of assumption 7, it is possible to construct a solution of the transport equation

∂xd
σj +

d−1∑

k=0

∂xk
σj ∂ηk

hj − ∂ηk
σj ∂xk

hj = 0 , (x, η, γ) ∈ Vc ,

σj |xd=0
= σ , (x, η, γ) ∈ Vc ∩ {xd = 0} ,

(39)

and the solution σj of this equation is homogeneous of degree 1 with respect to (η, γ). Note that
(39) reads

∂xd
σj + {σj , hj} = 0 ,

where {σj , hj} is the Poisson bracket of σj and hj .
For convenience, we extend all mappings ωj , 1 ≤ j ≤ J (and thus D1) as symbols of degree 1

and regularity 2 defined for all (x, η, γ). We therefore have ωj ∈ Γ1
2. We choose these extensions

such that one has either
ej ≥ c > 0 or ej ≤ −c < 0
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xd

η

Support of (u̇r, u̇l)

Vc

Σc

Figure 2: Bicharacteristic curves originating from the boundary

where ωj = γej + ihj . Extending the ωj ’s allows to define a global solution σj of (39) that also
belongs to Γ1

2. What is important is that we have not changed the value of σj on the set Vc

since σj is constant along the bicharacteristic curves. The functions σj are weights that vanish
only on the curves originating from the critical points. We shall see in the sequel that they are
appropriate in the derivation of an energy estimate.

Finally, we need to precise the behavior of the restriction of the boundary symbol β to the
stable subspace. Recall that the first N − 1 column vectors of the matrix Q0(z)

−1 span the
stable subspace E−(z). We write:

Q0(z)
−1 =

(
Qin(z) Qout(z)

)
, Qin(z) ∈ M2N,N−1(C) ,

and make the following assumption:

Assumption 8. There exist two mappings P1 and P2 defined on Vc ∩ {xd = 0} such that

for all z ∈ Vc ∩ {xd = 0}, P1(z) ∈ Gl2N (C) and P1 is a symbol of degree 0 and regularity 1,

for all z ∈ Vc ∩ {xd = 0}, P2(z) ∈ GlN−1(C) and P2 is a symbol of degree 0 and regularity 1,

for all z ∈ Vc ∩ {xd = 0}, one has

P1(z)β(z)Qin(z)P2(z) =

(
λ−1,γ(η)(γ + iσ(z)) 0

0 E(z)

)
=: β−(z) (40)

and the reactangular matrix E(z) satisfies

∀ z ∈ Vc ∩ {xd = 0} , E(z)∗E(z) ≥ c I . (41)

In the constant coefficients case, assumption 8 implies (18). The meaning of assumption 8
is that the restriction of β to the stable subspace has a kernel of dimension 1 (this was not part
of assumption 5) and “β vanishes at order 1 on this kernel”.

With these preliminary reductions in mind, we can turn to the derivation of our energy
estimates. We fix a nonnegative cut-off function χ verifying
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χ is a smooth (that is, C∞) symbol of degree 0 and Supp χ ⊂ Vc,

χ ≡ 1 in a neighbourhood of the bicharacteristic curves starting from Σc. In other words, out
of the region where χ ≡ 1, one has |σj| ≥ c > 0 for all j.

Define χ0 := (1 − χ) and observe that χ0 has its support in the set of uniformly stable points.

3.4 Energy estimates near instability points

The aim of this paragraph is to derive three different energy estimates in the neighbourhood of
instability points. We show how to control theH1 norm of the outgoing modes. For the incoming
modes, we show how to control the L2 norm and theH1 norm far from the bicharacteristic curves
starting from the critical set Σc.

Before establishing our main energy estimates, we state a reduction result that will help us
to deal with the zero order terms in the equations. In terms of symbolic calculus, we look for a
symbol Q−1 of degree −1 and regularity 1 such that

(Q0 +Q−1)#(∂d + A + A−1
d C) = (∂d +D1 +D0)#(Q0 +Q−1)

where the composition of symbols is to be understood as the expansion to first or second order,
see theorem A.2. Recall that our symbols have finite smoothness in the space variable so the
expansions of adjoints or composed symbols are only finite and not asymptotic. The existence
of Q−1 is given by the following lemma:

Lemma 1. Let Q0 and D1 be defined as in the preceeding paragraph. There exists a symbol Q−1

of degree −1 and regularity 1, defined on Vc, such that

(Q0 +Q−1)(A + A−1
d C) + ∂dQ0 +

1

i

d−1∑

k=0

(∂ηk
Q0∂xk

A− ∂ηk
D1∂xk

Q0) − (D1 +D0)(Q0 +Q−1)

is a symbol of degree −1 and D0 is a block diagonal symbol (of degree 0 and regularity 1) whose
blocks have dimension n1, . . . , nJ as those of D1.

Proof. Using the equality Q0A = D1Q0, the problem reduces to finding a symbol Q−1 of degree
−1 such that

[
Q−1Q

−1
0 ,D1

]
+Q0A

−1
d CQ−1

0 + ∂dQ0 +
1

i

d−1∑

k=0

∂ηk
Q0∂xk

A − ∂ηk
D1∂xk

Q0

is block diagonal (it will automatically be a symbol of degree 0). Here above [M,N ] denotes
the commutator of two matrices M and N . Using that D1 is diagonal, a simple calculation
shows that one can choose Q−1Q

−1
0 (and therefore Q−1) such that the extra diagonal blocks of

[Q−1Q
−1
0 ,D1] cancel those of

Q0A
−1
d CQ−1

0 + ∂dQ0 +
1

i

d−1∑

k=0

∂ηk
Q0∂xk

A − ∂ηk
D1∂xk

Q0 .

Because the diagonal blocks of [Q−1Q
−1
0 ,D1] are identically zero, one can only cancel the extra

diagonal blocks. It stems from this simple calculation thatQ−1Q
−1
0 is of degree −1 and regularity

1, and therefore so is Q−1.
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Note that Q−1 and D0 are only defined for space-frequency variables belonging to Vc but as
was done for D1, we extend D0 as a global symbol of degree 0 and regularity 1.

In all the sequel, we denote by Q the sum Q0 +Q−1. The following calculations heavily use
the fact that Q defines a “good diagonalization basis” of the paralinearized operator

v̇ 7−→ ∂dv̇ − T γAv̇ − T γ
A

−1

d
C
v̇ .

Let v̇ ∈ H2(Ω) and define

F := ∂dv̇ − T γAv̇ − T γ
A

−1

d
C
v̇ ∈ H1(Ω) .

We also define
w := T γχQv̇

and we first show that w satisfies a paradifferential equation whose first and zero order symbol
are block diagonal. The paradifferential equation involves error terms that will be absorbed at
the very end of the analysis. In all this paragraph, Rγ always denotes an operator of order ≤ −1
that represents the current error terms in the computations. We have

∂dw = T γ(∂dχ)Qv̇ + T γχ∂dQ
v̇ + T γχQ(∂dv̇) = T γ(∂dχ)Qv̇ + T γχ∂dQ

v̇ + T γχQ(T γAv̇ + T γ
A−1

d
C
v̇ + F )

= T γ(∂dχ)Q0
v̇ + T γχ∂dQ0

v̇ + T γ
χQ(A+A−1

d
C)
v̇ + T γ

r1
v̇ +Rγ v̇ + T γχQF ,

where

r1 :=
1

i

d−1∑

k=0

∂ηk
(χQ0) ∂xk

A .

