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Abstract

It is a well-known fact that, in small mean free path regimes, kinetic equations can lead
to diffusion equations. Besides, kinetic equations can be approached by a closed system of
moments equations. In this paper, we are interested in a special closure based on an entropy
minimization principle, as introduced earlier by Levermore. We investigate the behavior of
the resulting nonlinear hyperbolic system in the diffusive scaling. We first establish various
fundamental facts on this system, then we show that the hyperbolic system admits global
smooth solutions, and is consistent with the diffusion limit. Similar features are also discussed
for a simpler limited flux equation.

AMS subject classification: 82C40, 76N15, 35L65, 35Q99

Keywords: Diffusion Approximation, Hyperbolic Systems, Relaxation, Global Smooth Solu-
tions, Nonlinear Parabolic Equations

1 Introduction

This quite long Introduction is organized as follows. First, we describe the general problem we
are interested in, which relies on approximate models for kinetic equations in small mean free
path (denoted ε) regimes. We consider situations in which this asymptotics leads to a diffusion
equation. Then, we focus on reduced models that are intended to describe intermediate regimes,
for small but nonzero ε > 0. It is tempting to try to approach the kinetic equation by a finite
number of moments equations, where we get rid of the velocity variable. This requires a closure
method that defines, in a suitable way, the (k + 1)-th moment by means of the k preceeding
ones. We pay special attention to the hyperbolic system that comes from a closure based on an
entropy minimization principle, in the spirit of Levermore’s strategy [22, 23, 25]. The discussion
is completed by numerous examples and comments. At the end of this introduction, we present
our main results.
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1.1 The kinetic equation

We are interested in possible approximations of the solution fε to the following kinetic equation

ε ∂tfε + v ∂xfε =
1
ε
Q(fε) . (1)

The unknown fε(t, x, v) depends on the time and space variables (t, x) ∈ [0,∞) × R, and on
a velocity variable v that lies in some measured set (V, µ), V ⊂ R. It can be interpreted as a
density of particles in phase space, meaning that the integral∫

Ω

∫
V
fε(t, x, v) dµ(v) dx

gives the number of particles occupying, at time t, a position in Ω ⊂ R and having a velocity
in V ⊂ V . The parameter ε > 0 is related to the notion of mean free path, that is the average
distance that a particle may travel between two scattering events. The dynamics of these
scattering events is embodied in the (linear) collision operator Q. It is an integral operator
with respect to the variable v, but local with respect to time and space: collisions are localized
phenomena which only modify the velocity variable. We shall make the following assumption:

(C1)



• The measure µ is a probability measure on V , that satifies

0 <
∫

V
v2dµ(v) = d <∞ .

• The collision operator satisfies
Conservation condition: Q?(11) = 0 ,
Equilibrium condition: Q(11) = 0 .

The conservation condition means that collisions only produce a change of the velocity of the
particle but do not induce a gain or a loss of particles. In turn, the macroscopic quantities

ρε(t, x) :=
∫

V
fε(t, x, v) dµ(v) , Jε(t, x) :=

∫
V

v

ε
fε(t, x, v) dµ(v)

satisfy the following local conservation law

∂tρε + ∂xJε = 0 . (2)

As a consequence, the total number of particles is preserved by the equation. Concerning the
equilibrium condition, it would be more natural to assume the existence of a positive function
F (v) in the kernel of Q, but we can easily reduce to the case F = 11 (by changing the unknown
f → f/F ). As a matter of fact, in most of the applications, the collision operator splits into a
gain term, that is a global operator, and a loss term, that is purely local. Namely, we have

(C2)

 Q(f) =
∫

V
b(v, v′)f(v′) dµ(v′)− ν(v)f(v) ,

0 < β ≤ b(v, v′) ≤ B <∞ , 0 < β ≤ ν(v) ≤ B <∞ .

In particular, let us point out that this structure leads to a physically natural maximum principle:
starting with nonnegative initial data, the solution fε remains nonnegative.

We readily check that (C1) implies

ν(v) =
∫

V
b(v, v′) dµ(v′) =

∫
V
b(v′, v) dµ(v′) .
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Then, the crucial observation relies on the following dissipation property

−
∫

V
Q(f)fdµ(v) =

1
2

∫
V

∫
V
b(v, v′) |f(v′)− f(v)|2 dµ(v′) dµ(v)

≥ β

2

∫
V

∫
V
|f(v′)− f(v)|2 dµ(v′) dµ(v) ≥ 0 . (3)

We can summarize the useful properties of the collision operator as follows:

Lemma 1. Assume that (C1) and (C2) hold. Then, Q is a bounded operator on L2(V, dµ). The
kernel of Q is the one-dimensional subspace of constant functions, and there holds

−
∫

V
Q(f)fdµ(v) ≥ β

∫
V
|f(v)− ρf |2 dµ(v) , ρf :=

∫
V
f dµ(v) .

Furthermore, Q (resp. the adjoint Q?) satisfies a Fredholm alternative: for any g ∈ L2(V, dµ)
such that

∫
V g(v) dµ(v) = 0, there exists a unique h ∈ L2(V, dµ) such that Q(h) = g, (resp.

Q?(h) = g) and
∫
V h(v) dµ(v) = 0.

The dissipation property is strengthened by assuming that b is symmetric; then, the operator
admits many dissipated entropies.

Lemma 2. Assume that (C1) and (C2) hold with

b(v, v′) = b(v′, v) . (4)

Then, for any convex function φ : R+ → R, we have

−
∫

V
Q(f) φ′(f)dµ(v) ≥ β

∫
V
b(v, v′)

(
f(v′)−f(v)

) (
φ′(f(v′))−φ′(f(v))

)
dµ(v′) dµ(v) ≥ 0 . (5)

1.2 Diffusion Asymptotics

Coming back to the evolution problem (1), the relation (3) translates into an entropy dissipation:

d

dt

(∫
R

∫
V
f2

ε dµ(v) dx
)

+
β

ε2

∫
R

∫
V

(fε − ρε)2 dµ(v) dx ≤ 0 .

It indicates the fε(t, x, v) behaves essentially like the macroscopic quantity ρε(t, x) for small
values of ε. Similarly, (4) implies the dissipation of

∫
R
∫
V φ(fε) dµ(v) dx for all convex functions

φ. The diffusion asymptotics relies crucially on the additional following assumption:

(C3)
∫

V
v dµ(v) = 0 .

This means that equilibrium functions have a null flux. In turn, Lemma 1 yields the following
claim:

Lemma 3. Assume that (C1), (C2), and (C3) hold. Then, there exists a unique χ ∈ L2(V, dµ)
(resp. χ? ∈ L2(V, dµ)) such that Q(χ) = v (resp. Q?(χ?) = v), and

∫
V χ(v) dµ(v) = 0 (resp.∫

V χ
?(v) dµ(v) = 0).

It is quite easy to guess the behavior of the fε’s as ε goes to 0, by inserting formally in (1)
the following Hilbert expansion:

fε = f (0) + εf (1) + ε2f (2) + · · · ,
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and by identifying terms having the same power of ε. We compute

ε−1 term : Q(f (0)) = 0 .

This implies that the leading term f (0) belongs to the kernel of the collision operator Q:

f (0)(t, x, v) = ρ(t, x) .

Next, we get
ε0 term : Q(f (1)) = v ∂xf

(0) = v ∂xρ(t, x) .

Applying the Fredholm alternative, we can solve this equation and we readily obtain

f (1)(t, x, v) = χ(v) ∂xρ(t, x) .

Eventually, we look at

ε1 term : Q(f (2)) = ∂tf
(0) + v ∂xf

(1) .

Inserting the expressions obtained above for f (0) and f (1), the solvability condition∫
V
Q(f (2)) dµ(v) = 0

leads to

∂tρ−D∂2
xxρ = 0 , D = −

∫
V
v χ(v) dµ(v) = −

∫
V
Q(χ)χ(v) dµ(v) > 0 . (6)

In other words, the limit ρ should satisfy the heat equation with the diffusion coefficient D.

Remark 1. In the definition of f (1) we can of course add any element of Ker(Q); but by virtue
of (C3), it does not contribute anymore to the limit equation satisfied by ρ.

Another way to obtain this limit equation uses the conservation law (2). By using Lemma 3,
we compute the current as follows:

Jε(t, x) =
∫

V

v

ε
fε dµ(v) =

∫
V
χ?(ε∂tfε + v∂xfε) dµ(v) .

Inserting this expression into (2), we get

∂tρε + ∂2
xx

(∫
V
vχ?fε dµ(v)

)
+ ε ∂2

tx

(∫
V
χ?fε dµ(v)

)
= 0 . (7)

Then, motivated by (3), we replace fε by ρ and we get rid of the O(ε) term. We obtain the heat
equation (6) by noting that

D = −
∫

V
Q?(χ?)χdµ(v) = −

∫
V
χ? v dµ(v) > 0 .

Remark 2. The diffusion asymptotics relies crucially on (C3). It also explains why the time
variable has been rescaled: replacing ε∂t by ∂t would lead to the uninteresting limit problem
∂tρ = 0. Effects are sensible only on a large time scale, of order O(1/ε). We refer for comments
on this aspect to [12, 13, 15].

The formal derivation above can be rigorously justified. We refer for instance to [2, 3, 12,
26, 14] etc. for proofs of the following claim, which is part of the folk in kinetic theory.
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Theorem 1. Assume that (C1), (C2) and (C3) hold. Let ρ ≥ 0 be a constant, and let f0 :
R× V → R belong to ρ+ L2(R× V ).

i) Then, as ε goes to 0, fε and ρε converge to ρ strongly in L2
loc(R+ × R), and ρε converges

to ρ in C([0, T ];L2(R)−weak), where ρ is the solution to the heat equation (6) with initial
datum ρ|t=0 =

∫
V f0(x, v) dµ(v).

ii) If the initial datum is close to a smooth macroscopic state, say e.g. ‖f0 − ρ0‖L2(R×V ) ≤ ε,
with (ρ0 − ρ) ∈ H3(R), then one has ‖fε − ρ‖L2((0,T )×R×V ) ≤ CT ε.

We are interested in approximations of the kinetic unknown fε(t, x, v). Of course, the solution
ρ to (6) provides a rough approximation. A first attempt to go further in the approximation of
fε would be to use the formal ansatz described above. This leads to the approximation

fε ' ρ(t, x) + ε χ(v) ∂xρ(t, x) . (8)

This is often referred to as the P1 approximation. However, this approximation suffers from
severe drawbacks on physical viewpoints:

• The heat equation propagates information with infinite speed. Therefore it cannot describe
with accuracy intermediate regimes, the characteristic speed in (1) being ‖v‖L∞(V )/ε, large but
finite when considering bounded velocities.

• The P1 approximation does not always preserve nonnegativity: while fε is naturally non-
negative, in view of its physical meaning, the approximation (8) can be negative at some points
since the condition

ε |χ∂xρ| ≤ ρ

is certainly not fulfilled for any (t, x, v).
Actually the two difficulties are related. Indeed, since ρε and Jε are moments of a nonnegative
quantity, they naturally satisfy the following limited flux condition

|Jε| =
∣∣∣∣∫

V

v

ε
fε dµ(v)

∣∣∣∣ ≤ ‖v‖L∞(V )

ε
ρε . (9)

In what follows, we shall describe some remedies to treat the difficulties mentionned above.
First, we can use an expansion that is (formally) close to (8), up to O(ε2) terms, but preserves
nonnegativity. The second strategy consists in using hyperbolic equations (this ensures finite
speed of propagation), that are based on a closure of the equations satisfied by the moments of
fε.

In order to describe the approximate models, we shall use an additional assumption on the
collision operator:

(C4) Q(v) = −γv = Q?(v) for some constant γ > 0.

