
To appear in TOP (Journal of the Spanish Society

of Statistics and Operations Research), July 2013.

A VARIATIONAL APPROACH OF THE RANK FUNCTION

Jean-Baptiste Hiriart-Urruty and Hai Yen Le
Institute of Mathematics

Paul Sabatier University, Toulouse (France)
jbhu@math.univ-toulouse.fr, hyle@math.univ-toulouse.fr

http://www.math.univ-toulouse.fr/˜jbhu/

Abstract

In the same spirit as the one of the paper [24] on positive semidefinite matrices, we
survey several useful properties of the rank function (of a matrix) and add some new ones.
Since the so-called rank minimization problems are the subject of intense studies, we adopt
the viewpoint of variational analyis, that is the one considering all the properties useful for
optimizing, approximating or regularizing the rank function.

Keywords: Rank of matrix. Optimization. Nonsmooth analysis. Moreau-Yosida regulariza-
tion. Generalized subdifferentials.

Introduction

Associated with (square) matrices are some familiar notions like the trace, the determinant,
etc. Their study from the variational point of view, via the usual differential calculus, is easy and
well-known. We consider here another function of (not necessarily square) matrices, the rank
function. The rank function has been studied for its properties in linear algebra (or matrix
calculus), semi-algebraic geometry, etc. One task in the present paper is to survey some of the
main properties of the rank in these classical areas of mathematics. But we are more interested
in considering the rank function from the variational viewpoint. Actually, besides being integer-
valued, the rank function is lower-semicontinuous; this is the only valuable topological property
it enjoys. But, since modern nonsmooth analysis allows us to deal with non-differentiable (even
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discontinuous) functions, a second task we intend to carry out is to answer questions like: what
is the generalized subdifferential (in whatever sense) of the rank function?

If we are interested in the rank function from the variational viewpoint, it is because the
rank function appears as an objective (or constraint) function in various modern optimization
problems. The archetype of the so-called rank minimization problems is as follows:

(P)

 Minimize f(A) := rank of A
subject to A ∈ C,

where C is a subset of Mm,n(R) (the vector space of m by n real matrices). The constraint set
is usually rather “simple” (expressed as linear equalities, for example), the main difficulty lies
in the objective function. Of course, we could have an optimization problem

(P1)

 Minimize g(A)
subject to A ∈ C and rank A ≤ k,

with a rather simple objective function but a fairly complicated constraint set. Both problems
(P) and (P1) suffer from the same intrinsic difficulty: the occurence of the rank function.

A related (or cousin) problem to (P), actually equivalent in terms of difficulty, stated
in Rn this time, consists in minimizing the so-called counting (or cardinality) function x =
(x1, . . . , xn) ∈ Rn 7−→ c(x) := number of nonzero components xi of x:

(Q)

 Minimize c(x)
subject to x ∈ S,

where S is a subset of Rn. Often c(x) is denoted as ‖x‖0, although it is not a norm.

Problems (P) and (Q) share some bizarre and/or interesting properties, from the optimiza-
tion or variational viewpoint. We shall review some of them like those related to relaxation,
global optimization, Moreau-Yosida approximations, generalized subdifferentials.

Here is the plan of our survey.

1. The rank in linear algebra or matricial calculus.

2. The rank from the topological and semi-algebraic viewpoint.
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3. Best approximation in terms of rank.

4. Global minimization of the rank.

5. Relaxed forms of the rank function.

6. Surrogates of the rank function.

7. Regularization-approximation of the rank function.

8. Generalized subdifferentials of the rank function.

9. Further notions related to the rank: the spark, the rigidity, the cp-rank of a
matrix.

1 The rank in linear algebra or matricial calculus

Let p := min(m,n), let

rank : Mm,n(R) −→ {0, 1, . . . , p}
A 7−→ rank A.

The properties of the rank function are well-known in the context of linear algebra or matricial
calculus. Any book on these subjects presents them; there even are compilations of them (see
[5] for example). We recall here the most basic ones:

(a) rank A = rank AT ; rank A = rank (AAT ) = rank (ATA).

(b) If the product AB can be done,

rank (AB) ≤ min(rank A, rank B) (Sylvester inequality).

As a general rule, when the proposed products of matrices can be done,

rank (A1A2 . . . Ak) ≤ min
i=1,...,k

(rank A1, rank A2, . . . , rank Ak).

When m = n,
rank (Ak) ≤ rank A.
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(c) rank A = 0 if and only if A = 0; rank (cA) = rank A for c 6= 0.

(d) |rank A− rank B| ≤ rank (A+B) ≤ rank A+ rank B.

While properties like (b) are the ones used in solving systems of linear equations for example,
properties and inequalities in (c)-(d) are those which are useful in optimization. The second
property in (c) shows us that it is unnecessary to look at the rank of matrices lying outside
some ball centered at 0 and of positive radius. Property (a) involves positive semidefinite
(symmetric) matrices ATA and AAT ; therefore, a priori there should not be a loss of generality
in considering positive semidefinite matrices, but it turns out that it is not the case in rank
minimization problems (we have to treat of A ∈ Mm,n(R) as they are given in the data of the
problems).