Lemma 1 implies that

χ∂dQ0 + χQ(A + A−1
d C) + r1 −

(
(D1 +D0)χQ+

1

i

d−1∑

k=0

(∂ηk
χ)Q0 ∂xk

A + χ(∂ηk
D1) ∂xk

Q0

)

is of degree −1, and we thus get

∂dw = T γ(∂dχ)Q0
v̇ + (T γD1

+ T γD0
)w + T γ

r2
v̇ + T γ

r3
v̇ +Rγ v̇ + T γχQF ,

where

r2 :=
1

i

d−1∑

k=0

(∂ηk
χ)Q0 ∂xk

A + χ(∂ηk
D1) ∂xk

Q0 ,

r3 := −1

i

d−1∑

k=0

(∂ηk
D1) ∂xk

(χQ0) = −1

i

d−1∑

k=0

(∂ηk
D1) ∂xk

(χQ0) .

After simplifying r2 + r3, we get the relation

∂dw = T γD1
w + T γD0

w + T γr v̇ +Rγ v̇ + T γχQF , (42)

with

r := (∂dχ)Q0 +
1

i

d−1∑

k=0

(∂ηk
χ)Q0 ∂xk

A− (∂xk
χ) (∂ηk

D1)Q0 . (43)

As a consequence, r is of order 0 and is identically zero in the domain where χ ≡ 1, therefore r
has its support far from the “unstable” points.
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Recall that D1 is diagonal and D0 is block diagonal:

D1 =



ω1 In1

. . .

ωJ InJ


 , D0 =



C1

. . .

CJ


 ,

so (42) can be written as a collection of J equations

∂dwj = T γωj
wj + T γCj

wj + T γrj v̇ +Rγ v̇ + T γχQj
F , (44)

with Re ωj < 0 when γ > 0 and 1 ≤ j ≤ J ′ and Re ωj > 0 when γ > 0 and J ′ + 1 ≤ j ≤ J .

1) Estimate for the outgoing modes

We first deal with the case where Re ωj > 0 when γ > 0. Recall that ωj is defined for all
(η, γ) and satisfies

∀ (η, γ) ∈ R
d × R

+ , Re ωj ≥ c γ .

We choose Λ2,γ as a symmetrizer for (44), where Λ2,γ is the Fourier multiplier of symbol λ2,γ(η).
Taking the scalar product in L2(Ω) of (44) with Λ2,γwj , we get

−‖wj(0)‖2
1,γ = 2 Re 〈〈Λ1,γT γωj

wj ,Λ
1,γwj〉〉L2(Ω) + 2 Re 〈〈Λ1,γT γCj

wj ,Λ
1,γwj〉〉L2(Ω)

+2 Re 〈〈Λ1,γT γrj v̇,Λ
1,γwj〉〉L2(Ω) + 2 Re 〈〈Λ1,γRγ v̇,Λ1,γwj〉〉L2(Ω)

+2 Re 〈〈Λ1,γT γχQj
F,Λ1,γwj〉〉L2(Ω) .

Taking the order of the different operators into account and using Young’s inequality, we obtain

− 2 Re 〈〈Λ1,γT γCj
wj ,Λ

1,γwj〉〉L2(Ω) ≤ C |||wj|||21,γ ,

− 2 Re 〈〈Λ1,γT γrj v̇,Λ
1,γwj〉〉L2(Ω) ≤

C

γ
|||T γrj v̇|||

2
1,γ + ε γ |||wj|||21,γ ,

− 2 Re 〈〈Λ1,γRγ v̇,Λ1,γwj〉〉L2(Ω) ≤
C

γ
|||v̇|||20 + ε γ |||wj|||21,γ ,

− 2 Re 〈〈Λ1,γT γχQj
F,Λ1,γwj〉〉L2(Ω) ≤

C

γ
|||T γχQF |||21,γ + ε γ |||wj|||21,γ .

Using theorem A.2, the difference
Λ1,γ T γωj

− T γωj
Λ1,γ

is of order ≤ 1 so we have

2 Re 〈〈Λ1,γT γωj
wj ,Λ

1,γwj〉〉L2(Ω) ≥ 2 Re 〈〈T γωj
Λ1,γwj ,Λ

1,γwj〉〉L2(Ω) − C |||wj|||21,γ .

Applying G̊arding’s inequality (theorem A.3), we finally get

2 Re 〈〈Λ1,γT γωj
wj ,Λ

1,γwj〉〉L2(Ω) ≥ (c γ − C) |||wj|||21,γ .

It is now clear that an appropriate choice of ε yields the H1 estimate

γ |||wj|||21,γ + ‖wj(0)‖2
1,γ .

1

γ
|||T γχQF |||21,γ +

1

γ

(
|||v̇|||20 + |||T γr v̇|||21,γ

)
. (45)
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2) Estimate for the incoming modes

We now deal with the case where Re ωj < 0 when γ > 0 (and therefore Re ωj ≤ −cγ). We
first choose the identity as a symmetrizer and perform the same computation as above. One
can indeed proceed in a similar way because the symmetrizer is a constant coefficients operator
(that is, a Fourier multiplier). Because of the sign of Re ωj , we have

γ |||wj|||20 . ‖wj(0)‖2
0 +

1

γ3
|||T γχQF |||21,γ +

1

γ3

(
|||v̇|||20 + |||T γrj v̇|||

2
1,γ

)
,

and we rewrite this estimate as

γ3 |||wj|||20 . γ2 ‖wj(0)‖2
0 +

1

γ
|||T γχQF |||21,γ +

1

γ

(
|||v̇|||20 + |||T γr v̇|||21,γ

)
. (46)

The right-hand terms in (45) and (46) have similar expressions. The only difference is that the
boundary value of wj is on the right-hand side of the inequality when we deal with an incoming
mode.

We now prove a more subtle estimate for the incoming modes. We choose Sj := (T γσj )
∗T γσj as

a symmetrizer for (44). Recall that Sj is of order ≤ 2 since σj ∈ Γ1
2. We take the scalar product

in L2(Ω) of (44) with Sjwj . This yields

−‖T γσwj(0)‖2
0 = Re 〈〈(∂dSj)wj , wj〉〉L2(Ω) + 2 Re 〈〈SjT γωj

wj , wj〉〉L2(Ω)

+2 Re 〈〈SjT γCj
wj , wj〉〉L2(Ω) + 2 Re 〈〈SjT γrj v̇, wj〉〉L2(Ω)

+2 Re 〈〈SjRγ v̇, wj〉〉L2(Ω) + 2 Re 〈〈SjT γχQj
F,wj〉〉L2(Ω) .

First observe that
∂dSj = (T γ∂dσj

)∗ T γσj
+ (T γσj

)∗ T γ∂dσj
,

so we have
Re 〈〈(∂dSj)wj , wj〉〉L2(Ω) = 2 Re 〈〈T γ∂dσj

wj , T
γ
σj
wj〉〉L2(Ω) .

We recall that σj ∈ R, hence the difference

T γσj
T γCj

− T γCj
T γσj

is of order ≤ 0, and we get

2 Re 〈〈T γσj
T γCj

wj , T
γ
σj
wj〉〉L2(Ω) ≤ C |||T γσj

wj |||20 + C |||wj|||0 |||T γσj
wj |||

≤ C |||T γσj
wj |||20 +

C

γ
|||wj|||20 + ε γ |||T γσj

wj |||20 .

Because T γσj is of order ≤ 1, we obtain thanks to Young’s inequality

2 Re 〈〈T γσj
T γrj v̇, T

γ
σj
wj〉〉L2(Ω) ≤

C

γ
|||T γrj v̇|||

2
1,γ + ε γ |||T γσj

wj |||20 ,

2 Re 〈〈T γσj
Rγ v̇, T γσj

wj〉〉L2(Ω) ≤
C

γ
|||v̇|||20 + ε γ |||T γσj

wj |||20 ,

2 Re 〈〈T γσj
T γχQj

F, T γσj
wj〉〉L2(Ω) ≤

C

γ
|||T γχQF |||21,γ + ε γ |||T γσj

wj |||20 .