The fact that γ is positive comes from −
∫
V Q(v)v dµ(v) = γ

∫
V v2 dµ(v) > 0. The condition

(C4) actually means that χ(v) = χ?(v) = −v/γ, and thus we have D = d/γ. With (C4), (7) can
be recast as follows

∂tρε − ∂2
xx

(∫
V

v2

γ
fε dµ(v)

)
− ε ∂2

tx

(∫
V

v

γ
fε dµ(v)

)
= 0 .

However, the last term is nothing but

−ε
2

γ
∂t

(
∂xJε

)
=
ε2

γ
∂2

ttρε .

Therefore, we get

∂tρε − ∂2
xx

(∫
V

v2

γ
fε dµ(v)

)
+
ε2

γ
∂2

ttρε = 0 . (10)
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1.3 Approximate Models

To go further, we need to specify more precisely our framework. The assumptions on the velocity
set V and the measure µ are crucial. Throughout the rest of this paper we assume the following:

Assumption 1. V ⊂ R is compact, symmetric with respect to 0, (for instance, V = [−1,+1]),
and µ is a probability measure on V :

∫
V dµ(v) = 1.

Assumption 2. For any continuous and odd function h : V → R, we have
∫
V h(v) dµ(v) = 0.

Assumption 3. 0 <
∫
V v

2dµ(v) = d <∞.

Assumption 2 strengthens (C3); it means that velocities are equally distributed with respect
to the origin. Assumption 3 means that we exclude the Dirac mass at the origin. (Note that
in the case of the Dirac mass, the only velocity is 0, and (1) is trivial.) It is convenient to
introduce now the following definition and basic properties (the proof of which is postponed to
Appendix A).

Lemma 4. Consider the Laplace transform of the measure µ:

F : R −→ R+

β 7−→
∫

V
exp(βv) dµ(v) > 0 . (11)

Assume that the support of µ is a subset of [−1, 1], and that

min Supp µ = −1 , max Supp µ = 1 .

Then, the following properties hold:

• The function F is C∞, and even.

• The function G(β) := F′(β)/F(β) is a C∞ (increasing) diffeomorphism on (−1,+1). We
denote its inverse by G(−1). Both G and G(−1) are odd functions.

Given a measure µ that satisfies the assumptions of Lemma 4, we define the following C∞,
and even function ψ:

ψ : (−1, 1) −→ R+

u 7−→ u2 + G′ ◦G(−1)(u) =
F′′

F
(
G(−1)(u)

)
.

(12)

Throughout the paper, we shall often use the following relations:

F(0) = 1 , F′(0) = 0 , G(0) = 0 , ψ(0) = G′(0) = d , ψ′(0) = 0 .

For the collision operator, it is worth having in mind the following – definitely oversimplified
– operator:

Q(fε) := ρε − fε, ρε(t, x) =
∫

V
fε(t, x, v) dµ(v). (13)

Namely, the collision operator reduces to the relaxation operator to the mean value over velocities
of the unknown, where the measure µ can be chosen among the following examples:

Example 1. V = [−1,+1] endowed with the (normalized) Lebesgue measure dµ(v) = dv/2.

Example 2. V = [−1,+1] endowed with the discrete measure dµ(v) =
(
δ−1 + δ+1

)
/2.

6



Example 3. A variant with unbounded velocities is given by V = R endowed with the Gaussian
measure dµ(v) = exp(−v2/2) dv/

√
2π.

The collision operator (13) obviously verifies (C1-C4) in these situations. The value of the dif-
fusion coefficient D changes with the measure µ: we have D = 1/3 for Example 1, D = 1 for
Examples 2 and 3.

The closure problem consists in defining a system of equations for some macroscopic quan-
tities ρ̂ε (or ρ̂ε, and Ĵε), that depend only on the time and space variables, with the following
two-fold objective:

1. We expect that the resulting system is easier to solve than (1); for instance, it can be
solved with a reduced numerical cost;

2. It provides a “good”approximation of the evolution of the true quantities (ρε, Jε) associated
with the solution to (1).

Therefore, we aim at approaching solutions of a linear kinetic equation by solving (possibly)
nonlinear equations, where we get rid of the velocity variable v.

1.3.1 Zeroth Order Closure

At the zeroth order, we can close the mass conservation relation (2) by considering a Fick relation
between the current and the density:

Ĵε = −D ∂xρ̂ε,

where the “diffusion”coefficient D is chosen in such a way that (9) is fulfilled. In turn, D

might depend on ρ̂ε, ∂xρ̂ε... There are a lot of possible definitions for the coefficient D; we
refer among others to [24, 21, 30, 32, 4]... The corresponding approached equation can also
be (formally) justified by coming back to a more microscopic level: we define an approximate
density of particles f̂ε as a function of its zeroth moment ρ̂ε: f̂ε(t, x, v) = F (ρ̂ε(t, x), v, ε). Then,
we use this expression to close the mass conservation relation (2). For instance, using the P1

like approximation ρ̂ε − εv∂xρ̂ε/γ leads again to the heat equation. As mentioned above, this
approximation is not satisfactory since it is not, in general, nonnegative, and it does not fulfill
the physical flux limitation (9). Since (9) is a consequence of the nonnegativity of fε, let us seek
an approximation that will be, by construction, nonnegative. A very simple strategy consists in
modifying the Hilbert expansion procedure by considering

fε = exp(a(0) + εa(1) + ε2a(2) + . . . ).

We readily obtain the following conclusion for the first two terms

a(0) depends only on t and x,
a(1)(t, x, v) = −v

γ
∂xa

(0)(t, x) .

Truncation at the first order yields

f̂ε(t, x, v) = exp
(
a(0)(t, x)− ε

v

γ
∂xa

(0)(t, x)
)
≥ 0 , (14)

the moments of which are required to satisfy (2). We get the following systemρ̂ε(t, x) = exp(a(0)) F
(
ε ∂xa

(0)/γ
)
,

∂tρ̂ε − ∂x

( ρ̂ε

ε
G
(
ε
∂xa

(0)

γ

))
= 0 .
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Next, we note that
∂xρ̂ε

ρ̂ε
= ∂xa

(0) + εG
(
ε
∂xa

(0)

γ

) ∂2
xxa

(0)

γ
.

Then, under the assumption that ∂2
xxa

(0) remains bounded uniformly with respect to ε, we
neglect the last term, and we are eventually led to the simple equation

∂tρ̂ε − ∂x

(
ρ̂ε

ε
G
(ε ∂xρ̂ε

γρ̂ε

))
= 0 . (15)

For the Lebesgue measure, Example 1, we have

F(β) =
sinh(β)
β

, G(β) = coth(β)− 1
β
.

Therefore, we recover the limited flux model introduced by [21] and [24] which reads as follows

∂tρ̂ε − ∂x

(
ρ̂ε

ε

(
coth

(ε∂xρ̂ε

γρ̂ε

)
− γρ̂ε

ε∂xρ̂ε

))
= 0 . (16)

For the discrete measure, Example 2, we get

∂tρ̂ε − ∂x

(
ρ̂ε

ε
tanh

(ε∂xρ̂ε

γρ̂ε

))
= 0 ,

while, for the Gaussian measure, Example 3, we are simply led to the heat equation.

1.3.2 First Order Closure

We can also complete (2) by looking at the evolution equation for the current Jε(t, x). We set

Pε(t, x) :=
∫

V
v2 fε dµ(v) .

Integrating (1) with respect to the velocity variable yields, by using (C4)

ε2 ∂tJε + ∂xPε =
∫

V

v

ε
Q(fε) dµ(v) =

∫
V
vQ

(
fε − ρε

ε

)
dµ(v) = −γ Jε . (17)

The second equality, combined to (3), shows that the right-hand side is actually a O(1) quantity.
Of course, (2) and (17) do not form a closed system of equations, since there is no reason why
Pε should be defined directly by means of ρε and Jε.

Observe that
Pε = d ρε + εKε , (18)

where Kε(t, x) = ε−1
∫
V v

2 (fε − ρε) dµ(v) is O(1) thanks to (3). Hence, as ε tends to 0, we
recover (6) as follows:

∂tρ+ ∂xJ = 0 , γJ = −d ∂xρ .

It is quite usual to close the system by imposing an expression for the kinetic pressure like

0 ≤ P̂ε := Ξ ρ̂ε ≤ ‖v‖2
L∞ ρ̂ε ,

which involves the so-called Eddington factor Ξ. For instance, we can go back to (18) and get
rid of the O(ε) remainder. The corresponding system reads{

∂tρ̂ε + ∂xĴε = 0 ,
ε2 ∂tĴε + d ∂xρ̂ε = −γĴε .

(19)
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(This system is sometimes called the P1 approximation.) The approximation (19) can also be
justified through an expansion on Legendre polynomials of fε; however, such an approximation
is known to be satisfactory only under strong isotropy assumptions, see [4]. Therefore, a huge
variety of Eddington factors, possibly depending on ρ̂ε, ∂xρ̂ε, and so on, has been proposed. We
refer, among other works, to [30, 24, 32, 4], and for a recent overview of numerical methods for
such problems, we refer to [5]. These approximations can be obtained by postulating that the
approximate density is a given function of its two first moments ρ̂ε and Ĵε, say

f̂ε(t, x, v) = Θ(ρ̂ε(t, x), Ĵε(t, x), v) ,

so that the second moment of f̂ε can be computed in terms of ρ̂ε and Ĵε. We shall now present
such a closure, based on an entropy minimization principle.

1.3.3 Entropy Minimization Principle

Closing the moments system by using an entropy minimization principle has been first introduced
by Levermore [22, 23, 25]. It has also been used successfully in radiative transfer theory, see
[10, 38]. Let us now describe precisely this closure method. We define the (convex) entropy
functional

H(f) := f ln(f)− f + 1 ≥ 0 . (20)

Then, for ρ̂ε and Ĵε given, we wish to minimize the quantity∫
V
H(f) dµ(v) ,

under the constraints ∫
V
f dµ(v) = ρ̂ε ,

∫
V

v

ε
f dµ(v) = Ĵε .

The minimizer obtained in this way will be our approximate density of particles. A quick
calculation yields the following expression for the minimizer

f̂ε(v) = eλ0+λ1v/ε > 0 , (21)

where the Lagrange multipliers λ0, λ1 are determined by the following system:
ρ̂ε = eλ0 F

(
λ1

ε

)
,

Ĵε =
1
ε
eλ0 F′

(
λ1

ε

)
=
ρ̂ε

ε
G
(
λ1

ε

)
.

(22)

We note that λ1 is uniquely determined provided that we have ε |Ĵε| < ρ̂ε, see Lemma 4. This
constraint is nothing but the limited flux condition (9).

Now, we use the previous formulae to close the moment system. Using (21) and (22), we
compute ∫

V
v2 f̂ε dµ(v) = eλ0 F′′

(
λ1

ε

)
= ρ̂ε

F′′

F
◦G(−1)

(
ε
Ĵε

ρ̂ε

)
= ρ̂ε ψ

(
ε
Ĵε

ρ̂ε

)
.

We are thus led to the following system of equations
∂tρ̂ε + ∂xĴε = 0 ,

ε2 ∂tĴε + ∂x

(
ρ̂ε ψ

(
ε
Ĵε

ρ̂ε

))
= −γĴε .

(23)
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In the next section, we shall detail some properties of system (23) such as hyperbolicity, and
the existence of a convex entropy. Following the approach of [16], we shall also show that (23)
admits global smooth solutions, that satisfy some uniform bounds with respect to ε.