Since rank is a complicated integer-valued function, are there ways of bounding it by using
more familiar and easier to handle functions like the trace, the determinant, the eigenvalue
functions? Indeed, there are some, not very convincing however. Here are two prosaic ones.

Theorem 1. (i) Let A ∈ Mn(R) be non-null diagonalizable, with all real eigenvalues (for
example A ∈ Sn(R)). Then

rank A ≥ (tr A)2

tr (A2) , (1)

where tr B denotes the trace of the matrix B.

(ii) Let A ∈ Sn(R) be non-null and positive semidefinite. Then
tr A

λmax(A) ≤ rank A ≤ tr A
λmin(A) , (2)

where λmax(A) (resp. λmin(A)) stands for the maximal (resp. minimal) eigenvalue of A.
(If c > 0, c divided by 0 is put equal to +∞).

Proof. We content ourselves by sketching the proof of the inequality (1).
For given real numbers λ1, . . . , λk, let us denote by λ̃ := λ1+···+λk

k their mean value. From the
inequality

∑k
i=1(λi − λ̃)2 ≥ 0 comes the inequality below

k∑
i=1

λ2
i ≥

(
∑k
i=1 λi)2

k
= kλ̃2. (3)

Let thus A 6= 0 of rank k. If λ1, . . . , λn denote the eigenvalues of A, we may suppose, without
loss of generality, that λ1 6= 0, . . . , λk 6= 0, λk+1 = 0, . . . , λn = 0 (since k ≥ 1).
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Now, tr A =
∑k
i=1 λi, tr (A2) =

∑k
i=1 λ

2
i . We then infer from (3)

k ≥ (
∑k
i=1 λi)2∑k
i=1 λ

2
i

= (tr A)2

tr (A2) .

Comments and examples

• Having an equality in (1) requires too specific properties on A, like: there exists k such
that A2 = kA.

• The eigenvalues of A do not appear explicitly in the inequality (1). If the eigenvalues λi
of A are available, a more informative inequality is

rank A ≥ (
∑k
i=1 |λi|)2

tr(A2) .

This comes from the Cauchy-Schwarz inequality.

• Bounds (1) and (2), although rough, could be used to relax constraints on the rank of a
parameterized matrix: rank [A(x)] ≤ k could be replaced by [tr A(x)]2 ≤ k tr [A(x)2] or

tr [A(x)]
λmax[A(x)] ≤ k.

To take a simple example, consider x ∈ R 7−→ A(x) =

 1 x

x 1

 ∈ S2(R). Requiring that

A(x) is positive semidefinite amounts to having x ∈ [−1; 1]; requiring futhermore, that
rank [A(x)] ≤ 1 leads to x = −1 or x = 1. Now keeping the constraint “A(x) is positive
semidefinite”, one relaxes the constraint rank [A(x)] ≤ 1 with tr [A(x)]2 ≤ tr [A(x)2]. This
leads to x2 ≥ 1, that is x = −1 or x = 1 again.

Let us look at the second relaxation, the one coming from (2). Since tr [A(x)] = 2 and
λmax[A(x)] = 1 + |x|, substituting the relaxed form tr [A(x)]

λmax[A(x)] ≤ 1 for
rank [A(x)] ≤ 1 gives rives to 2

1+|x| ≤ 1, that is again x = −1 or x = 1.

• Note that A 7→ tr A is a linear function, A 7→ λmax(A) a convex one, A 7→ λmin(A) a
concave one. The bounding functions in (2) are nonsmooth but continuous on the domains
where they are defined.
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2 The rank from the topological and semi-algebraic viewpoint

The only (useful) topological property of the rank function is that it is
lower-semicontinuous: if Aν → A in Mm,n(R) when ν → +∞, then

lim inf
ν→+∞

rank Aν ≥ rank A. (4)

This is easy to see if one thinks of rank A characterized as the maximal integer r such that a
(r, r)-submatrix extracted from A is invertible; the continuity of the determinant function makes
the rest.

Since the rank function is integer-valued, a consequence of the inequality (4) is that the rank
function does not decrease in a sufficiently small neighborhood of any matrix A.

For k ∈ {0, 1, . . . , p}, consider now the following two subsets of Mm,n(R):

Sk := {A ∈Mm,n(R)| rank A ≤ k},

Σk := {A ∈Mm,n(R)| rank A = k}.

Sk is the sublevel-set (at level k) of the lower semicontinuous function rank; it is therefore closed.
But, apart from the case k = 0 (where S0 = Σ0), what about the topological structure of Σk?
The answer is given in the following statement.

Theorem 2. (i) Σp is an open dense subset of Sp =Mm,n(R).

(ii) If k < p, the interior of Σk is empty and its closure is Sk.

The singular value decomposition of matrices (see below) will show how intricate the subsets
Sk and Σk may be. For example, if rank A = k, in any neighborhood of A, there exist matrices
of rank k + 1, k + 2, . . . , p.