Collecting these first inequalities, we already have

−2 Re 〈〈T γ∂dσj
wj + T γσj

T γωj
wj , T

γ
σj
wj〉〉L2(Ω) ≤ ‖T γσwj(0)‖2

0 + (C + 4ε γ) |||T γσj
wj |||20

+
C

γ
|||T γχQF |||21,γ +

C

γ
|||wj|||20 +

C

γ

(
|||v̇|||20 + |||T γr v̇|||21,γ

)
.

(47)
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We are now going to derive a lower bound for the left-hand term in (47). Write ωj = γ ej + ihj
with ej, hj ∈ R and ej ∈ Γ0

2, hj ∈ Γ1
2. From theorem A.2, we have

T γσj
T γωj

= γ T γej
T γσj

+ γ T γ−i{σj ,ej}
+ γRγ + T γihj

T γσj
+ T γ{σj ,hj}

+Rγ0 ,

where Rγ still denotes an operator of order ≤ −1 and Rγ0 denotes an operator of order ≤ 0.
Recall that σj is a solution to the transport equation

{
∂d σj + {σj , hj} = 0 xd > 0 ,

σj |xd=0
= σ ,

so we get

−2 Re 〈〈T γ∂dσj
wj + T γσj

T γωj
wj , T

γ
σj
wj〉〉L2(Ω) = −2γ Re 〈〈T γej

T γσj
wj , T

γ
σj
wj〉〉L2(Ω)

−2γ Re 〈〈T γ−i{σj ,ej}
wj , T

γ
σj
wj〉〉L2(Ω) − 2γ Re 〈〈Rγwj , T γσj

wj〉〉L2(Ω)

−2 〈〈(Re T γihj
)T γσj

wj , T
γ
σj
wj〉〉L2(Ω) − 2 Re 〈〈Rγ0wj , T γσj

wj〉〉L2(Ω) .

Let us first examine the last three terms of the right-hand side. Because ihj ∈ iR, the operator
Re T γihj

is of order ≤ 0 and we have

−2〈〈(Re T γihj
)T γσj

wj , T
γ
σj
wj〉〉L2(Ω) ≥ −C |||T γσj

wj |||20 ,
−2 Re 〈〈Rγ0wj , T γσj

wj〉〉L2(Ω) ≥ −C |||wj|||0 |||T γσj
wj |||0 ,

−2γ Re 〈〈Rγwj , T γσj
wj〉〉L2(Ω) ≥ −C γ |||wj|||−1,γ |||T γσj

wj |||0 ≥ −C |||wj|||0 |||T γσj
wj |||0 .

(48)

Applying G̊arding’s inequality (theorem A.3), we obtain

−2γ Re 〈〈T γej
T γσj

wj , T
γ
σj
wj〉〉L2(Ω) ≥ c γ |||T γσj

wj |||20 , (49)

so it only remains to derive a lower bound for the term

−2γ Re 〈〈T γ−i{σj ,ej}
wj , T

γ
σj
wj〉〉L2(Ω) .

Because σj ∈ Γ1
2, the operator T γ−i{σj ,ej}

is of order ≤ 0 and therefore

−2γ Re 〈〈T γ−i{σj ,ej}
wj , T

γ
σj
wj〉〉L2(Ω) ≥ −C γ |||wj|||0 |||T γσj

wj |||0 ≥ −ε γ |||T γσj
wj |||20−C γ |||wj|||20 . (50)

Choosing ε appropriately and taking the sum of (47)-(48)-(49)-(50), we get the second estimate
for the incoming modes:

γ |||T γσj
wj |||20 . ‖T γσwj(0)‖2

0 +
1

γ
|||T γχQF |||21,γ + γ |||wj|||20 +

1

γ

(
|||v̇|||20 + |||T γr v̇|||21,γ

)
. (51)

Take the sum of (46) and (51). Choosing γ large enough, we have

γ3 |||wj|||20+γ |||T γσj
wj |||20 . γ2 ‖wj(0)‖2

0+‖T γσwj(0)‖2
0+

1

γ
|||T γχQF |||21,γ+

1

γ

(
|||v̇|||20 + |||T γr v̇|||21,γ

)
. (52)

Let us decompose the vector w in

w =

(
win
wout

)
, win ∈ C

N−1 , wout ∈ C
N+1 .
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The vector win is the collection of the wj ’s that correspond to incoming modes and wout is the
collection of the wj ’s that correspond to outgoing modes. Taking the sum of (45) and (52), we
obtain

γ |||wout|||21,γ + γ3 |||win|||20 +
∑

incoming

γ |||T γσj
wj |||20 + ‖wout(0)‖2

1,γ

. γ2 ‖win(0)‖2
0 + ‖T γσwin(0)‖2

0 +
1

γ
|||T γχQF |||21,γ +

1

γ

(
|||v̇|||20 + |||T γr v̇|||21,γ

)
,

(53)

and we want to show an estimate of the type

γ2 ‖win(0)‖2
0 + ‖T γσwin(0)‖2

0 . ‖G‖2
1,γ + ‖wout(0)‖2

1,γ .

3) Estimate for the boundary terms

We fix four cut-off functions χ1, χ2, χ3, χ4 such that

χ1 ≡ 1 on a neighbourhood of Supp χ ∩ {xd = 0} ,
χ2 ≡ 1 on a neighbourhood of Supp χ1 ,

χ3 ≡ 1 on a neighbourhood of Supp χ2 ,

χ4 ≡ 1 on a neighbourhood of Supp χ3 ,

and Supp χ4 ⊂ Vc∩{xd = 0}. These cut-off functions are introduced in order to use the localized
G̊arding’s inequality (theorem A.4). We write

T γ
χ2βQ

−1

0

w(0) = T γχ2βQin
win(0) + T γχ2βQout

wout(0) .

Using the definition w = T γχQv̇, we obtain

T γ
χ2βQ

−1

0

w(0) = T γχG+Rγ v̇(0) ,

where Rγ is an operator of order ≤ −1. We thus get

‖T γχ2βQin
win(0)‖1,γ . ‖G‖1,γ + ‖wout(0)‖1,γ + ‖v̇(0)‖0 . (54)

We are now going to introduce the basis of the stable subspace in which β has a reduced
expression. Because χ4χ2 = χ2, we have

χ2βQin = (χ4P
−1
1 ) (χ2P1βQinP2)︸ ︷︷ ︸

χ2β−

(χ4P
−1
2 ) .

We therefore obtain

T γχ2βQin
win(0) = T γ

χ4P
−1

1

T γ
χ2β−

T γ
χ4P

−1

2

win(0) +Rγwin(0) ,

and this yields the inequality

‖T γ
χ4P

−1

1

T γ
χ2β−

T γ
χ4P

−1

2

win(0)‖1,γ . ‖G‖1,γ + ‖wout(0)‖1,γ + ‖v̇(0)‖0 . (55)

We first show that we have an estimate of the type

‖T γ
χ4P

−1

1

T γ
χ2β−

T γ
χ4P

−1

2

win(0)‖1,γ ≥ c ‖T γ
χ2β−

T γ
χ4P

−1

2

win(0)‖1,γ − C ‖win(0)‖0 .
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Define
z := T γ

χ2β−
T γ
χ4P

−1
2

win(0) .