We can expect that the system (23) is consistent with the diffusion limit since, expanding
formally ε2∂tĴε+∂x(ρ̂ε ψ(εĴε/ρ̂ε))+γĴε ' d ∂xρ̂ε+γĴε, we recover (6). Besides, the approximate
microscopic density is given by

f̂ε(t, x, v) = ρ̂ε

exp
(
v G(−1)

(
εĴε/ρ̂ε

))
F ◦G(−1)

(
εĴε/ρ̂ε

) ≥ 0 . (24)

Performing straightforward Taylor expansions leads to

f̂ε ' ρ̂ε

(
1 +

v ε Ĵε

d ρ̂ε

)
' ρ̂ε

(
1− ε v

∂xρ̂ε

γρ̂ε

)
,

as well as

f̂ε(t, x, v) ' ρ̂ε exp
(
−εv ∂xρ̂ε

γρ̂ε

)
,

so that (24) formally looks like (8) or (14).
The example of (13) endowed with the discrete measure (Example 2), is particularly illumi-

nating. We have only two velocities +1 and −1, and (1) can be recast as

∂tf± ±
1
ε
∂xf± = ±f− − f+

2ε2
,

where the unknowns f±(t, x) stand for f(t, x,±1). This is the so-called Goldstein-Taylor model,
see [11, 36]. The two first moments ρε = 1

2(f+ + f−), Jε = 1
2ε(f+ − f−), are solutions to (19),

with d = 1. A remarkable feature is that (19) can be recast as a damped wave equation (see
also (10))

ε2 ∂ttρ̂ε + ∂tρ̂ε − ∂2
xxρ̂ε = 0 .

The solution of this damped wave equation can be explicitely computed by using a stochastic
argument, as shown in [19]. This probabilistic approach can be used to deduce in a very elegant
way the convergence of ρ̂ε towards the solution to (6), see [27]. For the discrete measure, we
compute

F(β) = cosh(β) , G(β) = tanh(β) , ψ(u) = 1 u ∈ (−1, 1) .

Hence, we realize that (23) is nothing but (19): the entropy minimization closure actually
provides a very good approximation of the original equation (1), since it gives the exact solution!
This example shows that it could be dangerous to remove the (formally) smallest term in (19).
If we get rid of ε2∂tĴε, we are simply led to

∂tρ̂ε + ∂xĴε = 0 , Ĵε = −∂xρ̂ε ,

and we recover the heat equation (6) that propagates at infinite speed. This is clearly not con-
sistent with the approximation procedure and we cannot go back to the kinetic approximation.
Indeed, the relation Ĵε = −∂xρ̂ε = ρ̂ε

ε G(λ1/ε) = ρ̂ε

ε tanh(λ1/ε) makes sense only under the
limited flux condition ε|∂xρ̂ε| < ρ̂ε.

In the case of the Gaussian measure (Example 3), we have

F(β) = exp(β2/2) , G(β) = β , ψ(u) = 1 + u2 u ∈ R .

10



In this case, system (23) is nothing but the rescaled isothermal Euler system:
∂tρ̂ε + ∂xĴε = 0 ,

ε2

(
∂tĴε + ∂x

(Ĵε)2

ρ̂ε

)
+ ∂xρ̂ε = −γ Ĵε .

(25)

A detailed analysis of the convergence to the heat equation has been performed by Junca and
Rascle [17] for BV initial data; we shall use some of their arguments when studying the conver-
gence of solutions to (23). It is also worth mentioning that in this case, the approximate density
of particles, given by (24), reads

f̂ε(t, x, v) dµ(v) = ρ̂ε(t, x) exp
[
−(v − uε(t, x))2

2

]
dv√
2π

,

with uε = εĴε/ρ̂ε and dv the Lebesgue measure on R. We recover the classical Maxwellian
distribution.

Remark 3. We can use any convex function to define the entropy functional instead of using
those based on the function s 7→ s ln(s). For instance, if we use the function s 7→ s2/2, and
perform the same minimization procedure, we would obtain f̂ε(t, x, v) = ρ̂ε(t, x)+ε v Ĵε(t, x), with
(ρ̂ε, Ĵε) solution to (19). Neglecting ε2∂tĴε, we recover (8). The entropy (20) has the advantage
to ensure the nonnegativity of the approximate density. There are also strong physical arguments
for this expression, see [6, 22, 23, 25].

Remark 4. It has been noticed that the entropy minimization approach proposed by Levermore
may suffer from some severe drawbacks, at least when one tries to approximate the full gas
dynamics Boltzmann equation or a kinetic equation with unbounded velocities. We refer for
instance to [18] and [9]. Besides, for numerical purposes, other choices of moment closures,
which do not necessarily guarantee nonnegativity, can provide sharp results for a still reasonable
numerical cost, and regions of negative density remain negligeable. We refer for approaches
based on Hermite polynomials expansions to [9, 34, 33]. Note, however, that the entropy closure
has been used successfully for applications in radiative transfer theory, see [10] and [38]. For an
analysis of discrete velocity models and applications to gas dynamics, we refer to [28, 29].

1.4 Main results

Our objective is to investigate the solutions to (23), and to establish the convergence, as ε tends
to 0, of both ρ̂ε and f̂ε towards the solution to the heat equation. We shall prove in this way
the consistency of the entropy minimization model in the diffusion regime. Here we focus on
smooth solutions that are bounded away from vacuum. We refer to [7] for the study of weak
solutions that include vacuum regions. Our first main result is stated as follows:

Theorem 2. Assume that Assumptions 1, 2 and 3 are satisfied. Let ρ > 0. There exist two
constants δ > 0 and C > 0 such that, for any ε ∈]0, 1], and for any (ρ0, J0) with ‖ρ0−ρ‖H2(R) ≤ δ

and ‖ε J0‖H2(R) ≤ δ, there exists a unique global solution (ρ̂ε, Ĵε) to (23) with initial data
(ρ0, J0), and that satisfies (ρ̂ε − ρ, Ĵε) ∈ C(R+;H2(R))∩ C1(R+;H1(R)). Furthermore, denoting
ûε = ε Ĵε/ρ̂ε, this global smooth solution satisfies the estimate

sup
t∈R

(
‖ρ̂ε(t)− ρ‖2

H2(R) + ‖ûε(t)‖2
H2(R)

)
+

1
ε2

∫ +∞

0
‖ûε(t)‖2

H2(R) dt

≤ C
(
‖ρ0 − ρ‖2

H2(R) + ‖u0‖2
H2(R)

)
.
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Furthermore, we can show the convergence of ρ̂ε towards the solution to the heat equation
by using arguments quite close to those of Junca and Rascle [17]. For simplicity, we consider
initial data ρ0 and u0 that are independent of ε. Then we obtain the following result:

Theorem 3. Assume that the assumptions of Theorem 1-ii) and Theorem 2 are fulifilled. Let r
be the solution to the heat equation (6) with initial data ρ0. Then, there exists a constant C > 0
such that

‖ρ̂ε − r‖L2(R+×R) ≤ C ε .

Furthermore, let f̂ε(t, x, v) be defined by (24). Then, we have

‖f̂ε − fε‖L2((0,T )×R×V ) ≤ CT ε .

Remark 5. The result of Theorem 2 also holds when the measure µ is the Gaussian measure
(Example 3). In this case, we have seen that the system (23) is the rescaled isothermal Euler
system (25). Theorems 2 and 3 thus give an analogous result to the convergence result of [17],
but for global smooth solutions.

The proof also adapts to a multidimensional framework, in the spirit of [39]. We refer to [8]
for the treatment of the isothermal Euler equations.

We can also deal with nonlinear collision models. For instance, the linear collision operator
(C2) can be replaced by σ(ρ)(ρ− f), for a smooth function σ : R+ → (0, B). This model arises
in radiative transfer theory, see e.g. [2]. The right-hand side in (23) becomes −σ(ρ)J .

Our second convergence result is concerned with the simpler conservation equation (15). We
obtain a result in the same spirit, at least locally in time.

Theorem 4. Assume that Assumptions 1, 2 and 3 are satisfied. Let ρ > 0. There exist
three constants δ > 0, C > 0 and T∗ > 0 such that, for any ε ∈]0, 1], and for any ρ0 with
‖ρ0 − ρ‖H4(R) ≤ δ, there exists a unique solution ρ̂ε ∈ C([0, T∗]; ρ+H4(R)) to∂tρ̂ε − ∂x

(
D
(ε ∂xρ̂ε

γ ρ̂ε

) ∂xρ̂ε

γ

)
= 0 ,

ρ̂ε|t=0
= ρ0 ,

(26)

where we have set D(β) := G(β)/β. Moreover, the solution ρ̂ε satisfies the estimates

sup
t∈[0,T∗]

‖ρ̂ε(t)− ρ‖H4(R) ≤ C , sup
t∈[0,T∗]

‖ρ̂ε(t)− ρ‖W 1,∞(R) ≤ ρ/2.

Let r be the solution to the heat equation (6) with initial data ρ0. Then, we also have

sup
t∈[0,T∗]

‖ρ̂ε(t)− r(t)‖L2(R) ≤ C ε .

Eventually, if we set

f̂ε(t, x, v) := ρ̂ε(t, x) exp
(
−εv ∂xρ̂ε(t, x)

γ ρ̂ε(t, x)

)
≥ 0 ,

then ‖f̂ε − fε‖L2((0,T∗)×R×V ) tends to 0 as ε → 0, with rate O(ε) under the assumptions of
Theorem 1-ii).

Theorems 2, 3 and 4 indicate that the equations (23) and (16) provide some good approxi-
mations of the solution to the original problem (1) for small values of the parameter ε. These
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results need smallness assumptions on the initial data for which, in some sense, the diffusion
driven regime applies. Note however that the smallness hypothesis is independent of ε.

The remainder of the paper is organized as follows. We first deal with the system (23). The
first task is to prove that (23) is a 2×2 symmetrizable hyperbolic system of balance laws. Then
we shall show that (23) satisfies the so-called Kawashima condition (see below and [16, 35] for
the definition); for fixed ε > 0, this property yields the global existence of smooth solutions
for small initial data, by applying the result of [16]. However, a careful analysis of the energy
estimates of [16] for the system (23) leads to uniform conclusions with respect to ε, and allows
us to prove Theorems 2 and 3. (In the general case, it is not clear whether the result of [16] can
be made uniform with respect to ε). The proof of Theorems 2 and 3 is detailed in section 2.

Eventually, we turn to the proof of Theorem 4 in section 3, which relies on a suitable
regularization technique and on standard energy estimates for quasilinear parabolic equations.
The key point is to check that the estimates are uniform with respect to ε.

2 Proof of Theorem 2

For hyperbolic systems of balance laws that are partially dissipative and are endowed with a
strictly convex entropy, a general theory of global existence of smooth solutions (with small
initial data) has been developed by Hanouzet and Natalini [16]. This global existence result
relies on the so-called Kawashima condition (see e.g. [35] and the references in [16]). In this
section, we are going to show that the system (23) satisfies all the assumptions of [16], and thus
admits global smooth solutions. However, it is not clear whether the bounds obtained in [16]
are uniform with respect to the small parameter ε. For the particular system (23) that we study
here, we give a detailed proof of this uniformity with respect to ε. The method is more or less
the one developed in [16], but some refined estimates are needed. To simplify, we shall consider
that γ = 1 in (23). The general case is similar.

2.1 General facts on the hyperbolic system

In this paragraph, we establish some basic properties of the system (23). We always consider
a measure µ that satisfies Assumptions 1-2-3, as well as the assumptions of Lemma 4. We also
keep the notation F for the Laplace transform, and the notation G = F′/F (see Lemma 4). The
function ψ is defined by (12).