Now, what about Sk from the algebraic geometry viewpoint? Consider m = n for the sake of
simplicity. The geometric structure of the Sk’s is well understood (cf. [45]): since Sk is defined
by the vanishing of all (k+1, k+1)-minors of A, it is thus a solution set of polynomial equations,
therefore a so-called semi-algebraic variety. It is non-singular, except on those points (matrices)
of rank less than or equal to k − 1. Its dimension is (2n − k)k. At a smooth point (matrix) A
of Sk, the tangent space TSk(A) can be made explicit, provided that one knows a singular value
decomposition of A ([45, p.15]).
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3 Best approximation in terms of rank

Given A ∈Mm,n(R) of rank r and an integer k ≤ r, how are made the matrices in Sk closest
to A? This best approximation problem needs firstly that a distance (via a norm for instance)
be defined on Mm,n(R). Secondly, even if the existence of best approximants does not offer
any difficulty (remember that Sk is closed), the question of uniqueness as well as that of an
explicit form of best approximants remain posed. It turns out that there is a beautiful theorem
answering these questions.

Before going further, we recall a technique of decomposition of matrices which is central in
numerical matricial analysis and in statistics: the singular value decomposition (SVD). Here it
is: Given A ∈ Mm,n(R), there is an (m,m) orthogonal matrix U , an (n, n) orthogonal matrix
V , a “pseudo-diagonal” matrix D 1 of the same sizes as A, such that A = UDV 2.

Figure 1: The singular value decomposition

The picture above helps to understand the decomposition.

• D has the same number of columns and rows as A, it is a sort of skeleton of A: all
the “non-diagonal” entries of D are null; on the “diagonal” of D are the singular values
σ1, σ2, . . . , σp of A, that are the square roots of the eigenvalues of ATA (or AAT ). By
definition, all the σi’s are nonnegative, and exactly r of them (if r = rank A) are positive.
By changing the ordering in columns or rows in U and V , and without loss of generality,

1D “pseudo-diagonal” means that dij = 0 for i 6= j. One also uses the notation diagm,n[σ1, . . . , σp] for D.
2The notation for the SVD is a bit nonstandard. Usually, a singular value decomposition takes the form UΣV T

(i.e., V T instead of V ). But there is no difference from the mathematical point of view.
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we can suppose that

σ1 ≥ σ2 ≥ · · · ≥ σk > σk+1 = · · · = σp = 0.

• U and V are orthogonal matrices of appropriate sizes (so that the product UDV of matrices
can be performed). Of course, these U and V are not unique. We denote by O(m,n)A the
set of (U, V ) such that U and V are orthogonal matrices and Udiagm,n(σ1(A), . . . , σp(A))V T

is a singular value decomposition of A.

Clearly, if one has a SVD of A, A = UDV , one also has one of AT , namely AT = V TDTUT .

The SVD helps to define some norms on Mm,n(R). The three most important ones are:

– A 7−→ maxi=1,...,p σi(A), called the spectral norm of A, which we denote by ‖A‖sp
(‖A‖2 is another much used notation);

– A 7−→
√

tr (ATA) =
√∑p

i=1 σ
2
i (A), called the Frobenius-Schur norm of A, which we

denote by ‖A‖F . This norm is derived from the inner product 〈〈A,B〉〉 := tr (ATB)
on Mm,n(R); thus (Mm,n(R), ‖.‖F ) is an Euclidean space.

– A 7−→
∑p
i=1 σi(A), called the nuclear norm (or trace norm, or 1-norm, etc.) which

we denote by ‖A‖∗.

These three norms are the “matricial cousins” of the usual norms ‖.‖∞, ‖.‖2, ‖.‖1 on Rp.

The best approximation problem that we consider in this section is as follows: Given A ∈
Mm,n(R) of rank r,

(Ak)

 Minimize ‖A−M‖
M ∈ Sk

The problem of course depends on the choice of ‖.‖; it is solved when ‖.‖ is either the Frobenius-
Schur norm or the spectral norm.

Theorem 3 (Eckart and Young, Mirsky [20]). Let A ∈ Mm,n(R) and let UDV be a SVD
of A. Choose ‖.‖ as either ‖.‖F or ‖.‖sp. Then

Ak := UDkV,

(where Dk is obtained from D by keeping σ1, . . . , σk and putting 0 in the place of σk+1, . . . , σr)
is a solution of the best approximation problem (Ak). For the Frobenius-Schur norm case, Ak is
the unique solution in (Ak) when σk > σk+1.
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The optimal values in (Ak) are as following:

min
M∈Sk

‖A−M‖F =

√√√√ r∑
i=k+1

σ2
i ;

min
M∈Sk

‖A−M‖sp = σk+1.

This theorem is a classical result in numerical matricial analysis, proved for the Frobenius-
Schur norm by Eckart and Young (1936). Mirsky (1960) showed that Ak is a minimizer
in (Ak) for any unitary invariant norm (a norm ‖.‖ on Mm,n(R) is called unitary invariant if
‖UAV ‖ = ‖A‖ for any orthogonal pair of matrices U and V ).