We first check that

‖T γ
χ4P

−1

1

z‖1,γ = ‖Λ1,γT γ
χ4P

−1

1

z‖0 ≥ ‖T γ
χ4P

−1

1

Λ1,γz‖0 − C ‖win(0)‖0 .

We also note that
T γχ3

Λ1,γz = Λ1,γz +Rγ0z ,

where Rγ0 is of order ≤ 0. We thus get

‖T γ
χ4P

−1

1

z‖1,γ ≥ ‖T γ
χ4P

−1

1

T γχ3
Λ1,γz‖0 − C ‖win(0)‖0 .

We are now going to use the ellipticity of (P−1
1 )∗P−1

1 on the support of χ4. We write

‖T γ
χ4P

−1
1

T γχ3
Λ1,γz‖2

0 = 〈(T γ
χ4P

−1
1

)∗T γ
χ4P

−1
1

T γχ3
Λ1,γz, T γχ3

Λ1,γz〉

≥ Re 〈T γ
χ2

4
(P−1

1
)∗P−1

1

T γχ3
Λ1,γz, T γχ3

Λ1,γz〉 − C ‖T γχ3
Λ1,γz‖0 ‖T γχ3

Λ1,γz‖−1,γ ,

and we apply G̊arding’s inequality (theorem A.4) to obtain

‖T γ
χ4P

−1

1

T γχ3
Λ1,γz‖2

0 ≥ c ‖T γχ3
Λ1,γz‖2

0 − C ‖win(0)‖2
0 ≥ c ‖Λ1,γz‖2

0 − C ‖win(0)‖2
0 .

Plugging this inequality in (55) yields

‖Λ1,γT γ
χ2β−

T γ
χ4P

−1

2

win(0)‖0 . ‖G‖1,γ + ‖wout(0)‖1,γ + ‖v̇(0)‖0 . (56)

Observe that the difference
Λ1,γT γ

χ2β−
− T γ

χ2λ1,γβ−

is of order ≤ 0 so (56) also reads

‖T γ
χ2λ1,γβ−

T γ
χ4P

−1

2

win(0)‖0 . ‖G‖1,γ + ‖wout(0)‖1,γ + ‖v̇(0)‖0 . (57)

It is time to use the particular structure of β− to derive a lower bound for the left-hand term
in (57). Recall that

χ2λ
1,γβ− =

(
χ2(γ + iσ) 0

0 χ2λ
1,γE

)
.

We have
T γ
χ4P

−1
2

win(0) = T γχ1
T γ
χ4P

−1
2

win(0) +Rγwin(0) ,

so we rewrite (57) as

‖T γ
χ2λ1,γβ−

T γχ1
T γ
χ4P

−1
2

win(0)‖0 . ‖G‖1,γ + ‖wout(0)‖1,γ + ‖v̇(0)‖0 . (58)

The decomposition

T γ
χ4P

−1
2

win(0) :=

(
w1

w′

)
, w1 ∈ C , w′ ∈ C

N−2 ,

gives
‖T γ

χ2λ1,γβ−
T γχ1

T γ
χ4P

−1

2

win(0)‖2
0 = ‖T γχ2(γ+iσ)T

γ
χ1
w1‖2

0 + ‖T γ
χ2λ1,γE

T γχ1
w′‖2

0 .
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Because E∗E is elliptic, we obtain

‖T γ
χ2λ1,γE

T γχ1
w′‖0 ≥ c ‖w′‖1,γ − C ‖win(0)‖0 ≥ c ‖T γσw′‖0 − C ‖win(0)‖0 ,

and using that σ ∈ R, we also obtain

‖T γχ2(γ+iσ)T
γ
χ1
w1‖0 ≥ c (γ ‖w1‖0 + ‖T γσw1‖0) − C ‖win(0)‖0 .

Eventually, we get the lower-bound

‖T γ
χ2λ1,γβ−

T γχ1
T γ
χ4P

−1

2

win(0)‖0 ≥ c
(
γ ‖T γ

χ4P
−1

2

win(0)‖0 + ‖T γσ T γχ4P
−1

2

win(0)‖0

)
− C ‖v̇(0)‖0 .

(59)
To conclude, we perform the same kind of calculations as those already done with χ4P

−1
1 to

show that

‖T γ
χ4P

−1

2

win(0)‖0 ≥ c ‖win(0)‖0 − C ‖v̇(0)‖−1,γ ,

‖T γσ T γχ4P
−1

2

win(0)‖0 ≥ c ‖T γσwin(0)‖0 − C ‖v̇(0)‖0 .

The boundary terms thus satisfy:

γ2 ‖win(0)‖2
0 + ‖T γσwin(0)‖2

0 . ‖G‖2
1,γ + ‖wout(0)‖2

1,γ + ‖v̇(0)‖2
0 . (60)

Combining (53) and (60), we obtain our main energy estimate localized near the instability
points:

γ |||wout|||21,γ + γ3 |||win|||20 +
∑

incoming

γ |||T γσj
wj |||20 + ‖wout(0)‖2

1,γ + γ2 ‖win(0)‖2
0 + ‖T γσwin(0)‖2

0

. ‖G‖2
1,γ + ‖v̇(0)‖2

0 +
1

γ
|||T γχQF |||21,γ +

1

γ

(
|||v̇|||20 + |||T γr v̇|||21,γ

)
.

(61)

3.5 Energy estimates far from instability points

In this paragraph, we show how to estimate the H1 norm of v̇ far from the instability points.
We fix a smooth cut-off function χ̃ such that

χ̃ ≡ 1 on Supp χ0 ∩ {xd = 0} ,

so we have χ̃χ0|xd=0
≡ χ0|xd=0

, and we also ask that the support of χ̃ does not meet the set of
critical points Σc. This is possible because the support of χ0|xd=0

does not meet Σc. With this

requirement, the uniform stability condition is met at all point in the support of χ̃. The cut-off
function χ̃ is introduced in order to use a localized G̊arding’s inequality.

To derive the desired energy estimate, we shall use a classical Kreiss’ symmetrizer, as in
[25, 28].

Proposition 3.1 (Kreiss’ symmetrizers). There exists a mapping

S : Ω × (Rd × R
+ \ {0}) −→ M2n(C)

satisfying the following properties:

∀ z, the matrix S(z) is hermitian,

S is a symbol of degree 2 and regularity 2,

32



∀ z ∈ ∂Ω × (Rd × R
+ \ {0}), one has

χ̃(z)2 S(z) + C χ̃(z)2 λ2,γ(η)β(z)∗β(z) ≥ c χ̃(z)2 λ2,γ(η) I , (62)

there exists a finite set of matrix valued mappings such that

Re (S(z)A(z)) =
∑

l

Vl(z)
∗

(
γHl(z) 0

0 El(z)

)
Vl(z) ,

where Vl and El are homogeneous of degree 1 with respect to (η, γ) (and belong to Γ1
2), Hl

is homogeneous of degree 0 with respect to (η, γ) (and belongs to Γ0
2), and the following

inequalities hold:
∑

l

Vl(z)
∗ Vl(z) ≥ c λ2,γ(η) I , Hl(z) ≥ c I , El(z) ≥ c λ1,γ(η) I . (63)

We define w := T γχ0
v̇ and compute the equation satisfied by w. The calculations are entirely

similar to those done in the preceeding paragraph, namely

∂dw = T γA w + T γ
A

−1

d
C
w + T γ

r0
v̇ +Rγ v̇ + T γχQ F , (64)

with

r0 := ∂dχ0 +
1

i
{χ0,A} = ∂dχ0 +

1

i

d−1∑

k=0

(∂ηk
χ0)∂xk

A − (∂ηk
A) ∂xk

χ0 . (65)

Let {Sγ(xd)} be given by

Sγ(xd) :=
1

2

(
(T γS(xd))

∗ + T γS(xd)

)
.