We focus on the system without source term (the unknowns are now denoted ρ and J for
convenience): ∂tρ+ ∂xJ = 0 ,

ε2 ∂tJ + ∂x

(
ρψ(ε

J

ρ
)
)

= 0 .
(27)

In all what follows, we use the notation u := εJ/ρ to denote the (rescaled) velocity.
System (27) meets the classical hyperbolicity properties, as shown in the following:

Proposition 1. The system (27) is stricly hyperbolic in the open set {(ρ, J)/ρ > 0 , ε |J | < ρ}.
Its characteristic speeds λε

1,2 are given by

λε
1,2(ρ, J) :=

1
ε

λ1,2(
εJ

ρ
) , with λ1,2(u) :=

ψ′(u)∓
√
ψ′(u)2 − 4uψ′(u) + 4ψ(u)

2
. (28)

Moreover, the function

H(ρ, J) := ρ ln ρ− ρ ln
[
F ◦G(−1)(

εJ

ρ
)
]

+ εJ G(−1)(
εJ

ρ
) , (29)
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is a strictly convex entropy for (27). The corresponding flux is given by

F(ρ, J) := J ln ρ− J ln
[
F ◦G(−1)(

εJ

ρ
)
]

+
1
ε
ρψ(

εJ

ρ
) G(−1)(

εJ

ρ
) . (30)

Proof. If we write system (27) under the compact form

∂t

(
ρ
J

)
+ ∂xAε(ρ, J) = 0 ,

we compute the Jacobian matrix

DAε(ρ, J) =

(
0 1

1
ε2

(ψ(u)− uψ′(u))
1
ε
ψ′(u)

)
.

The reader will then check that the eigenvalues of DAε(ρ, J) are real, distinct, and given by
(28). The discriminant of the characteristic polynomial is positive since

ψ′(u)2 − 4uψ′(u) + 4ψ(u) = (ψ′(u)− 2u)2 + 4(ψ(u)− u2) ≥ 4 G′ ◦G(−1)(u) > 0 .

Thus, the system (27) is strictly hyperbolic. Eigenvectors of the Jacobian DAε(ρ, J) are given
by

rε
1,2(ρ, J) =

(
1

λε
1,2(ρ, J)

)
. (31)

That H is an entropy for (27) with flux F is a simple application of the chain rule. The
calculations are omitted. The Hessian matrix of H is

D2H(ρ, J) =
1

ρG′ ◦G(−1)(u)

(
ψ(u) −ε u
−ε u ε2

)
,

therefore H is a strictly convex function of the conservative variables (ρ, J).

Remark 6. The expression of the entropy might look complicated, though it is very natural. As
a matter of fact, the entropy H(ρ, J) is nothing but

H(ρ, J) =
∫

V
f̂ε ln f̂ε dµ(v) ,

where f̂ε is the minimizer obtained in (21)-(22). That H is an entropy was already noted in [22].

Observe that the characteristic speeds of (27) only depend on the velocity u. This situation
looks very much like the isothermal Euler system (25).

2.2 Preliminary transformations

Recall that system (23) reads (dropping in this section the ·̂ symbols):∂tρ+ ∂xJ = 0 ,

∂tJ +
1
ε2
∂x

(
ρψ(

εJ

ρ
)
)

= − 1
ε2
J ,

(32)

and thus has the classical structure described by Equation (6) in [16]. The set of equilibrium
points is the half-line {ρ > 0, J = 0}. Furthermore, we have seen that a strictly convex entropy
for (32) is given by the following formula (see Proposition 1):

H(ρ, J) := ρ ln ρ− ρ ln
[
F ◦G(−1)(

εJ

ρ
)
]

+ εJ G(−1)(
εJ

ρ
) .
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Using the velocity u := εJ/ρ, (32) reads
∂tρ+

1
ε
∂x(ρu) = 0 ,

∂t(ρu) +
1
ε
∂x (ρψ(u)) = − 1

ε2
ρu .

In order to simplify some computations, it is convenient to rescale the time variable, and we
introduce the new unknowns

ρ̃(t, x) := ρ(εt, x) , ũ(t, x) := u(εt, x) . (33)

Then (ρ, J = ρu/ε) is a global smooth solution to (32) if, and only if, (ρ̃, ũ) is a global smooth
solution to ∂tρ̃+ ∂x(ρ̃ ũ) = 0 ,

∂t(ρ̃ ũ) + ∂x (ρ̃ ψ(ũ)) = −1
ε
ρ̃ ũ .

(34)

A strictly convex entropy for (34) is given by

H̃(ρ̃, J̃) := ρ̃ ln ρ̃− ρ̃ ln
[
F ◦G(−1)

(
J̃

ρ̃

)]
+ J̃ G(−1)

(
J̃

ρ̃

)
.

Here, we have used the notation J̃ = ρ̃ ũ.
We are going to construct global smooth solutions to (34) that are close to a given equilibrium

point, and we shall thus obtain global smooth solutions to (32).
We consider a fixed equilibrium point (ρ, 0) for (34), ρ > 0, and following [16], we define the

entropic variables:

W =
(
W1

W2

)
:= ∇H̃(ρ̃, J̃)−∇H̃(ρ, 0) =

(
ln(ρ̃/ρ)− ln F ◦G(−1)(ũ)

G(−1)(ũ)

)
, (35)

in order to use Godunov’s symmetrization. Note that this is a change of variables from the
set {(ρ̃, J̃)/ρ̃ > 0, |J̃ | < ρ̃} to the whole plane R2. After a few simplifications, one shows that
for smooth solutions (ρ̃, J̃) away from vacuum, (34) is equivalent to a quasilinear symmetric
hyperbolic system for W = (W1,W2):

A0(W2) ∂tW +A1(W2) ∂xW = −1
ε

(
0

G(W2)

)
, (36)

where A0(W2) is a symmetric positive definite matrix, A1(W2) is symmetric, and are defined as
follows:

A0(W2) :=
(

1 G(W2)
G(W2) ψ ◦G(W2)

)
, (37)

A1(W2) :=
(

G(W2) ψ ◦G(W2)
ψ ◦G(W2) Φ ◦G(W2)

)
, Φ(u) := (ψ(u)− uψ′(u))u+ ψ(u)ψ′(u) . (38)

Thanks to our new time scaling, both A0 and A1 are independent of ε. Note that they depend
only on the second component of the vector W . This will be extensively used in what follows.

In the entropic variables, the set of equilibrium points is the line {W2 = 0}. Since G is
an odd function that is increasing, we can write G(W2) = W2 Γ(W2), where Γ(W2) > 0, and
Γ ∈ C∞(R). Therefore (36) is strictly entropy dissipative in the sense of [16, definition 2].

15



We now check the Kawashima condition, using Lemma 2 in [16]. In the entropic variables,
the equilibrium point (ρ, 0) becomes the origin, see (35). Let κ ∈ R, and let X ∈ R \ {0}. Then
the Kawashima condition is equivalent to

[κA0(0) +A1(0)]
(
X
0

)
6= 0 .

Using (37)-(38), we compute

[κA0(0) +A1(0)]
(
X
0

)
= X

(
κ
d

)
6= 0 .

The Kawashima condition is thus satisfied, and we can apply the global existence result of [16]:
there exists δ = δ(ρ, ε) > 0 such that, for any W0 ∈ H2(R) with ‖W0‖H2(R) ≤ δ, (36) has a
unique global smooth solution with initial data W0. (Here, smooth means C([0,+∞[;H2(R)) ∩
C1([0,+∞[;H1(R))). In the next paragraph, we are going to show that the radius δ(ρ, ε) can be
chosen independent of ε.

2.3 Energy estimates

We first introduce some classical notations. The Sobolev space Hk(R) (k = 0, 1, 2), is equipped
with the usual norm

‖f‖2
k :=

k∑
j=0

∫
R
|∂j

xf(x)|2 dx .

Given any positive time T > 0, and any function W = (W1,W2) ∈ C([0, T ];H2(R)), we introduce
the energy functional

Nε(T )2 := sup
0≤t≤T

‖W (t)‖2
2 +

1
ε

∫ T

0
‖W2(τ)‖2

2 dτ + ε

∫ T

0
‖∂xW1(τ)‖2

1 dτ . (39)

Let us remark that the classical Sobolev imbeddings yield the following useful inequalities:

‖W‖L∞([0,T ];W 1,∞(R)) ≤ C Nε(T ) , ‖W2‖L2([0,T ];W 1,∞(R)) ≤ C
√
εNε(T ) ,

‖∂xW‖L2([0,T ];L∞(R)) ≤ C
Nε(T )√

ε
,

for some numerical constant C.
Note that (36) has solutions in the space C([0, T ];H2(R)) ∩ C1([0, T ];H1(R)), at least for a

small enough time T , thanks to Kato’s result [20]. We are going to prove the following:

Proposition 2. Let T > 0, and assume that W ∈ C([0, T ];H2(R)) ∩ C1([0, T ];H1(R)) is a
solution to (36). There exists an increasing function C : R+ → R+, that is independent of T , ε,
and W , such that the following inequality holds:

Nε(T )2 ≤ C(‖W‖L∞([0,T ]×R))
{
Nε(0)2 +Nε(T )3(1 +Nε(T ))

}
.

The proof splits into several steps. One first estimates the L∞(H2) norm of W and the
L2(H2) norm of the component W2, by using the classical procedure of [20]. However, special
attention is needed when dealing with the second order derivatives, in order to derive uniform
bounds. Eventually, one recovers the L2(H1) estimate of ∂xW1 by using the Kawashima condi-
tion. (This final step was already achieved in [16], but it is crucial to check the independence of
the constants with respect to ε.)
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2.3.1 The L∞(L2) estimate of W

Let W ∈ C([0, T ];H2(R)) ∩ C1([0, T ];H1(R)) be a solution to (36). In the original variables, it
corresponds to a solution (ρ̃, J̃) ∈ C([0, T ]; ρ+H2(R))×C([0, T ];H2(R)) to (34), that is bounded
away from vacuum.

To obtain the L∞(L2) estimate, we slightly modify the entropy H̃, and define

η(ρ̃, J̃) := H̃(ρ̃, J̃)− H̃(ρ, 0)− [∇H̃(ρ, 0)] · (ρ̃, J̃) ,

which is still, of course, a strictly convex entropy for the system (34). Its flux is denoted q(ρ̃, J̃).
Moreover, the entropy η satisfies

η(ρ, 0) = 0 , ∇η(ρ, 0) = 0 .

For the smooth solution (ρ̃, J̃) ∈ C([0, T ]; ρ+H2(R))×C([0, T ];H2(R)) to (34), we integrate
the balance law

∂tη + ∂xq = −1
ε
J̃ G(−1)

(
J̃

ρ̃

)
,

over the strip [0, t]× Rd, and we obtain∫
R
η dx

∣∣∣t
0
+

1
ε

∫ t

0

∫
R
J̃ G(−1)

(
J̃

ρ̃

)
dx ds = 0 .