From the historical point of view, there is however some controversy about the naming of
Theorem 3; according to Stewart ([48]), the mathematician E.Schmidt should be credited
for having given this approximation theorem, while studying integral equations, in a publication
which dates back to 1907. We nevertheless stand by the usual appellation (in papers as well as
in textbooks) which is “Eckart and Young theorem”.

Remark 1. With the Frobenius-Schur norm, the objective function in (Ak) (taking its square
actually, ‖A −M‖2F ) is convex and smooth. But, due to the non-convexity of the constraint
set Sk, the optimization problem (Ak) is non-convex. It is therefore astonishing that one could
provide (via Theorem 3) an explicit form of a solution of this problem. In short, since the Sk’s
are the sublevel-sets of the rank function, one always has at one’s disposal a “projection” of (an
arbitrary) matrix A on the sublevel-sets Sk.

Remark 2. From the differential geometry viewpoint, Σk is a smooth manifold around any matrix
A ∈ Σk, while Sk is not. However, Sk enjoys a very specific property called prox-regularity3.
Indeed, it is proved in various places like [38], [1], [43] that Sk is prox-regularity at any A ∈ Sk
with rank A = k. Moreover, the projection on Sk is also the projection on Σk, at least locally;
more precisely, according to [1]: Let A ∈ Σk, then for every A such that ‖A − A‖ ≤ σk(A)/2,
the projection of A onto Σk exists, is unique, and is the projection of A onto Sk (given in the
Eckart and Young theorem).

Remark 3. As stated earlier, if σ(A) = (σ1(A), . . . , σp(A)), the counting function c at σ(A) is
exactly the rank of A,

c[σ(A)] = rank A. (5)
3A nonempty closed set S is an Euclidean space E is called prox-regular at a point x ∈ S if the projection set

PS(x) of x on S is single-valued around x.
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The MATLAB software uses this (SVD decomposition) to compute the rank of a matrix.
Among the many ways to compute the rank of a matrix, this one is maybe the most time
consuming, but also the most reliable.

4 Global minimization of the rank

Consider the rank minimization problem (P) that we alluded to in the beginning of the
paper. The constraint set C does not contain the zero matrix; if it were so, the zero matrix
would be trivially a global minimizer in (P). If only local minimizers are sought, the problem
does not make sense. As explained in [22], every point (matrix) A ∈ C is a local minimizer
in (P) 4. So, here, instead of tackling directly the hard problem (P), a much used approach
in optimization is to consider a relaxed form of (P) by minimizing a more tractable objective
function.

5 Relaxed forms of the rank function

Given the rank function rank :Mm,n(R) −→ R, what is its closest “convex relative”, that is
to say its convex hull5? Posed as it is, this question has no interest; indeed, due to the properties
(c) in Section 1, it is easy to understand that co(rank), the convex hull of the rank function, is
the zero function (on Mm,n(R)). So, we restrict the rank function to an appropriate ball, by
assigning the value +∞ out of this ball:

A ∈Mm,n(R) 7−→ rankR(A) :=

 rank of A if ‖A‖sp ≤ R;
+∞ otherwise.

(6)

We call this function the “restricted rank function”. Now, an interesting question is: what is
the convex hull of rankR? To the best of our knowledge, this question was firstly answered in
Fazel’s PhD thesis ([18]).

4Such a phenomenon happens because the objective function is not continuous. Indeed, if C is a connected
set, if f : C −→ R is a continuous function, and if every point in C is a local minimizer or a local maximizer of f ,
then f is necessarily constant on C ([8]).

5The convex hull or convex envelope of a function f is the largest possible convex function below f . Its epigraph
(i.e., what is above the graph) is exactly the convex hull of the epigraph of f .
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Theorem 4 (Fazel [18]). We have:

A ∈Mm,n(R) 7−→ co(rankR)(A) :=

 1
R‖A‖∗ if ‖A‖sp ≤ R;
+∞ otherwise.

There are various ways of proving this theorem; we explain and comment three of them.

Proof 1. It consists in calculating the Legendre-Fenchel conjugate φ∗ of φ := rankR, and
then the biconjugate φ∗∗ (:= (φ∗)∗) of φ. We know from convex analysis that, since φ is bounded
from below, φ∗∗ is the closed convex hull of rankR, that is: φ∗∗ = co(rankR). But here, there is
no difference between co(rankR) and its closure co(rankR).

This is the way followed by Fazel ([18], Section 5.1.4).

Proof 2. Here, one begins by convexifying the restricted counting (or cardinality) function
(on Rp), and then one applies fine results by Lewis on how to get propertiers on rankR from
those on cR.

The so-called restricted counting function cR on Rp is defined as follows:

x ∈ Rp 7−→ cR(x) :=

 c(x) if ‖x‖∞ ≤ R;
+∞ otherwise.

The next statement gives the convex hull of cR.