Because S ∈ Γ2
2, {Sγ} is a bounded Lipschitzean family of selfadjoint operators from H2(Rd) to

L2(Rd) (the bounds are uniform with respect to the parameter γ ≥ 1). The starting point to
derive the energy estimate is to take the scalar product of (64) with Sγ w and integrate with
respect to (x0, . . . , xd) ∈ Ω. We find

〈Sγ(0)w(0), w(0)〉L2 + 2 Re 〈〈SγT γAw,w〉〉L2(Ω) = − Re 〈〈dS
γ

dxd
w,w〉〉L2(Ω)

−2 Re 〈〈SγT γ
A

−1

d
C
w,w〉〉L2(Ω) − 2 Re 〈〈SγT γ

r0
v̇, w〉〉L2(Ω) − 2 Re 〈〈SγRγ v̇, w〉〉L2(Ω)

−2 Re 〈〈SγT γχ0
F,w〉〉L2(Ω) .

(66)

The right-hand side of (66) is easily estimated. We write Sγ as

Sγ = Λ1,γ Λ−1,γ Sγ

and use that Λ1,γ is self-adjoint. Because Λ−1,γSγ is of order ≤ 1, we obtain

− Re 〈〈dS
γ

dxd
w,w〉〉L2(Ω) ≤ C |||w|||21,γ ,

−2 Re 〈〈SγT γ
A−1

d
C
w,w〉〉L2(Ω) ≤ C |||w|||21,γ ,

−2 Re 〈〈SγT γ
r0
v̇, w〉〉L2(Ω) ≤

C

γ
|||T γ

r0
v̇|||21,γ + ε γ |||w|||21,γ ,

−2 Re 〈〈SγRγ v̇, w〉〉L2(Ω) ≤
C

γ
|||v̇|||20 + ε γ |||w|||21,γ ,

−2 Re 〈〈SγT γχ0
F,w〉〉L2(Ω) ≤

C

γ
|||T γχ0

F |||21,γ + ε γ |||w|||21,γ ,
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so we get

〈Sγ(0)w(0), w(0)〉L2 + 2 Re 〈〈SγT γAw,w〉〉L2(Ω) ≤ (C + 3ε γ) |||w|||21,γ

+
C

γ
|||T γχ0

F |||21,γ +
C

γ

(
|||v̇|||20 + |||T γ

r0
v̇|||21,γ

)
.

(67)

We are now going to derive a lower bound for the left-hand side of (67) by means of G̊arding’s
inequalities. We first deal with the boundary term. First note that

S(0) − T γS(0)

is of order ≤ 1, so we have

〈Sγ(0)w(0), w(0)〉L2 = Re 〈T γS(0)(0)w(0), w(0)〉L2 + O(‖w(0)‖1,γ ‖w(0)‖0) .

Using (62), we can apply G̊arding’s inequality (theorem A.4) and derive

Re 〈T γS(0)(0)w(0), w(0)〉L2 + C Re 〈T γ
λ2,γβ∗β

w(0), w(0)〉L2 ≥ c ‖w(0)‖2
1,γ − C ‖v̇(0)‖2

0 .

Observe that
T γ
λ2,γβ∗β

−
[
Λ1,γT γβ

]∗ [
Λ1,γT γβ

]

is of order ≤ 1 so we have

Re 〈T γ
λ2,γβ∗β

w(0), w(0)〉L2 = ‖T γβw(0)‖2
1,γ + O(‖w(0)‖1,γ ‖w(0)‖0) .

For γ large enough, we therefore obtain

〈Sγ(0)w(0), w(0)〉L2 ≥ c ‖w(0)‖2
1,γ − C ‖T γβw(0)‖2

1,γ − C ‖v̇(0)‖2
0 , (68)

and we can now deal with the interior term. Since

Re SγT γA − T γRe (SA)

is of order ≤ 2, we have

2 Re 〈〈SγT γAw,w〉〉L2(Ω) ≥ 2 Re 〈〈T γRe (SA)w,w〉〉L2(Ω) − C |||w|||21,γ .

Define

∀ z ∈ Ω × (Rd × R
+ \ {0}) , ai(z) :=

(
γHi(z) 0

0 Ei(z)

)
.

Then the remainders
T γV ∗

l
alVl

− (T γVl
)∗T γal

T γVl

are of order ≤ 2, so we get

2 Re 〈〈SγT γAw,w〉〉L2(Ω) ≥ Re
∑

l

〈〈T γal
wl, wl〉〉L2(Ω) − C |||w|||21,γ

where wl := T γVl
w. Using the block decomposition of ai and G̊arding’s inequality (theorem A.3)

on each block, we obtain
Re 〈〈T γal

wl, wl〉〉L2(Ω) ≥ c γ |||wl|||20 ,
and the ellipticity of the symbol

∑
l V

∗
l Vl yields, for γ large enough, the estimate

|||w|||21,γ .
∑

l

Re 〈〈T γV ∗

l
Vl
w,w〉〉L2(Ω) .

∑

l

|||wl|||20 +
1

γ
|||w|||21,γ .
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Combining all these inequalities, we conclude that

Re 〈〈SγT γAw,w〉〉L2(Ω) ≥ c γ |||w|||21,γ (69)

for γ large enough. We now use (68) and (69) to derive a lower bound for the left-hand term of
(67). Choosing ε appropriately, we end up with

γ |||w|||21,γ + ‖w(0)‖2
1,γ − ‖T γβw(0)‖2

1,γ − ‖v̇(0)‖2
0 .

1

γ
|||T γχ0

F |||21,γ +
1

γ

(
|||v̇|||20 + |||T γ

r0
v̇|||21,γ

)
.

To conclude, observe that the remainder

T γβ T
γ
χ0

− T γχ0
T γβ

is of order ≤ −1 so we have

‖T γβw(0)‖2
1,γ . ‖G‖2

1,γ + ‖v̇(0)‖2
0 .

Eventually, we have proved

γ |||T γχ0
v̇|||21,γ + ‖T γχ0

v̇(0)‖2
1,γ . ‖G‖2

1,γ + ‖v̇(0)‖2
0 +

1

γ
|||T γχ0

F |||21,γ +
1

γ

(
|||v̇|||20 + |||T γ

r0
v̇|||21,γ

)
. (70)

3.6 The main result

This paragraph is devoted to the very end of the analysis. We first prove the following:

Theorem 3.1. For all v̇ ∈ H1(Ω), we define the localized norm of v̇ as

|||v̇|̃||2 := |||T γχ0
v̇|||21,γ + |||v̇out|||21,γ + γ2 |||v̇in|||20 +

∑

1≤j≤J ′

|||T γσj
v̇j |||20

where we keep the notations of paragraph 3.3:

T γχQv̇ =

(
v̇in
v̇out

)
, v̇in ∈ C

N−1 , v̇out ∈ C
N+1 and v̇in =



v̇1
...
v̇J ′


 .

For v̇(0) ∈ H1(Rd) we define in a similar way the localized norm of v̇(0) as

‖v̇(0)‖̃2 := ‖T γχ0
v̇(0)‖2

1,γ + ‖v̇out(0)‖2
1,γ + γ2 ‖v̇in(0)‖2

0 + ‖T γσ v̇in(0)‖2
0 .