Using the convexity properties of η, we get

1
C

(
|ρ̃− ρ|2 + |J̃ |2

)
≤ η(ρ̃, J̃) ≤ C

(
|ρ̃− ρ|2 + |J̃ |2

)
,

where the constant C only depends on ρ, and the norms ‖ρ̃ − ρ‖L∞([0,t]×R), ‖J̃‖L∞([0,t]×R). To
conclude, we use the definition (35), and we thus derive the bounds

1
C
|W |2 ≤ η(ρ̃, J̃) ≤ C |W |2 ,

where the constant C only depends on ρ, and the norm ‖W‖L∞([0,t]×Rd), but is independent of
ε. Eventually, we obtain:

‖W (t)‖2
0 +

1
ε

∫ t

0
‖W2(τ)‖2

0 dτ ≤ C(‖W2‖L∞([0,t]×R))Nε(0)2 . (40)

2.3.2 The L∞(H1) estimate of W

One first differentiates (36) with respect to the space variable x, then takes the scalar product
with ∂xW , and integrates over the strip [0, t]× R. Defining the matrix

A(W2) := A0(W2)−1A1(W2) =
(

0 ψ ◦G(W2)−G(W2)ψ′ ◦G(W2)
1 ψ′ ◦G(W2)

)
, (41)

and performing some simplifications (see equations (52)-(53)-(54)-(55) in [16]), we obtain the
relation

1
2

∫
R
A0(W2)∂xW · ∂xW dx

∣∣∣t
0
+

1
ε

∫ t

0

∫
R

G′(W2)(∂xW2)2 dx ds

=
∫ t

0

∫
R

[1
2
(T1 + T2 − T3) + T4

]
dx ds , (42)
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where we have set:

T1 := (∂tW2)A′0(W2)∂xW · ∂xW ,

T2 := (∂xW2)A′0(W2)A(W2)∂xW · ∂xW ,

T3 := (∂xW2)A0(W2)A′(W2)∂xW · ∂xW ,

T4 :=
1
ε

(∂xW2)A′0(W2)A−1
0 (W2)

(
0

G(W2)

)
· ∂xW .

Using Cauchy-Schwarz’ inequality, and the Sobolev imbedding H2(R) ⊂W 1,∞(R), we obtain∫ t

0

∫
R
|T2|+ |T3| dx ds ≤ C(‖W‖L∞([0,t]×R)) ‖∂xW‖L∞([0,t]×R)

∫ t

0

∫
R
|∂xW2||∂xW | dx ds

≤ C(‖W‖L∞([0,t]×R))Nε(t)3 .

Using (36)-(37)-(38), we compute the scalar equation

∂tW2 + ∂xW1 + ψ′ ◦G(W2) ∂xW2 = −1
ε

G(W2)
G′(W2)

. (43)

Thanks to (43), we also obtain∫ t

0

∫
R
|T1| dx ds ≤ C(‖W‖L∞([0,t]×R))

∫ t

0

∫
R
(|∂xW |+ 1

ε
|W2|) |∂xW2| |∂xW | dx ds

≤ C(‖W‖L∞([0,t]×R)) ‖∂xW‖L∞([0,t]×R)

∫ t

0

∫
R
|∂xW | |∂xW2|+

1
ε
|W2| |∂xW2| dx ds

≤ C(‖W‖L∞([0,t]×R))Nε(t)3 .

Eventually, we have∫ t

0

∫
R
|T4| dx ds ≤ C(‖W‖L∞([0,t]×R))

∫ t

0

∫
R

1
ε
|W2| |∂xW2| |∂xW | dx ds

≤ C(‖W‖L∞([0,t]×R))Nε(t)3 .

The left hand side of (42) is easily estimated from below, and summing up, we obtain the
L∞(H1) uniform estimate:

‖∂xW (t)‖2
0 +

1
ε

∫ t

0
‖∂xW2(τ)‖2

0 dτ ≤ C(‖W‖L∞([0,t]×R))
(
Nε(0)2 +Nε(t)3

)
. (44)

2.3.3 The L∞(H2) estimate of W

The beginning is the same as in the former paragraph. One differentiates twice (36) with respect
to the space variable x, then takes the scalar product with ∂xxW , and integrates over the strip
[0, t]× R. Using the relations (58)-(59) of [16], we are led to the relation

1
2

∫
R
A0(W2)∂xxW · ∂xxW dx

∣∣∣t
0
+

1
ε

∫ t

0

∫
R

G′(W2)(∂xxW2)2 dx ds

=
∫ t

0

∫
R

[1
2
(S1 + S2) + 2(S3 − S4) + S5 + S6 − S7 − S8 − S9

]
dx ds , (45)
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where we have set:

S1 := (∂tW2)A′0(W2)∂xxW · ∂xxW ,

S2 := (∂xW2)A′1(W2)∂xxW · ∂xxW ,

S3 :=
∂xW2

ε
A′0(W2)∂x

[
A−1

0 (W2)
(

0
G(W2)

)]
· ∂xxW ,

S4 := (∂xW2)A0(W2)A′(W2)∂xxW · ∂xxW ,

S5 :=
∂xxW2

ε
A′0(W2)A−1

0 (W2)
(

0
G(W2)

)
· ∂xxW ,

S6 :=
(∂xW2)2

ε
A′′0(W2)A−1

0 (W2)
(

0
G(W2)

)
· ∂xxW ,

S7 := (∂xxW2)A0(W2)A′(W2)∂xW · ∂xxW ,

S8 := (∂xW2)2A0(W2)A′′(W2)∂xW · ∂xxW ,

S9 :=
1
ε

G′′(W2) (∂xW2)2 ∂xxW2 .

Let us start with the easy terms. Since G′′ is an odd function, we have:∫ t

0

∫
R
|S9| dx ds ≤ C(‖W‖L∞([0,t]×R))

∫ t

0

∫
R

|W2|
ε

(∂xW2)2 |∂xxW2| dx ds

≤ C(‖W‖L∞([0,t]×R)) ‖∂xW2‖2
L∞([0,t]×R)

∫ t

0

∫
R

|W2| |∂xxW2|
ε

dx ds

≤ C(‖W‖L∞([0,t]×R))Nε(t)4 .

In a similar way, we have ∫ t

0

∫
R
|S8| dx ds ≤ C(‖W‖L∞([0,t]×R))Nε(t)4 ,

and ∫ t

0

∫
R
|S7| dx ds ≤ C(‖W‖L∞([0,t]×R))Nε(t)3 .

Observe that the first column of A′(W2) is zero, see (41), hence we have∫ t

0

∫
R
|S4| dx ds ≤ C(‖W‖L∞([0,t]×R))

∫ t

0

∫
R
|∂xW2| |∂xxW2| |∂xxW | dx ds

≤ C(‖W‖L∞([0,t]×R)) ‖∂xW‖L∞([0,t]×R)

∫ t

0

∫
R
|∂xxW2||∂xxW | dx ds

≤ C(‖W‖L∞([0,t]×R))Nε(t)3 .

The five remaining terms in the right-hand side of (45) are estimated in a slightly different
way. We shall use the following version of Hölder’s inequality:∫ t

0

∫
R
|fgh(s, x)| dx ds ≤

∫ t

0
‖f(s, ·)‖L∞(R) ‖g(s, ·)‖L2(R) ‖h(s, ·)‖L2(R) ds

≤ ‖g‖L∞(0,t;L2(R)) ‖f‖L2(0,t;L∞(R)) ‖h‖L2((0,t)×R) .

Combining this inequality to the Sobolev embedding leads to∫ t

0

∫
R
|fgh(s, x)| dx ds ≤ ‖g‖L∞(0,t;L2(R)) ‖f‖L2(0,t;H1(R)) ‖h‖L2((0,t)×R) .
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This is where our analysis of the source terms differs from what was done in [16].
Applying the strategy described just above, we get∫ t

0

∫
R
|S6| dx ds ≤ C(‖W‖L∞([0,t]×R))

∫ t

0

∫
R

(∂xW2)2

ε
|W2| |∂xxW | dx ds

≤ C(‖W‖L∞([0,t]×R)) ‖∂xW‖L∞([0,t]×R)

∫ t

0

∫
R

|∂xW2| |W2|
ε

|∂xxW | dx ds

≤ C(‖W‖L∞([0,t]×R))Nε(t)
∫ t

0
‖∂xxW (s)‖L2(R)

‖∂xW2(s)‖L2(R)√
ε

‖W2(s)‖L∞(R)√
ε

ds ,

and now, we use the obvious inequalities (see (39)):

‖∂xxW (s)‖L2(R) ≤ Nε(s) ≤ Nε(t) , ‖W2(s)‖L∞(R) ≤ C ‖W2(s)‖H1(R) ,

and we obtain ∫ t

0

∫
R
|S6| dx ds ≤ C(‖W‖L∞([0,t]×R))Nε(t)4 .

In a similar way, we have∫ t

0

∫
R
|S5| dx ds ≤ C(‖W‖L∞([0,t]×R))

∫ t

0

∫
R

|∂xxW2| |W2|
ε

|∂xxW | dx ds

≤ C(‖W‖L∞([0,t]×R))
∫ t

0
‖∂xxW (s)‖L2(R)

‖∂xxW2(s)‖L2(R)√
ε

‖W2(s)‖L∞(R)√
ε

ds

≤ C(‖W‖L∞([0,t]×R))Nε(t)3 .

To estimate S3, we remark that the vector

∂x

[
A−1

0 (W2)
(

0
G(W2)

)]
can be written under the form (∂xW2)ϑ(W2), for some appropriate vector ϑ(W2). Therefore, we
have∫ t

0

∫
R
|S3| dx ds ≤ C(‖W‖L∞([0,t]×R))

∫ t

0

∫
R

(∂xW2)2

ε
|∂xxW | dx ds

≤ C(‖W‖L∞([0,t]×R))
∫ t

0
‖∂xxW (s)‖L2(R)

‖∂xW2(s)‖L2(R)√
ε

‖∂xW2(s)‖L∞(R)√
ε

ds

≤ C(‖W‖L∞([0,t]×R))Nε(t)3 ,

where, for the last inequality, we have used Sobolev’s imbedding:

‖∂xW2(s)‖L∞(R) ≤ C ‖W2(s)‖H2(R) .

Eventually, we have∫ t

0

∫
R
|S2| dx ds ≤ C(‖W‖L∞([0,t]×R))

∫ t

0

∫
R
|∂xW2| |∂xxW |2 dx ds

≤ C(‖W‖L∞([0,t]×R))
∫ t

0
‖∂xW2(s)‖L∞(R) ‖∂xxW (s)‖2

L2(R) ds

≤ C(‖W‖L∞([0,t]×R))Nε(t)
∫ t

0
‖W2(s)‖H2(R) ‖∂xW (s)‖H1(R) ds

≤ C(‖W‖L∞([0,t]×R))Nε(t)3 .
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Using (43), we also have∫ t

0

∫
R
|S1| dx ds ≤ C(‖W‖L∞([0,t]×R))

∫ t

0

∫
R
(|∂xW |+ |W2|

ε
) |∂xxW2| |∂xxW | dx ds

≤ C(‖W‖L∞([0,t]×R)) ‖∂xW‖L∞([0,t]×R)

∫ t

0

∫
R
|∂xxW2| |∂xxW | dx ds

+ C(‖W‖L∞([0,t]×R))
∫ t

0

‖W2(s)‖L∞(R)√
ε

‖∂xxW2(s)‖L2(R)√
ε

‖∂xxW (s)‖L2(R) ds

≤ C(‖W‖L∞([0,t]×R))Nε(t)3 .

Going back to (45), the sum of all the estimates above yields the expected L∞(H2) bound:

‖∂xxW (t)‖2
0 +

1
ε

∫ t

0
‖∂xxW2(τ)‖2

0 dτ ≤ C(‖W‖L∞([0,t]×R))
(
Nε(0)2 +Nε(t)3 +Nε(t)4

)
. (46)

2.3.4 The L2(H1) estimate of ∂xW1

In this paragraph, we follow the method developed in [16]. Recall that the diffusion coefficient
d, that is given by Assumption 3, satisfies d = G′(0) = ψ(0).

We begin with the following elementary result:

Lemma 5. Let K denote the matrix

K :=
(

0 1/d
−1 0

)
.

Then KA0(0) is skew-symmetric, and

KA1(0) =
(

1 0
0 −d

)
.