Theorem 5. We have

x ∈ Rp 7−→ co(cR)(x) :=

 1
R‖x‖1 if ‖x‖∞ ≤ R;
+∞ otherwise.

This result is part of the “folklore” in the areas where minimization problems involving
counting functions appear (there are dozens of papers in signal recovery, compressed sensing,
statistics, etc.). A direct proof is presented in [34].

A.Lewis ([36],[37]) showed that the Legendre-Fenchel conjugate of a function of matri-
ces (satisfying some specific properties) could be obtained by just conjugating some associated
function of the singular values of A. Using his results twice, one is able to calculate the Legendre-
Fenchel biconjugate of the (restricted) rank function by calling on the biconjugate of the (re-
stricted) counting function. Indeed, when dealing with matrices, we have: for A ∈Mm,n(R),

rankR(A) = cR[σ(A)], (7)
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where σ(A) = (σ1(A), . . . , σp(A)) is the vector of Rp made up with the singular values σi(A)
of A. It happens that the assumptions of Lewis’ “transfer results” from Rp to Mm,n(R) are
satisfied in our context (expressed in (7)). In doing so, ones retrieves Theorem 4.

Proof 3. Here we look at the problem with “geometrical glasses”: instead of convexifying
functions directly, we firstly convexify (appropriate) sets of matrices and, then, get convex hulls
(or quasiconvex hulls) of functions as by-products. This is the path followed in ([25]).

For that purpose, let

SRk := Sk ∩ {A ∈Mm,n(R)| ‖A‖sp ≤ R}
= {A ∈Mm,n(R)| rank A ≤ k and ‖A‖sp ≤ R}.

In this definition, k ∈ {0, 1, . . . , p} and R ≥ 0; the restriction “‖A‖sp ≤ R” plays the role of a
“moving wall”. Although SRk is a very complicated set of matrices (due to the definition of Sk),
its convex hull has a fairly simple expression.

Theorem 6 (Hiriart-Urruty and Le, [25]). We have

co SRk = {A ∈Mm,n(R)| ‖A‖sp ≤ R and ‖A‖∗ ≤ Rk}. (8)

So, according to (8), the convex hull of SRk is the intersection of two balls, one for the nuclear
norm ‖.‖∗, the other one for the spectral norm (the bound on ‖.‖sp is the same in co SRk as in
SRk ). Getting at such an explicit form of co SRk is due to the happy combination of these specific
norms (‖.‖sp and ‖.‖∗). If ‖.‖ were any norm on Mm,n(R) and

ŜRk := {A ∈Mm,n(R)| rank A ≤ k and ‖A‖ ≤ R},

due to the equivalence between the two norms ‖.‖ and ‖.‖sp, we would get with (8) an inner
estimate set and an outer estimate set of co ŜRk .

A function f : X −→ R ∪ {+∞} is called quasi-convex if all its sublevel sets

[f ≤ α] := {x ∈ X| f(x) ≤ α} (sublevel set of f at the level α ∈ R)

are convex. Since the supremum of an arbitrary collection of quasiconvex functions is quasicon-
vex, one can define the largest quasiconvex function lower bounding f ; it is called the quasiconvex
hull of f and denoted by fq. The way to construct fq from the sublevel sets of f is easy

x ∈ X 7−→ fq(x) = inf{α| x ∈ co[f ≤ α]}.
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Following Theorem 6, we therefore get the explicit form of the quasiconvex hull of the (restricted)
rank function.

Theorem 7 (Hiriart-Urruty and Le, [25]). We have:

A ∈Mm,n(R) 7−→ (rankR)q(A) =

 d 1
R‖A‖∗e if ‖A‖sp ≤ R,
+∞ otherwise,

where dae stands for the smallest integer which is larger than (or equal to) a.

A final step remains to be carried out: to go from the quasiconvex hull to the convex hull of
rankR. This is not difficult and has been done in [25].

Remark 4. If, in Theorem 4, the restriction “‖A‖sp ≤ R” is replaced by “‖A‖∗ ≤ R”, the result
(on the relaxed form) will be the same. But this does not hold true for a restriction “‖A‖ ≤ R”
written for any matricial norm ‖.‖.

Remark 5. Since Theorem 3 (of Eckart and Young) is a precise and powerful theorem solving
the best approximation problem for any matrix to any sublevel-set of the rank function, we
thought some time that it would be possible to derive Theorem 4 (on the convex hull of the
restricted rank function) from Theorem 3; we did not succeed.

Remark 6. The question of the convex relaxation of the restricted rank function, solved in
Theorem 4, could also be posed for tensors (or hypermatrices). Actually, provided that the
notion of rank of a tensor and various norms of a tensor have been defined in an appropriate
way, it has been proved in [32] that the nuclear norm of a tensor is a convex underestimator of
the tensor rank on the unit ball for the Schatten ∞-norm (corresponding to the spectral norm
for matrices). The question whether this nuclear norm is the largest convex underestimator of
the rank (for tensors) was raised by the authors in [32]; they conjectured that was the case. In
this context, contrary to the world of matrices, there is no SVD decomposition (for tensors) as
a tool at our disposal.