Then there exist two constants C > 0 and γ0 ≥ 1 such that for all γ ≥ γ0 and for all (v, ψ) ∈
H2(Ω) ×H2(Rd), the following estimate holds:

γ |||v̇|̃||2 + ‖v̇(0)‖̃2 ≤ C

(
1

γ
|||F |||21,γ + ‖G‖2

1,γ

)
, (71)

where
v̇ := v − T γ∂da

ψ , F := ∂dv̇ − T γAv̇ − T γ
A−1

d
C
v̇ and G := T γΠMv̇|xd=0

.

Proof. Using (61) and (70), we have already proved that there exists two constants C and γ0

such that for all γ ≥ γ0, one has

γ |||v̇|̃||2 + ‖v̇(0)‖̃2 ≤ C

(
1

γ
|||F |||21,γ + ‖G‖2

1,γ

)
+ C ‖v̇(0)‖2

0 +
C

γ

(
|||v̇|||20 + |||T γr v̇|||20 + |||T γ

r0
v̇|||20
)

(72)
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where r is given by (43) and r0 is given by (65). We first show that the localized norm verifies

γ |||v̇|||0 ≤ C |||v̇|̃|| (73)

for γ large enough and C > 0. Write

I = χ0I + χI = χ0I + (χ̃Q−1
0 )χQ0 ,

where χ̃ is a suitable cut-off function such that χ̃χ = χ. Then we have

γ |||v̇|||0 ≤ γ |||T γχ0
v̇|||0 + C γ |||T γχQ0

v̇|||0 ≤ |||T γχ0
v̇|||1,γ + C γ |||T γχQv̇|||0 + C γ |||T γχQ−1

v̇|||0
≤ |||T γχ0

v̇|||1,γ + |||v̇out|||1,γ + γ |||v̇in|||0 + C |||v̇|||0 ≤ C |||v̇|̃|| + C |||v̇|||0
and this gives (73) when γ is large enough. In a completely similar way, we get

γ ‖v̇(0)‖0 ≤ C ‖v̇(0)‖̃ . (74)

Using (73) and (74), (72) reads

γ |||v̇|̃||2 + ‖v̇(0)‖̃2 ≤ C

(
1

γ
|||F |||21,γ + ‖G‖2

1,γ

)
+
C

γ

(
|||T γr v̇|||21,γ + |||T γ

r0
v̇|||21,γ

)
, (75)

and we need to absorb the last two terms.
To absorb the term T γr v̇, we decompose the symbol r as a linear combination of χ0 and the

σj’s. Recall that r is a symbol of degree 0 and regularity 1 that is identically zero in the region
{χ ≡ 1}. In the region {χ ≤ 1/2}, we have χ0 ≥ 1/2 so we can write

r := α0 (χ0 I) ,

with α a symbol of degree 0. In the region {χ ≥ 1/2}, we can write

r :=




α1
...
αJ ′

αout







σ1In1

. . .

σJ ′InJ′

I


 (χQ0) ,

because the two last matrices are regular in the region where r is not identically zero. Up to
introducing new cut-off functions, we can decompose r as

r = α0 (χ0 I) +




α1
...
αJ ′

αout







σ1In1

. . .

σJ ′InJ′

I


 (χQ0) ,

where α0 and αout are of degree 0 and α1, . . . , αJ ′ are of degree −1 (because the σj ’s are of
degree 1). At this stage, we easily derive

|||T γr v̇|||1,γ . |||T γχ0
v̇|||1,γ + |||v̇out|||1,γ +

∑

1≤j≤J ′

|||T γσj
v̇j |||0 . |||v̇|̃|| .

The same kind of arguments also work for the term T γ
r0

because r0 is identically zero near the
bicharacteristic curves. Eventually, (75) yields, for γ large enough:

γ |||v̇|̃||2 + ‖v̇(0)‖̃2 .
1

γ
|||F |||21,γ + ‖G‖2

1,γ . (76)
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Theorem 3.1 gives a precise statement of the location of the possible singularities of v̇, that
is, where v̇ is less regular that the source terms F and G. However, an important consequence
of theorem 3.1 is that our constant coefficients energy estimate holds for variable coefficients
system:

Theorem 3.2. Let a, defined by (24), satisfy assumptions 6-8. Then for all v ∈ H2(Ω),
ψ ∈ H2(Rd) and for all γ ≥ γ0 (where γ0 only depends on a), one has

γ |||v|||20 + ‖v|xd=0
‖2
0 + ‖ψ‖2

1,γ .
1

γ3
|||Lγa(v, ψ)|||21,γ +

1

γ2
‖Bγa(v, ψ)‖2

1,γ . (77)

Proof. The result is a direct consequence of the paralinearization estimates. Let v and ψ be
given and define v̇ as the good unknown of the problem. Let

F := ∂dv̇ − T γAv̇ − T γ
A

−1

d
C
v̇ and G := T γΠMv̇|xd=0

.

Using (76) and (73)-(74), we get

γ |||v̇|||20 + ‖v̇(0)‖2
0 .

1

γ3
|||F |||21,γ +

1

γ2
‖G‖2

1,γ .

We know from (36) that G satisfies

‖G‖2
1,γ . ‖v̇(0)‖2

0 + ‖T γbψ + T γMv̇|xd=0
‖2
1,γ + ‖ψ‖2

1,γ ,

so we have

γ |||v̇|||20 + ‖v̇(0)‖2
0 .

1

γ3
|||F |||21,γ +

1

γ2
‖T γbψ + T γMv̇|xd=0

‖2
1,γ +

1

γ2
‖ψ‖2

1,γ .

Using (33), we obtain

γ |||v̇|||20 + ‖v̇(0)‖2
0 .

1

γ3
|||F |||21,γ +

1

γ2
‖Bγa(v, ψ)‖2

1,γ +
1

γ2
‖ψ‖2

1,γ ,

and using once again (33) (for the interior term |||F |||1,γ) yields

γ |||v̇|||20 + ‖v̇(0)‖2
0 .

1

γ3
|||Lγa(v, ψ)|||21,γ +

1

γ2
‖Bγa(v, ψ)‖2

1,γ +
1

γ2
‖ψ‖2

1,γ .

Estimate (34) yields the estimate for v (and not v̇) while (35) enables to recover the estimate
on the shock front ψ and to derive (77).

4 The example of gas dynamics

When dealing with a concrete example, it is more convenient to have distinct notations for the
Laplace variable and the Fourier variable. We shall thus denote by τ the Laplace dual variable
of t (τ is a complex number of positive real part) and by η ∈ R

d−1 the Fourier dual variable of
(x1, . . . , xd−1). Consequently, the stable subspace will be denoted by E−(τ, η), the front symbol
will be denoted by b(τ, η) and so on.

Consider Euler’s equations of isentropic gas dynamics:

{
∂t ρ+ ∇ · (ρv) = 0 ,

∂t (ρv) + ∇ · (ρv ⊗ v) + ∇ p = 0 ,
(78)
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where p is an increasing function of ρ > 0 but which is not convex. System (78) satisfies both
assumptions 1 and 2. For a planar shock wave

u =

{
(ρl,vl) if x · ν < σt,

(ρr,vr) if x · ν > σt,

where ν is a unit vector in R
d, the Rankine-Hugoniot conditions read

ρr(vr · ν − σ) = ρl(vl · ν − σ) =: j ,

j[v] + [p]ν = 0 ,

and we shall assume j 6= 0. Then the tangential velocity is continuous across the shock front
and, up to changing observer, we may assume

ν = (0, . . . , 0, 1) , vr,l = (0, . . . , 0, vr,l) , j = ρrvr = ρlvl > 0 .

The Mach number on both sides of the shock front is defined by

Mr,l :=
vr,l
cr,l

with cr,l :=
√
p′(ρr,l) .