Following [16], we rewrite (36) as

A0(0) ∂tW +A1(0) ∂xW = Hε(W2, ∂xW ) , (47)

with

Hε(W2, ∂xW ) :=
[
A1(0)−A1(W2) + (A0(0)−A0(W2))A(W2)

]
∂xW

− 1
ε

[
(A0(0)−A0(W2))A−1

0 (W2) + I
]( 0

G(W2)

)
. (48)

We multiply (47) by εK, (K is the matrix defined in Lemma 5), then take the scalar product
with ∂xW , and integrate over the strip [0, t]× R:∫ t

0

∫
R
ε (KA0(0)∂tW +KA1(0)∂xW ) · ∂xW dxds =

∫ t

0

∫
R
ε [KHε(W2, ∂xW )] · ∂xW dxds . (49)

Using relation (70) in [16], we have∫ t

0

∫
R
εKA0(0)∂tW · ∂xW dxds = −ε

2

∫
R
KA0(0)∂xW ·W dx

∣∣∣t
0
≥ −C ε (‖W (t)‖2

1 + ‖W (0)‖2
1) ,

and Lemma 5 gives∫ t

0

∫
R
εKA1(0)∂xW · ∂xW dxds = ε

∫ t

0

∫
R
(∂xW1)2 dx ds− d ε

∫ t

0

∫
R
(∂xW2)2 dx ds .
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Now, we observe that∣∣[A1(0)−A1(W2) + (A0(0)−A0(W2))A(W2)
]
∂xW

∣∣ ≤ C(‖W‖L∞([0,t]×R)) |W2| |∂xW | ,
1
ε

∣∣∣(A0(0)−A0(W2))A−1
0 (W2)

(
0

G(W2)

) ∣∣∣ ≤ 1
ε
C(‖W‖L∞([0,t]×R)) |W2|2 ,

and we compute

−K
(

0
G(W2)

)
· ∂xW = −1

d
G(W2) ∂xW1 .

Consequently, using (48), we obtain∫ t

0

∫
R

∣∣ε [KHε(W2, ∂xW )] · ∂xW
∣∣ dx ds

≤ C(‖W‖L∞([0,t]×R))
∫ t

0

∫
R
ε |W2||∂xW |2 + |W2|2 |∂xW |+ |W2| |∂xW1| dx ds

≤ C(‖W‖L∞([0,t]×R))Nε(t)3 +
ε

2

∫ t

0

∫
R
(∂xW1)2 dx ds+

C(‖W‖L∞([0,t]×R))
ε

∫ t

0

∫
R
(W2)2 dx ds .

Using these estimates in (49) gives

ε

∫ t

0
‖∂xW1(τ)‖2

0 dτ ≤ C(‖W‖L∞([0,t]×R))
(
Nε(0)2 +Nε(t)3 + ‖W (t)‖2

1 +
1
ε

∫ t

0
‖W2(τ)‖2

1 dτ

)
.

We now use (40) and (44) to obtain

ε

∫ t

0
‖∂xW1(τ)‖2

0 dτ ≤ C(‖W2‖L∞([0,t]×R)) (Nε(0)2 +Nε(t)3 +Nε(t)4) . (50)

For the second derivative of W1,we proceed in the same way. We differentiate (47) with
respect to x, multiply by εK, take the scalar product with ∂xxW , and integrate over the strip
[0, t]× R:∫ t

0

∫
R
ε (KA0(0)∂txW +KA1(0)∂xxW ) · ∂xxW dxds =

∫ t

0

∫
R
ε [K (∂xHε(W2, ∂xW ))] · ∂xW dxds .

(51)
Following what was done earlier, see [16] for the details, we can first derive the lower bound∫ t

0

∫
R
ε (KA0(0)∂txW +KA1(0)∂xxW ) · ∂xxW dxds

≥ −C ε (‖W (t)‖2
2 + ‖W (0)‖2

2) + ε

∫ t

0
‖∂xxW1(τ)‖2

0 dτ − d ε

∫ t

0
‖∂xxW2(τ)‖2

0 dτ .

Starting from (48), we can write ∂x[Hε(W2, ∂xW2)] under the form

∂x[Hε(W2, ∂xW )] =
[
A1(0)−A1(W2)+(A0(0)−A0(W2))A(W2)

]
∂xxW +(∂xW2)A[(W2) ∂xW

− 1
ε

[
(A0(0)−A0(W2))A−1

0 (W2) + I
]( 0

G′(W2) ∂xW2

)
+
∂xW2

ε
A](W2)

(
0

G(W2)

)
,
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where A[(W2) and A](W2) are matrices that depend only on W2, and whose exact expression
is useless. We thus obtain∫ t

0

∫
R

∣∣ε [K (∂xHε(W2, ∂xW ))
]
· ∂xxW

∣∣ dx ds
≤ C(‖W‖L∞([0,t]×R))

∫ t

0

∫
R

{
ε |W2||∂xxW |2 + ε |∂xW2| |∂xW | |∂xxW |

+ |W2| |∂xW2| |∂xxW |+ |∂xW2| |∂xxW1|
}
dx ds

≤ C(‖W‖L∞([0,t]×R))Nε(t)3 +
ε

2

∫ t

0
‖∂xxW1(τ)‖2

0 dτ +
C(‖W‖L∞([0,t]×R))

ε

∫ t

0
‖W2(τ)‖2

2 dτ .

In the same way as we derived (50), we obtain here:

ε

∫ t

0
‖∂xxW1(τ)‖2

0 dτ ≤ C(‖W‖L∞([0,t]×R)) (Nε(0)2 +Nε(t)3 +Nε(t)4) . (52)

The sum of (40), (44), (46), (50), and (52) gives the result of Proposition 2.

2.4 End of the proof of Theorem 2

To conclude the proof, we follow [31]. Using Proposition 2, we first deduce that there exists a
numerical constant C0 ≥ 1 such that, if W ∈ C([0, T ];H2(R))∩C1([0, T ];H1(R)) is a solution to
(36) that satisfies Nε(T ) ≤ 1, then W also satisfies

Nε(T )2 ≤ C0

(
Nε(0)2 +Nε(T )3

)
.

The constant C0 is, of course, independent of ε. Consequently, if W is a smooth solution on a
time interval [0, T ] that satisfies Nε(T ) ≤ 1/(2C0), then W also satisfies

Nε(T ) ≤
√

2C0Nε(0) . (53)

Before going on, we observe that Nε(0) is independent of ε, see (39), since Nε(0) is just the
H2 norm of the initial data.

Consider an initial condition W (0) ∈ H2(R) such that ‖W (0)‖2 ≤ 1/[2(2C0)3/2]. Assume
that the corresponding smooth solution W to (36) is not global, and thus blows up in finite
time, say at time T∗ > 0. This means that for some positive time T0, one has

Nε(T0) =
1

4C0
> Nε(0) , and ∀ t ∈ ]T0, T∗[ , Nε(t) >

1
4C0

.

Since Nε(T0) < 1/(2C0), there exists a time T1 ∈ ]T0, T∗[ such that Nε(T1) ≤ 1/(2C0), and,
applying (53), we obtain

Nε(T1) ≤
√

2C0Nε(0) ≤
√

2C0

2(2C0)3/2
≤ 1

4C0
.

We are led to a contradiction. The smooth solution is thus global in time for small enough initial
data. The key point is that the smallness of the initial data is independent of ε. Moreover, when
‖W (0)‖2 ≤ 1/[2(2C0)3/2], one has the (global in time) uniform estimate

∀ t ≥ 0 , Nε(t) ≤ min
(

1
2C0

,
√

2C0Nε(0)
)
.
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It remains to convert the result for the system (36) into a result for the system (34), and
then into a result for the original system (32). Using (35), we first compute

ρ̃ = ρ F(W2) exp(W1) , ũ = G(W2) .

Consequently, there exists a number δ1 > 0 that is independent of ε such that, if

‖ρ̃0 − ρ‖2 + ‖ũ0‖2 ≤ δ1 ,

then (34) has a global smooth solution (ρ̃, ũ), with initial data (ρ̃0, ũ0), and that satisfies the
global uniform estimate

sup
t≥0

(‖ρ̃(t)− ρ‖2
2 + ‖ũ(t)‖2

2) +
1
ε

∫ +∞

0
‖ũ(t)‖2

2 dt ≤ C1 (‖ρ̃0 − ρ‖2
2 + ‖ũ0‖2

2) .

As far as system (32) is concerned, we deduce that there exists a number δ2 > 0, that is
independent of ε, such that, if

‖ρ0 − ρ‖2 + ‖u0‖2 ≤ δ2 ,

then (32) has a global smooth solution (ρ, J), with initial data (ρ0, ρ0u0/ε), and that satisfies

sup
t≥0

(‖ρ(t)− ρ‖2
2 + ‖u(t)‖2

2) +
1
ε2

∫ +∞

0
‖u(t)‖2

2 dt ≤ C (‖ρ0 − ρ‖2
2 + ‖u0‖2

2) .

Recall that J = ρu/ε. The proof of Theorem 2 is thus complete.

2.5 Proof of Theorem 3

Finally, we estimate how the kinetic density (24) approaches the solution fε to (1). We turn
back to the notations of the introduction, and set ûε = ε Ĵε/ρ̂ε. We know that this quantity is
O(ε) in L2(R+;H2(R)). We also know that ûε takes values in a compact interval [−η, η], for
some 0 < η < 1 independent of ε.

Using (24), we compute∫ ∞

0

∫
R

∫
V

∣∣∣f̂ε − ρ̂ε

∣∣∣2 dµ(v) dx dt =
∫ ∞

0

∫
R

∫
V

(ρ̂ε)2
∣∣∣exp

(
vG(−1)(ûε)

)
F ◦G(−1)(ûε)

− 1
∣∣∣2 dµ(v) dx dt

=
∫ ∞

0

∫
R
(ρ̂ε)2

(∫
V

[exp
(
2vG(−1)(ûε)

)
[F ◦G(−1)(ûε)]2

− 2
exp

(
vG(−1)(ûε)

)
F ◦G(−1)(ûε)

+ 1
]
dµ(v)

)
dx dt

=
∫ ∞

0

∫
R
(ρ̂ε)2

F(2G(−1)(ûε))− [F ◦G(−1)(ûε)]2

[F ◦G(−1)(ûε)]2
dx dt.

Taylor’s formula gives the estimate

0 ≤ F(2G(−1)(ûε))− [F ◦G(−1)(ûε)]2 ≤ C(‖ûε‖L∞(R+×R)) |ûε|2 ,

and we obtain∫ ∞

0

∫
R

∫
V

∣∣∣f̂ε(t, x, v)− ρ̂ε(t, x)
∣∣∣2 dµ(v) dx dt ≤ C

∫ ∞

0

∫
R
(ρ̂ε ûε)2 dx dt .

Using Theorem 2 and the Sobolev embedding H1(R) ⊂ L∞(R), the density ρ̂ε lies in a bounded
set of L∞(R+ × R), and we get

‖f̂ε − ρ̂ε‖L2(R+×R×V ) ≤ C ε .
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Fix a time T > 0. The triangle inequality yields

‖f̂ε− fε‖L2((0,T )×R×V ) ≤ ‖f̂ε− ρ̂ε‖L2((0,T )×R×V ) + ‖ρ̂ε− r‖L2((0,T )×R×V ) + ‖r− fε‖L2((0,T )×R×V ) .

We have shown that the first term is O(ε), while the last term tends to 0 when ε → 0 (see
Theorem 1). It remains to show that ‖ρ̂ε − r‖L2((0,T )×R×V ) tends to 0 (as a matter of fact, this
term is O(ε)). This last estimate can be obtained by following the arguments developed in [17]
for the isothermal Euler system, and we postpone it to Appendix B.

3 Proof of Theorem 4

As in the preceeding section, we shall consider the equation (26) with γ = 1. (This amounts to
changing the time and space variables by a constant factor). Before proving Theorem 4, we first
introduce some smoothing operators, whose detailed construction is described in [1, page 97].