6 Surrogates of the rank function

When A is positive semidefinite, some surrogates for rank A can be defined with the help of
trace and determinant functions; these give rise to heuristics in rank minimization problems ([18],
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Chapter 5). For general matrices, there is no hope to give reliable and good approximations of
the (discontinuous) rank function by smooth or even continuous functions involing only norms or
inner product of matrices. We nevertheless mention some of them, the first one due to Flores
([19], Chapter II.3).

A proposal of a continuous surrogate of the rank is as follows:

A ∈Mm,n(R) 7−→ gsf (A) :=


‖A‖2∗
‖A‖2F

if A 6= 0,

0 if A = 0.
(9)

This function has a close relationship with the rank function, and also shares with it some similar
properties.

Theorem 8 (Flores, [19]). We have:

(G1) gsf (cA) = gsf (A) for c 6= 0.

(G2) 1 ≤ gsf (A) ≤ rank A for A 6= 0.

(G3) If all the non-zero singular values of A are equal, then gsf (A) = rank A.

(G4) rank A = 1 if and only if gsf (A) = 1.

Properties (G2) and (G4) above allow us to say that, for A 6= 0, the rank-one constraint
could be replaced by a difference-of-convex (dc) inequality constraint; indeed, if A 6= 0,

rank A = 1⇐⇒ ‖A‖∗ − ‖A‖F ≤ 0. (10)

A property like (G4) was also used by Malick ([44]) in SDP problems with rank-one constraints.
Let

C := {A ∈ Sn(R)| A positive semidefinite,diag A = (1, . . . , 1)}

the convex set of the so-called correlation matrices. In ([44], Theorem 1), the following was
proved for A ∈ C:

rank A = 1⇐⇒ ‖A‖F = n. (11)

This property was at the origin of the designation “spherical constraint” as a subtitute for the
rank-one constraint. The equality constraint ‖A‖2F = n2, although nonlinear, can therefore be
dualized; see [44] for more on that.
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The underestimator gsf of the rank funtion turns out to look similar to a large class of un-
derestimators parameterized by matrices. The Theorem 9 below, due to Lokam ([42]), deserves
to be better known, in our opinion. We provide here a proof for the convenience of the reader.

Theorem 9 (Lokam, [42]). For any non-null B ∈Mm,n(R), define

A ∈Mm,n(R 7−→ gB(A) :=


|〈〈A,B〉〉|
‖A‖sp‖B‖sp

if A 6= 0,

0 if A = 0.

Then
gB(A) ≤ rank A for all A ∈Mm,n(R). (12)

Proof. ([42, p.459]) According to a corollary of the Hoffman-Wielandt inequality ([29], Corollary
7.3.8), if σ1 ≥ σ2 ≥ · · · ≥ σp and τ1 ≥ τ2 ≥ · · · ≥ τp are the singular values of A and B

respectively, one has
p∑
i=1

(σi − τi)2 ≤ ‖A−B‖2F . (13)

Developing the left-hand side of (13) gives
p∑
i=1

σ2
i +

p∑
i=1

τ2
i − 2

p∑
i=1

σiτi = ‖A‖2F + ‖B‖2F − 2
p∑
i=1

σiτi.

Now, if r denotes the rank of A (assumed non-null),
p∑
i=1

σiτi =
r∑
i=1

σiτi ≤ r‖A‖sp‖B‖sp.

Since the norm ‖.‖F is derived from the inner product 〈〈., .〉〉, developing the right-hand side of
(13) gives

‖A−B‖2F = ‖A‖2F + ‖B‖2F − 2〈〈A,B〉〉.

Thus, combining all, a consequence of the inequality (13) is

〈〈A,B〉〉 ≤ r‖A‖sp‖B‖sp.

Changing B into −B does not change ‖B‖sp. Whence the desired inequality

|〈〈A,B〉〉| ≤ r‖A‖sp‖B‖sp

is proved.
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Remark 7. If B is chosen to be equal to A, Theorem 9 gives us an underestimator of the rank
function,

A ∈Mm,n(R) 7−→ g(A) = ‖A‖
2
F

‖A‖2sp
,

which is of the same family as the gsf function.

Remark 8. If m = n and B is chosen to be the identity matrix, the inequality (12) reads as

|tr A|
‖A‖sp

≤ rank A. (14)

7 Regularization-approximation of the rank function

Besides the underestimates of the rank function proposed in the previous section, it is con-
ceivable -although difficult, as we already said it- to design smooth or just continuous approxi-
mations Rε of the rank fucntion, depending on some parameter ε > 0. What we expect for Rε
is a general comparison result with the rank, for example: Rε(A) ≤ rank A for all ε > 0, as also
a convergence result: Rε → rank A when ε→ 0. We propose here two classes of regularization-
approximation of the rank function: the first one consists of smoothed versions of the rank,
the second one relies on the so-called Moreau-Yosida technique, widely used in the context of
variational analysis and optimization.