As usual, c denotes the sound speed in the fluid. One easily checks that u is a 1-shock if and
only if

Ml > 1 , Mr < 1 , ρr > ρl .

In such a case, the following is proved in [25]:

Proposition 4.1 (Majda). [25]. The shock u is uniformly stable if and only if

M2
r

(
ρr
ρl

− 1

)
< 1 .

Otherwise, the shock is only weakly linearly stable.

When p is not a convex function of ρ, one may have

M2
r

(
ρr
ρl

− 1

)
> 1 . (79)

In this case, the following is proved in [13]:

Proposition 4.2. [13]. There exists V1 > 0 such that for all (τ, η) ∈ C × R
d−1 satisfying Re

τ ≥ 0, (τ, η) 6= (0, 0) and τ 6= ±iV1|η|, one has
{
(Z,χ) ∈ E−(τ, η) × C s.t. χ b(τ, η) +M Z = 0

}
= {0} ,

and for η 6= 0, the set
{
(Z,χ) ∈ E−(±iV1|η|, η) × C s.t. χ b(±V1|η|, η) +M Z = 0

}

is a one dimensional subspace of C
2d+3.

By definition, V 2
1 is the smallest root of the polynomial

P1(X) = (c2r − u2
r)(X

2 + u2
ru

2
l ) +

[
4u2

rc
2
r − 2urul(c

2
r + u2

r)
]
X ,

that has two distinct positive roots (the greatest is denoted V 2
2 ). Furthermore we have

c2r − u2
r < V 2

1 < urul
c2r − u2

r

c2r + u2
r

< V 2
2 .
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We recall a few results of [13]. The eigenvalues ωj ’s of A(u, τ, η) are ωr2 := −τ/ur, ωl2 := τ/ul
and the roots ωr1,3, ω

l
1,3 of the polynomial equations:

(τ + urω)2 = c2r(ω
2 − |η|2) , (80a)

(τ − ulω)2 = c2l (ω
2 − |η|2) . (80b)

We choose ωr3 as the root of negative real part of (80b) when Re τ > 0. We also define
ar3 := τur − (c2r − u2

r)ω
r
3.

It is proved in [13] that assumptions 4 and 5 hold as long as (79) is satisfied. Moreover, in a
suitable neighbourhood of the critical frequencies Σcr(u), there exists a C∞ basis (that we write
under the form of a rectangle matrix Qin) of the stable subspace E− such that

β(τ, η)Qin =

(
ρr(c

2
rτ + ura

r
3) 2ijηt

ijη(c2rτ + ula
r
3) −ρr(τ2Id−1 + urulη ⊗ η)

)
. (81)

Simple calculations on matrices will show that assumption 8 holds. Let us first look at the
2-dimensional case: η is a real number and βqin is a 2 × 2 matrix. For all complex numbers
ξ1, ξ2, ξ3, ξ4, ξ5 such that ξ4 6= 0 and ξ5 6= 0, the identity

(
1/ξ5 −ξ2/(ξ4ξ5)

0 1/ξ4

) (
ξ1 ξ2
ξ3 ξ4

) (
ξ4 0
−ξ3 1

)
=

(
(ξ1ξ4 − ξ2ξ3)/ξ5 0

0 1

)
(82)

is a straightforward calculation. If we write

β(τ, η)Qin =

(
ξ1 ξ2
ξ3 ξ4

)
,

we can easily check that ξ4 does not vanich in the neighbourhood of the critical frequencies. In
the neighbourhood of (iV1|η|, η) ∈ Σ+, the determinant of β(τ, η)Qin reads

ξ1ξ4 − ξ2ξ3 = (τ − iV1|η|)h(τ, η) or det(β(τ, η)Qin) = (τ + iV1|η|)h(τ, η)

for a suitable C∞ function h that does not vanish [13]. Setting ξ5 := h(τ, η), we obtain two
regular matrices P1(τ, η) and P2(τ, η) such that

P1(τ, η)β(τ, η)Qin P2(τ, η) =

(
τ − iV1|η| 0

0 1

)
.

This is nothing but assumption 8 since the set of critical frequencies is precisely defined by
τ = iV1|η| or τ = −iV1|η|. In this case, the set of critical frequencies Σcr(u) has exactly four
connected components and we have a real equation of each of them.

In space dimension 3, the computations are similar. Observe that the matrix τ 2Id−1+urulη⊗
η is regular (near the critical frequencies) according to proposition 4.2. Hence βQin reads

β Qin :=



ξ1 ξ2 ξ3
ξ4 ξ5 ξ6
ξ7 ξ8 ξ9


 =

(
ξ1 `
∗ Ξ

)
,

where Ξ := (τ 2Id−1 + urulη⊗ η). Therefore, one has det Ξ 6= 0 near the critical frequencies. We
check the identity

(
1 −`Ξ−1

0 Ξ−1

) 

ξ1 ξ2 ξ3
ξ4 ξ5 ξ6
ξ7 ξ8 ξ9





ξ5ξ9 − ξ6ξ8 0 0
ξ6ξ7 − ξ4ξ9 1 0
ξ4ξ8 − ξ5ξ7 0 1


 =




det(β Qin) 0 0
0 1 0
0 0 1


 .

and we can conclude that assumption 8 is also satisfied in the 3-dimensional case.
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A Paradifferential calculus with a parameter

In this appendix, we collect the main results of the paradifferential calculus of Bony and Meyer
[11, 29] that we use in this paper. The introduction of a positive parameter was achieved by
Mokrane [30], see also [28]. We refer to these papers for the proofs of the results stated below.
We first recall the classification of paradifferential symbols:

Definition 2. A paradifferential symbol of degree m ∈ R and regularity k (k = 0 or k = 1) is a
function a(x, ξ, γ) : R

d × R
d × [0,+∞[→ C

N×N such that a is C∞ smooth with respect to ξ and
for all α ∈ N

d, there exists a constant Cα verfying

∀ (ξ, γ) , ‖∂αξ a(·, ξ, γ)‖W k,∞ ≤ Cα λ
m−|α|,γ(ξ) = Cα (γ2 + |ξ|2)(m−|α|)/2 .

The set of paradifferential symbols of degree m and regularity k is denoted by Γmk . We denote
by Σm

k the set of paradifferential symbols a such that for a suitable ε ∈ ]0, 1[ one has

∀ (ξ, γ) , Supp Fx a(·, ξ, γ) ⊂ {η ∈ R
d/|η| ≤ ε (γ2 + |ξ|2)1/2} .

Of course, the symbols in Σm
k are C∞ functions with respect to both variables x and ξ, and

for all a ∈ Σm
k , we have the estimates

∀ (x, ξ, γ) , |∂βx∂αξ σ (x, ξ, γ)| ≤ Cα,β λ
m−|α|+|β|,γ(ξ) .

Thus any symbol a ∈ Σm
k belongs to Hörmander’s class Sm1,1 [20] and defines an operator P γ(a)

on the Schwartz’ class S by the usual formula

∀u ∈ S , P γ(a)u(x) :=
1

(2π)d

∫

Rd

eix·ξ a(x, ξ, γ) û(ξ) dξ .

We shall use the following terminology:

Definition 3. A family of operators {P γ} defined for γ ≥ 1 will be said of order ≤ m (m ∈ R)
if the operators P γ are uniformly bounded from Hs+m

γ to Hs
γ:

∀ γ ≥ 1 , ∀u ∈ Hs+m
γ , ‖P γu‖s,γ ≤ C(s,m) ‖u‖s+m,γ .