Lemma 6. There exists a family

Sθ :
⋃

s≥−1

Hs(R) −→
⋂

s≥−1

Hs(R) ,

that is defined for θ ≥ 1, and that satisfies the following properties

i) ‖Sθu‖Hs(R) ≤ C θ(s−s′)+ ‖u‖Hs′ (R), for all s, s′ ≥ −1, with x+ = max(x, 0),

ii) ‖u− Sθu‖Hs(R) ≤ C θs−s′ ‖u‖Hs′ (R), for all s ∈ [−1, s′],

iii) ‖ d
dθSθu‖Hs(R) ≤ C θs−s′−1 ‖u‖Hs′ (R), for all s, s′ ≥ −1,

iv) Sθ is selfadjoint on L2(R),

v) Sθ commutes with the operator ∂x.

The constants C above are uniform when s, s′ belong to a bounded interval [−1,M ].

Set r = ρ − ρ and recall that G(β) = β D(β), with G an increasing bounded function, see
Lemma 4. Following [37, page 327], we are going to introduce a sort of Galerkin method in order
to solve the nonlinear equation (26). We first rewrite (26) as

∂tr −G′
(
ε ∂xr

ρ+ r

)
∂xxr + εD′

(
ε ∂xr

ρ+ r

)
(∂xr)3

(ρ+ r)2
= 0 , t ∈ ]0, T [ , x ∈ R ,

with initial data
r(t = 0) = r = ρ0 − ρ ∈ H4(R).

For simplicity, we introduce a short notation for the lower order term:

∀ (u, v) ∈ ]−ρ, ρ[× R , Bε(u, v) := D′
(

ε v

ρ+ u

)
v3

(ρ+ u)2
. (54)

Observe that Bε is a C∞ function that vanishes at the origin.
For all θ ≥ 1, we introduce the following regularized problem∂tr = Sθ

{
G′
(
ε Sθ∂xr

ρ+ Sθr

)
∂xxSθr

}
− ε Sθ

[
Bε(Sθr, ∂xSθr)

]
, t ∈ ]0, T [ , x ∈ R ,

r|t=0
= Sθ r .

(55)
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Assuming that r is not too large in H4(R), so that, for instance, ‖Sθ r‖L∞(R) ≤ ρ/2, the existence
of a unique solution rε,θ ∈ C1([0, Tε,θ];H4(R)) to (55), for some Tε,θ > 0, follows from Cauchy-
Lipschitz’ Theorem. Moreover, using the equation (55), we have rε,θ ∈ C1([0, Tε,θ];Hk(R)) for
all k ∈ N. Our aim is to show that rε,θ exists on some time interval [0, T∗], where T∗ > 0 can be
chosen independent of ε ∈ ]0, 1] and θ ≥ 1, and that the family {rε,θ, ε ∈]0, 1], θ ≥ 1} satisfies
a uniform bound in C([0, T∗];H4(R)). In the end, we shall show that for a suitable sequence(
θn

)
n∈N that tends to infinity,

(
rε,θn

)
n∈N converges in C([0, T∗∗];H1(R)), where T∗∗ > 0, and

T∗∗ ≤ T∗ is independent of ε. The analysis is performed in the next paragraphs by using some
classical nonlinear estimates.

3.1 Uniform bound in the high norm

We are going to show the following intermediate result:

Proposition 3. There exists α > 0, and there exists an increasing function C : [0, ρ[→ R+,
such that for all θ ≥ 1 and for all ε ∈ ]0, 1], if r ∈ H4(R) satisfies ‖r‖H4(R) ≤ α, and if
rε,θ ∈ C1([0, Tε,θ];H4(R)) is a solution to (55), then one has:

∀ t ∈ [0, Tε,θ] ,
d

dt
‖rε,θ(t)‖2

H4(R) ≤ εC(‖Sθrε,θ(t)‖W 2,∞(R)) ‖rε,θ(t)‖2
H4(R) .

Using Lemma 6 and Sobolev’s imbeddings, we know that there exists a constant α1 ≥ 1 such
that for all integer k ∈ {−1, . . . , 4}, the inequality

∀u ∈ Hk(R) , ∀ θ ≥ 1 , ‖Sθu‖Hk(R) ≤ α1 ‖u‖Hk(R) ,

holds as well as for all integer k ∈ {0, . . . , 3},

∀u ∈ H1+k(R) , ∀ θ ≥ 1 , ‖Sθu‖W k,∞(R) ≤ α1 ‖u‖H1+k(R) .

We now define α := ρ/(4α2
1), and we are going to show that for this positive number α, the

result of Proposition 3 holds. In this proof, we shall use the following adaptation of a classical
nonlinear estimate (see e.g. [1, page 101]):

Lemma 7. Let g : ] − R,R[q→ R be a C∞ function that vanishes at the origin. Then for
all s ≥ 0, there exists a nonnegative, nondecreasing, function Cs : [0, R[→ R+, such that for
all u1, . . . , uq ∈ L∞(R) ∩ Hs(R) satisfying maxj ‖uj‖L∞(R) < R, for all ε ∈ ]0, 1], one has
g(ε u1, . . . , uq) ∈ L∞(R) ∩Hs(R) and

‖g(ε u1, . . . , uq)‖2
Hs(R) ≤ Cs(max

j
‖uj‖L∞(R))

∑
j

‖uj‖2
Hs(R) .

The function Cs only depends on g.

Proof. Assume that r ∈ H4(R) satisfies ‖r‖H4(R) ≤ α, and that rε,θ ∈ C1([0, Tε,θ];H5(R)) is a
solution to (55). As said before, such solutions exist thanks to Cauchy-Lipschitz’ Theorem, and
thanks to the estimate ‖Sθr‖W 1,∞(R) ≤ ρ/4.

To simplify the calculations, r denotes the solution rε,θ, where ε and θ are kept fixed in all
the proof of Proposition 3.

Let m ∈ {0, . . . , 4}. Integrating by parts, we compute

d

dt
‖∂m

x r(t)‖2
L2(R) =− 2

〈
∂m+1

x Sθr(t); G′(...)∂m+1
x Sθr(t)

〉
L2(R)

− 2
〈
∂m

x Sθr(t); ∂x(G′(...))∂m+1
x Sθr(t)

〉
L2(R)

+ 2
〈
∂m

x Sθr(t); [∂m
x ,G′(...)]∂xxSθr(t)

〉
L2(R)

− 2ε
〈
∂m

x Sθr(t); ∂m
x Bε(Sθr(t), ∂xSθr(t))

〉
L2(R)

, (56)
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where G′(...) is here a short notation for

G′
(
ε ∂xSθr(t)
ρ+ Sθr(t)

)
.

We first remark that

−2
〈
∂m+1

x Sθr(t); G′(...)∂m+1
x Sθr(t)

〉
L2(R)

≤ −2 c(‖Sθr(t)‖W 1,∞(R)) ‖∂m+1
x Sθr(t)‖2

L2(R) ,

for some positive decreasing function c : [0, ρ[→]0,+∞[, that is independent of ε. Using Lemma
7 and the definition (54), we also obtain

− 2ε
〈
∂m

x Sθr(t); ∂m
x Bε(Sθr(t), ∂xSθr(t))

〉
L2(R)

≤ ε C(‖Sθr(t)‖W 1,∞(R)) ‖Sθr(t)‖H4(R) (‖Sθr(t)‖H4(R) + ‖∂xSθr(t)‖H4(R)) ,

for some positive increasing function C : [0, ρ[→ R, that is independent of ε. Next, we compute

∂x(G′(...)) = εG′′(...)
[
∂xxSθr(t)
ρ+ Sθr(t)

− (∂xSθr(t))2

(ρ+ Sθr(t))2

]
,

and we thus obtain

− 2
〈
∂m

x Sθr(t); ∂x(G′(...))∂m+1
x Sθr(t)

〉
L2(R)

≤ εC(‖Sθr(t)‖W 2,∞(R)) ‖Sθr(t)‖H4(R) ‖∂xSθr(t)‖H4(R) ,

where, again, C : [0, ρ[→ R is a nonnegative, nondecreasing function, which is independent of ε.
We deduce that the inequality

d

dt
‖∂m

x r(t)‖2
L2(R) ≤ −2c(‖Sθr(t)‖W 1,∞(R)) ‖∂m+1

x Sθr(t)‖2
L2(R)

+ εC(‖Sθr(t)‖W 2,∞(R)) ‖Sθr(t)‖2
H4(R) + εC(‖Sθr(t)‖W 2,∞(R)) ‖Sθr(t)‖H4(R) ‖∂xSθr(t)‖H4(R)

+ 2‖Sθr(t)‖H4(R) ‖[∂m
x ,G′(...)]∂xxSθr(t)‖L2(R) (57)

holds. To estimate the commutator [∂m
x ,G′(...)]∂xxSθr(t), we use the classical Moser type in-

equality (see e.g. [1, page 100]):

‖[∂m
x ,G′(...)]∂xxSθr(t)‖L2(R)

≤ C
(
‖∂x(G′(...))‖L∞(R)‖∂m+1

x Sθr(t)‖L2(R) + ‖∂xxSθr(t)‖L∞(R)‖∂x(G′(...))‖Hm−1(R)

)
.

We have already given the expression of ∂x(G′(...)), and it is easy to derive an upper bound for
‖∂x(G′(...))‖L∞(R). Moreover, applying Lemma 7, we obtain

‖∂x(G′(...))‖Hm−1(R) ≤ εC(‖Sθr(t)‖W 2,∞(R)) (‖Sθr(t)‖H4(R) + ‖∂xSθr(t)‖H4(R)) .

Going back to (57), we end up with

d

dt
‖∂m

x r(t)‖2
L2(R) ≤ −2c(‖Sθr(t)‖W 1,∞(R)) ‖∂m+1

x Sθr(t)‖2
L2(R)

+ εC(‖Sθr(t)‖W 2,∞(R)) ‖Sθr(t)‖H4(R)(‖Sθr(t)‖H4(R) + ‖∂xSθr(t)‖H4(R)) .

Summing over m = 0, . . . , 4, then using Young’s inequality as well as Lemma 6, we finish the
proof.
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When the initial data r satisfies ‖r‖H4(R) ≤ α, one has

‖Sθr‖H4(R) ≤
ρ

4α1
, and ‖Sθr‖W 2,∞(R) ≤

ρ

4
.

Using Proposition 3, we deduce in a classical way that there exists a time T∗ > 0 such that, for
all ε ∈ ]0, 1], and for all θ ≥ 1, the solution rε,θ to (55) exists on [0, T∗], and sastisfies

∀ t ∈ [0, T∗] , ‖rε,θ(t)‖H4(R) ≤ ‖Sθr‖H4(R) exp(εC t) , ‖Sθrε,θ(t)‖W 2,∞(R) ≤
ρ

2
, (58)

for a suitable numerical constant C (that is independent of ε and θ).
In the next paragraph, we always consider initial data r that satisfy ‖r‖H4(R) ≤ α, so that

(58) holds, with T∗ independent of ε and θ. Defining θn = 2n, we are going to prove that the
sequence

(
rε,θn

)
n∈N converges in C([0, T∗∗];H1(R)), with T∗∗ small enough (independent of ε and

n).

3.2 Convergence in the low norm

In this section, we let θn = 2n, and define

G′
n := G′

(
ε ∂xSθnrε,θn(t)
ρ+ Sθnrε,θn(t)

)
.

Recall that the family
{
rε,θn , ε ∈ ]0, 1], n ∈ N

}
is bounded in C([0, T∗];H4(R)), and therefore it

is also bounded in C([0, T∗];W 3,∞(R)). Consequently, there exist two positive constants c and
C such that

∀ (t, x) ∈ [0, T∗]× R ,∀n ∈ N , G′
n(t, x) ≥ c , ‖∂x(G′

n(t, ·))‖W 1,∞(R) ≤ C ε .