7.1 Smoothed versions of the rank function

The underlying idea is as follows: Since

rank A = c[σ1(A), . . . , σp(A)] (recall that c is the counting function on Rp)

=
p∑
i=1

θ[σi(A)], (15)

where θ(x) = 1 if x 6= 0, θ(0) = 0 (θ is the counting function on R), we have to design some
smooth approximation of the θ function. Because all the σi(A) are nonnegative, θ acts only on
the nonnegative part of the real line, so we can choose even approximations of the θ function
(like θ which is itself even).

A first example was proposed in [23], it is as following: For ε > 0, let θε be defined as

x ∈ R 7−→ θε(x) := 1− e−x2/ε. (16)
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The resulting approximation of the rank function is

A ∈Mm,n(R) 7−→ Rε(A) :=
p∑
i=1

[1− e−σ2
i (A)/ε]. (17)

An alternate expression of the Rε function is

Rε(A) = p− tr(e−ATA/ε). (18)

Then, Rε is a C∞ (even analytic) function of A. The properties of Rε as an approximation of
the rank function are summarized in the statement below.

Theorem 10. We have

(i) Rε(A) ≤ rank A for all ε > 0.

(ii) The sequence of functions (Rε)ε>0 increases when ε decreases, and Rε(A) → rank A for
all A when ε→ 0.

(iii) If A 6= 0 and r = rank A,

rank A−Rε(A) ≤ ε
r∑
i=1

1
σ2
i (A)

, (19)

as also
rank A−Rε(A) ≤ ε2

r∑
i=1

1
σ4
i (A)

. (20)

Sketch of the proof. The results in (i) and (ii) easily follow from the definitions (16) and (17).

The upper bounds (19) and (20), which are not comparable, come from the study of the
function x 7→ e−xx and e−xx2 on the half line R+.

We do not know if such an approximation scheme is of any interest for solving rank mini-
mization problems.

Another proposal for approximating the rank function, a quite recent one, is due to Zhao
([51]). It consists of using, for all ε > 0, the following even approximation of the θ function:

x ∈ R 7−→ τε(x) := x2

x2 + ε
. (21)
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The resulting approximation of the rank function is

A ∈Mm,n(R) 7−→ Zε(A) :=
p∑
i=1

σ2
i (A)

σ2
i (A) + ε

. (22)

Alternate expressions of the Zε function are:

Zε(A) = tr[A(ATA+ εIn)−1AT ]

= n− εtr(ATA+ εIn)−1.

Here also, Zε is a C∞ (even analytic) function of A. The properties of Zε as an approximation
of the rank function are summarized in the next statement.

Theorem 11 (Zhao, [51]). We have

(i) Zε(A) ≤ rank A for all ε > 0.

(ii) The sequence of functions (Zε)ε>0 increases when ε decreases, and Zε(A) → rank A for
all A when ε→ 0.

(iii) If A 6= 0 and r = rank A,

rank A− Zε(A) =
r∑
i=1

ε

σ2
i (A) + ε

≤ ε
r∑
i=1

1
σ2
i (A)

. (23)

The use of this function Zε (instead of the rank function) in rank minimization problems as
well as an application to solving a system of quadratic functions are discussed in ([51], Sections
3 and 4).

7.2 Moreau-Yosida approximation-regularization of the rank function

Although the rank function is a bumpy one, it is lower-semicontinuous and bounded from
below; it therefore can be approximated-regularized in the so-called Moreau-Yosida way. Sur-
prisingly enough, the rank function is amenable to such an approximation-regularization process,
and we get at the end explicit forms of the approximated-regularized versions in terms of singu-
lar values (like in the previous subsection). Let us firstly recall what is known, as a general rule,
for the Moreau-Yosida approximation-regularization technique in a nonconvex context (see [47,
Section 1.G] for details, for example).
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Let (E, ‖.‖) be an Euclidean space, let f : E −→ R∪{+∞} be a lower-semicontinuous func-
tion, bounded from below on E. For a parameter value λ > 0, the Moreau-Yosida approximate
(or Moreau envelope6) function fλ and proximal set-valued mapping Proxλf are defined by

fλ(x) := inf
u∈E
{f(u) + 1

2λ‖x− u‖
2}, (24)

Proxλf(x) := {u ∈ E| f(u) + 1
2λ‖x− u‖

2 = fλ(x)}. (25)

Then:

(i) fλ is a finite-valued continuous function on E;

(ii) The sequence of functions (fλ)λ>0 increases when λ decreases, and fλ(x)→ f(x) for all x
when λ→ 0;

(iii) The set Proxλf(x) is nonempty and compact.

(iv) The lower bounds of f and fλ on E are equal:

inf
x∈E

f(x) = inf
x∈E

fλ(x).

We now apply this process to the rank function (or restricted rank function). The context is
therefore as following: E =Mm,n(R), ‖.‖F is the Frobenius-Schur norm and f : E −→ R∪{+∞}
is the rank (or restricted rank) function. By definition,

(rankR)λ(A) = inf
B ∈ Mm,n(R)

‖B‖sp≤R

{
rank B + 1

2λ‖A−B‖
2
F

}
. (26)

The limiting case, i.e. with R = +∞, is

(rank)λ(A) = inf
B∈Mm,n(R)

{
rank B + 1

2λ‖A−B‖
2
F

}
. (27)

The next two theorems are taken from [26] or [33, Chapter 3].