The following theorem is crucial for the sequel of the analysis:

Theorem A.1. If a ∈ Σm
k , the family {P γ(a)} is of order ≤ m.

The regularization of symbols in the class Γmk is achieved by a convolution with admissible
cut-off functions:

Definition 4. Let ψ : R
d × R

d × [1,+∞[→ [0,+∞[ be a C∞ function such that the following
estimates hold for all α, β ∈ N

d:

∀ (η, ξ, γ), |∂αη ∂βξ ψ (η, ξ, γ)| ≤ Cα,β λ
−|α|−|β|,γ(ξ) .

We shall say that ψ is an admissible cut-off function if there exist real numbers 0 < ε1 < ε2 < 1
satisfying

ψ(η, ξ, γ) = 1 if |η| ≤ ε1(γ
2 + |ξ|2)1/2 ,

ψ(η, ξ, γ) = 0 if |η| ≥ ε2(γ
2 + |ξ|2)1/2 .
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An example of cut-off function is the following: let χ be a nonnegative C∞ function on
R
d × R such that

γ2
1 + |ξ1|2 ≥ γ2

2 + |ξ2|2 =⇒ χ(ξ1, γ1) ≤ χ(ξ2, γ2) ,{
χ(ξ, γ) = 1 if

(
γ2 + |ξ|2

)1/2 ≤ 1/2,

χ(ξ, γ) = 0 if
(
γ2 + |ξ|2

)1/2 ≥ 1.

We define a function ϕ(ξ, γ) := χ(ξ/2, γ/2) − χ(ξ, γ). Then the function ψ0 defined by

ψ0(η, ξ, γ) :=
∑

p≥0

χ(22−pη, 0)ϕ(2−pξ, 2−pγ)

is an admissible cut-off function (one can take ε1 = 1/16 and ε2 = 1/2).
If ψ is an admissible cut-off function, the inverse Fourier transform Kψ of ψ(·, ξ, γ) satisfies

∀ (ξ, γ) , ‖∂αξ Kψ(·, ξ, γ)‖L1 ≤ Cα λ
−|α|,γ(ξ) .

These L1 bounds on ∂αξK
ψ enable to establish the following proposition:

Proposition A.1. Let ψ be an admissible cut-off function. The mapping

a 7−→ σψa (x, ξ, γ) :=

∫

Rd

Kψ(x− y, ξ, γ) a(y, ξ, γ) dy

is continuous from Γmk to Σm
k for all m.

If a ∈ Γm1 , then a − σψa ∈ Γm−1
0 . In particular, if ψ1 and ψ2 are two admissible cut-off

functions and a ∈ Γm1 , then σψ1
a − σψ2

a ∈ Σm−1
0 .

Fixing an admissible cut-off function ψ, we define the paradifferential operator T ψ,γa by the
formula

Tψ,γa := P γ(σψa ) .

If ψ1 and ψ2 are two admissible cut-off functions and a ∈ Γm1 , then proposition A.1 and theorem

A.1 show that the family {Tψ1,γ
a − Tψ2,γ

a } is of order ≤ (m− 1).
The symbolic calculus is based on the following theorem:

Theorem A.2. Let a ∈ Γm1 and b ∈ Γm
′

1 . Then ab ∈ Γm+m′

1 and the family

{Tψ,γa ◦ Tψ,γb − Tψ,γab }γ≥1

is of order ≤ m+m′ − 1 for all admissible cut-off function ψ.

Let a ∈ Γm1 . Then for all admissible cut-off function ψ, the family

{(Tψ,γa )∗ − Tψ,γa∗ }γ≥1

is of order ≤ m− 1.

Let a ∈ Γm2 and b ∈ Γm
′

2 . Then ab ∈ Γm+m′

2 and the family

{Tψ,γa ◦ Tψ,γb − Tψ,γab − Tψ,γ−i
P

j ∂ξj
a∂xj

b}γ≥1

is of order ≤ m+m′ − 2 for all admissible cut-off function ψ.
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Let a ∈ Γm2 . Then the family

{(Tψ,γa )∗ − Tψ,γa∗ − Tψ,γ−i
P

j ∂ξj
∂xj

a∗}γ≥1

is of order ≤ m− 2 for all admissible cut-off function ψ.

The next theorem is the parameter version of G̊arding’s inequality:

Theorem A.3. Let a ∈ Γ2m
1 and ψ be and admissible cut-off function. Assume that there exists

a constant c > 0 such that

∀ (x, ξ, γ), Re a(x, ξ, γ) ≥ c λ2m,γ(ξ) Id .

Then there exists γ0 ≥ 1 such that

∀ γ ≥ γ0 ,∀u ∈ Hm
γ , Re 〈Tψ,γa u, u〉L2 ≥ c

2
‖u‖2

m,γ .

We also have a localized version of G̊arding’s inequality:

Theorem A.4. Let a ∈ Γ2m
1 , χ ∈ Γ0

1 and ψ be and admissible cut-off function. Assume that
there exists χ̃ ∈ Γ0

1 and a constant c > 0 such that χ̃ ≥ 0, χ̃ χ = χ and

∀ (x, ξ, γ), χ̃2(x, ξ, γ)Re a(x, ξ, γ) ≥ c χ̃2(x, ξ, γ)λ2m,γ(ξ) I .

Then there exists γ0 ≥ 1 and C > 0 such that

∀ γ ≥ γ0 ,∀u ∈ Hm
γ (Rd) , Re 〈Tψ,γa Tψ,γχ u, Tψ,γχ u〉H−m,Hm ≥ c

2
‖Tψ,γχ u‖2

m,γ − C ‖u‖2
m−1,γ .

We now study the case of paraproducts: they are defined by the particular choice of ψ0 as
cut-off function. We shall write T γa instead of Tψ0,γ

a for the paradifferential operators obtained
after smoothing by the function ψ0. We have the important result:

Theorem A.5. Let a ∈W 1,∞(Rd), u ∈ L2(Rd) and γ ≥ 1. Then we have

‖au− T γa u‖0 ≤ C

γ
‖a‖W 1,∞ ‖u‖0 ,

‖a ∂ju− T γa (∂ju)‖0 ≤ C ‖a‖W 1,∞ ‖u‖0 ,

for a suitable constant C that is independent of (a, u, γ).
If a ∈W 2,∞(Rd), we have

‖au− T γa u‖1,γ ≤ C

γ
‖a‖W 2,∞ ‖u‖0 ,

‖a ∂ju− T γa (∂ju)‖1,γ ≤ C ‖a‖W 2,∞ ‖u‖0 ,

for a suitable constant C that is independent of (a, u, γ).

We can extend the paradifferential calculus to symbols defined on a half-space in the following
way: we still denote by Γmk the set of symbols a(x0, . . . , xd, η, γ) defined on Ω×(Rd×[0,+∞[ \{0})
such that the mapping xd 7→ a(·, xd, ·) is bounded into Γmk . We define the paradifferential
operator T γa by

∀u ∈ C∞
c (Ω) , ∀xd ≥ 0 , (T γa u)(·, xd) := T γa(xd)u(·, xd) .

Using theorem A.5 and integrating with respect to xd, we obtain for all symbol a ∈ W 1,∞(Ω)
and all u ∈ L2(Ω) the estimates:

|||au− T γa u|||0 ≤ C

γ
‖a‖W 1,∞(Ω) |||u|||0 ,

|||a ∂ju− T γa (∂ju)|||0 ≤ C ‖a‖W 1,∞(Ω) |||u|||0 , 0 ≤ j ≤ d− 1 .
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[2] M. S. Agranovič. Boundary value problems for systems with a parameter. Math. USSR-Sb.,
13:25–64, 1971.
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