With such estimates on the coefficients, we obtain the following Lemma:

Lemma 8. Let n ∈ N, T > 0, and let u ∈ C1([0, T ];H4(R)) be a solution to{
∂tu− Sθn [G′

n∂xxSθnu] = g , t ∈ ]0, T [ , x ∈ R ,

u|t=0
= u0 , x ∈ R .

Then u satisfies the estimate

∀ t ∈ [0, T ] , ‖u(t)‖H1(R) ≤ C(T )
(
‖u0‖H1(R) + ‖g‖L2([0,T ]×R) +

1
θn
‖u‖L2([0,T ];H3(R))

)
.

The proof is standard. The equation yields a L2 bound by integrating by parts. Note that
the parabolic term only gives control of ∂xSθnu in L2

t,x, and one thus uses a decomposition〈
u(t); g(t)

〉
L2(R)

=
〈
(u− Sθnu)(t); g(t)

〉
H1(R),H−1(R)

+
〈
Sθnu(t); g(t)

〉
H1(R),H−1(R)

.

The norm ‖(u − Sθnu)(t)‖H1(R) is estimated by C (θn)−1 ‖u(t)‖H2(R), thanks to Lemma 6. For
the H1 estimate, one commutes the equation with ∂x and uses the L2 estimate. To achieve this
part, one needs a L∞t (W 2,∞

x ) control of the coefficient G′
n.

We now apply Lemma 8 with T ≤ T∗, and u = rε,θn+1 − rε,θn . We compute{
∂t(rε,θn+1 − rε,θn)− Sθn [G′

n∂xxSθn(rε,θn+1 − rε,θn)] = gn , t ∈ ]0, T [ , x ∈ R ,

(rε,θn+1 − rε,θn)|t=0
= (Sθn+1 − Sθn)r , x ∈ R ,
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with

gn :=− ε Sθn

[
Bε(Sθn+1rε,θn+1 , ∂xSθn+1rε,θn+1)−Bε(Sθnrε,θn , ∂xSθnrε,θn)

]
− ε (Sθn+1 − Sθn)Bε(Sθn+1rε,θn+1 , ∂xSθn+1rε,θn+1)
+ (Sθn+1 − Sθn)

[
G′

n(∂xxSθnrε,θn+1)
]

+ Sθn+1

[
(G′

n+1 −G′
n)(∂xxSθnrε,θn+1)

]
+ Sθn+1

[
G′

n+1(∂xx(Sθn+1 − Sθn)rε,θn+1)
]
.

Recall that for all integer k, the quantities Sθk
rε,θk

(t, x) and ∂xSθk
rε,θk

(t, x) belong to the closed
interval [−ρ/2, ρ/2]. Therefore, using Lemma 8, as well as the estimate

‖(Sθn+1 − Sθn)v‖Hs(R) ≤
C

θn
‖v‖Hs+1(R) ,

and estimating each term of gn in L∞([0, T ];L2(R)), we end up with

sup
t∈[0,T ]

‖(rε,θn+1 − rε,θn)(t)‖H1(R) ≤ C(T )

(
1
θn

+
√
T sup

t∈[0,T ]
‖(rε,θn+1 − rε,θn)(t)‖H1(R)

)
.

Of course, C(T ) is independent of ε and n. Choosing T = T∗∗ small enough, independent of ε, so
that C(T∗∗)

√
T∗∗ ≤ 1/2, we obtain that

(
rε,θn

)
n∈N is a Cauchy sequence in C([0, T∗∗];H1(R)), and

therefore it converges towards some rε ∈ C([0, T∗∗];H1(R)). Since, by construction, rε,θn(t = 0)
converges in H1(R) towards r, we have rε(t = 0) = r. It remains to show that rε solves the
nonlinear equation

∂tr −G′
(
ε ∂xr

ρ+ r

)
∂xxr + εD′

(
ε ∂xr

ρ+ r

)
(∂xr)3

(ρ+ r)2
= 0 , t ∈ ]0, T∗∗[ , x ∈ R ,

with initial data r(t = 0) = r ∈ H4(R).

3.3 End of the proof of Theorem 4

The sequence
(
rε,θn

)
n∈N is bounded in C([0, T∗∗];H4(R)), and the sequence

(
∂trε,θn

)
n∈N is

bounded in C([0, T∗∗];H2(R)). Moreover, we have seen that the sequence
(
rε,θn

)
n∈N converges

in C([0, T∗∗];H1(R)) towards rε as n→∞. Consequently, up to a subsequence, we have

rε,θn ⇀ rε L∞(0, T∗∗;H4(R)) weak-? ,

∂trε,θn ⇀ ∂trε L∞(0, T∗∗;H2(R)) weak-? .

In particular, we have rε ∈ Lip(0, T∗∗;H2(R)). Moreover, thanks to the convexity properties
of the norms in Hs, we have rε,θn → rε in all the spaces C([0, T∗∗];H4−δ(R)), δ > 0, and in
particular rε,θn → rε in the space C([0, T∗∗]; C3(R)). With such strong convergences, it is easy to
show that rε ∈ L∞(0, T∗∗;H4(R)) ∩ Lip(0, T∗∗;H2(R)) is a solution to the nonlinear equation

∂trε − ∂x

(
D
( ε ∂xrε
ρ+ rε

)
∂xrε

)
= 0 ,

with initial data r. Following [37] and using the uniform estimates of Proposition 3, we claim
that rε ∈ C([0, T∗∗];H4(R))∩C1([0, T∗∗];H2(R)). Passing to the limit in (58), we also obtain the
Ct(H4

x) bound for rε.
To end the proof of Theorem 4, it only remains to show the convergence of ρ+rε towards the

solution to the heat equation. This can be performed by the standard energy estimates in L2 for
the heat equation, and we do not give the details. The convergence result for the microscopic
densities f̂ε, and fε is obtained, as in the preceeding section, by a suitable triangle inequality.
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A Proof of Lemma 4

We write F(β) =
∫
V cosh(βv) dµ(v) +

∫
V sinh(βv) dµ(v) =

∫
V cosh(βv) dµ(v), thanks to As-

sumption 2; hence F is even. The Laplace transform F is clearly C∞ thanks to Lebesgue’s
differentiability Theorem, and so is G. We compute:

G′(β) =
F(β) F′′(β)− F′(β)2

F(β)2
,

and the Cauchy-Schwarz’ inequality yields

F′(β)2 =
(∫

V
v exp(βv) dµ(v)

)2

≤
(∫

V
exp(βv) dµ(v)

)(∫
V
v2 exp(βv) dµ(v)

)
= F(β) F′′(β) .

Thus G is nondecreasing. Now, assume that G′(β0) = 0 for some β0 ∈ R. This means that we
are in the Cauchy-Schwarz’ equality case. A simple analysis shows that this is possible if, and
only if, v = 0 µ-almost everywhere, and this is excluded by Assumption 3. Thus G is increasing,
and it remains to compute the limits of G at ±∞. Recall that

1−G(β) =

∫
V (1− v) exp(βv) dµ(v)∫

V exp(βv) dµ(v)
≥ 0 ,

and that the maximum of the support of µ is +1. Let α > 0. Thanks to the assumption on the
support of µ, we know that µ([1− α/2, 1]) > 0. First, we observe that∫

[1−α,1](1− v) exp(βv) dµ(v)∫
V exp(βv) dµ(v)

≤ α .

Then, for β ≥ 0, we use the inequalities∫
[−1,1−α[

(1− v) exp(βv) dµ(v) ≤ 2 exp[β(1− α)] ,∫
V

exp(βv) dµ(v) ≥
∫

[1−α/2,1]
exp(βv) dµ(v) ≥ exp[β (1− α/2)]µ([1− α/2, 1]) ,

and we deduce that∫
[−1,1−α[(1− v) exp(βv) dµ(v)∫

V exp(βv) dµ(v)
≤ 2
µ([1− α/2, 1])

exp(−β α/2) ≤ α

holds for β greater than some β0(α) > 0. This shows that G(β) tends to 1 as β tends to +∞.
The other limit is computed in the same way, and the proof is complete.

B Convergence to the heat equation

The solutions of (23) that are given by Theorem 2 satisfy the following estimate

sup
ε>0, t≥0

‖ρ̂ε(t)‖L∞(R) ≤ C ,

sup
ε>0, t≥0

ε2
∫

R
|Ĵε(t, x)|2 dx ≤ C ,

sup
ε>0

∫ +∞

0

∫
R
|Ĵε(t, x)|2 dx dt ≤ C .

(59)

30



Furthermore, εĴε/ρ̂ε takes values in some compact set [−η,+η], independent of ε.
Let r be the solution to the heat equation (6) with initial data ρ0. Following [17], we rewrite

the equation
∂t(ρ̂ε − r) + ∂x(Ĵε + d∂xr) = 0 ,

as the divergence free (with respect to t, x) condition satisified by a stream function{
∂xzε := ρ̂ε − r ,

∂tzε := −(Ĵε + d∂xr) .
(60)

We normalize by choosing zε(t = 0) = 0. Then, we multiply the second equation in (23) by zε
and we obtain

ε2
∫ T

0

∫
R
∂tĴε zε dx dt+

∫ T

0

∫
R
∂x

(
ρ̂εψ

(
ε
Ĵε

ρ̂ε

)
−d r

)
zε dx dt = −

∫ T

0

∫
R
(Ĵε+d∂xr) zε dx dt . (61)

Using (60), the right-hand side of (61) equals[ ∫
R

z2
ε

2
dx
]T
0

=
∫

R

zε(T, x)2

2
dx .

Integrating by parts, the left-hand side of (61) equals

ε2
[ ∫

R
Ĵε zε dx

]T
0

+ε2
∫ T

0

∫
R
Ĵε (Ĵε +d∂xr) dx dt−

∫ T

0

∫
R

(
ρ̂εψ

(
ε
Ĵε

ρ̂ε

)
−dr

) (
ρ̂ε−r

)
dx dt. (62)

The last term in the sum can be rewritten as

−d
∫ T

0

∫
R

∣∣ρ̂ε − r
∣∣2 dx dt− ∫ T

0

∫
R
ρ̂ε(ψ(ûε)− ψ(0))(ρ̂ε − r) dx dt .

Recalling that ψ(0) = d, ψ′(0) = 0, and using (59), it can be dominated by

−d
∫ T

0

∫
R

∣∣ρ̂ε − r
∣∣2 dx dt+ C ε2 .

Moreover, the Cauchy-Schwarz’ inequality yields∫
R
ε2 Ĵε(T ) zε(T ) dx ≤ ε4

∫
R
Ĵε(T )2 dx+

1
4

∫
R
zε(T )2 dx .

Therefore, we deduce from (61)-(62) the inequality

1
4

∫
R
zε(T )2 dx+ d

∫ T

0

∫
R

∣∣ρ̂ε − r
∣∣2 dx dt ≤ C ε2

+ ε2
(
‖Ĵε‖2

L2([0,T ]×R) + ‖Ĵε‖L2([0,T ]×R)‖d∂xr‖L2([0,T ]×R)

)
+ ε4

∫
R
Ĵε(T, x)2 dx . (63)

Using the uniform estimates (59), we deduce that

d

∫ T

0

∫
R

∣∣ρ̂ε − r
∣∣2 dx dt ≤ C ε2 ,

and the constant is uniform with respect to T . We can thus pass to the limit T → +∞ and
prove the first estimate of Theorem 3.
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radiatif. C. R. Math. Acad. Sci. Paris, 334(4):331–336, 2002.

[39] W.-A. Yong. Entropy and global existence for hyperbolic balance laws. Arch. Ration. Mech.
Anal., 172(2):247–266, 2004.

34