Theorem 12. We have, for all A ∈Mm,n(R) with rank r ≥ 1:
6J.-J. Moreau presented this approximation process as an example of inf-convolution or epigraphic addition

of two functions; it was in 1962, exactly 50 years ago. This date marks the birth of modern convex analysis and
optimization.
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(i)

(rank)λ(A) = 1
2λ‖A‖

2
F −

1
2λ

r∑
i=1

[σ2
i (A)− 2λ]+. (28)

(ii) One minimizer in (27), i.e. one element in Proxλ(rank)(A), is provided by B := UΣBV ,
where

• (U, V ) ∈ O(m,n)A, i.e. U and V are orthogonal matrices such that A = UΣAV , with
ΣA = diagm,n[σ1(A), . . . , σr(A), 0, . . . , 0] (a singular value decomposition of A with
σ1(A) ≥ · · · ≥ σr(A) > 0);

•

ΣB =



0 if σ1 ≤
√

2λ,
ΣA if σr(A) ≥

√
2λ,

diagm,n[σ1(A), . . . , σk(A), 0, . . . , 0] if there is an integer k such that
σk(A) ≥

√
2λ > σk+1(A).

(29)

We may complete the result (ii) in the theorem above by determining explicitly the whole
set Proxλ(rank)(A). Indeed, we have four cases to consider:

• If σ1(A) <
√

2λ, then Proxλ(rank)(A) = {0}.

• If σr(A) >
√

2λ, then Proxλ(rank)(A) = {A}.

• If there is k such that σk(A) >
√

2λ > σk+1(A), then for any (U1, V1) and (U2, V2) in
O(m,n)A,

U1diagm,n[σ1(A), . . . , σk(A), 0, . . . , 0]V1 = U2diagm,n[σ1(A), . . . , σk(A), 0, . . . , 0]V2

So, the set Proxλ(rank)(A) is a singleton and

Proxλ(rank)(A) = {Udiagm,n[σ1(A), . . . , σk(A), 0, . . . , 0]V }

with (U, V ) ∈ O(m,n)A.

• Suppose there is k such that σk(A) =
√

2λ. We then define

k0 := min{k| σk(A) =
√

2λ},
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k1 := max{k| σk(A) =
√

2λ}.

Then, Proxλ(rank)(A) is the set of matrices of the form Udiagm,n(τ1, . . . , τp)V , where
(U, V ) ∈ O(m,n)A and

τi = σi(A) if i < k0, τi = 0 if i > k1;

τi = 0 or σi(A) if k0 ≤ i ≤ k1.

Comments

1. One could wish to express (rank)λ(A) in terms of traces of matrices as this was done
for the smoothed versions of the rank function in Section 7.1. Indeed, ATA − 2λIn is a
symmetric matrix whose eigenvalues are σ2

1(A) − 2λ, . . . , σ2
r (A) − 2λ,−2λ, . . . ,−2λ. Its

projection on the cone S+
n (R) of positive semidefinite matrices has eigenvalues [σ2

1(A) −
2λ]+, . . . , [σ2

r (A)− 2λ]+, 0, . . . , 0 ([24]). Thus, an alternate expression for (rank)λ(A) is:

(rank)λ(A) = 1
2λtr(ATA)− 1

2λtr[PS+
n (R)(A

TA− 2λIn)]. (30)

2. If λ is small enough, say if
√

2λ ≤ σr(A), then

(rank)λ(A) = rank A.

This easily comes from (28) since σ2
i (A)−2λ ≥ 0 for all i and ‖A‖2F =

∑r
i=1 σ

2
i (A). There-

fore, the general convergence result that is known for the Moreau-Yosida approximates fλ
of f is made much stronger here.

3. The counterpart of Theorem 12 for the counting function

x = (x1, . . . , xp) ∈ Rp 7−→ c(x) =
p∑
i=1

θ(xi) (see Section 7.1)

is easier to obtain since c has a “separate” structure; it therefore suffices to calculate the
Moreau envelope of the θ function. Actually,

• cλ(x) = 1
2λ‖x‖

2 − 1
2λ
∑p
i=1[x2

i − 2λ]+,

• One element in Proxλc(x) is pλ(x) ∈ Rp, where

[pλ(x)]i =

 xi if |xi| ≥
√

2λ,
0 otherwise.

These results were already observed in Example 5.4 of [2].
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As we saw it when considering the relaxed forms of the rank function (in Section 5), what is more
useful and interesting for applications is the restricted rank function rankR. The calculations for
its Moreau-Yosida approximates and proximal set-valued mappings are a bit more complicate
than for the rank itself, of the same vein however. Here is the final and complete result.

Theorem 13. We have, for all A ∈Mm,n(R) of rank r ≥ 1:

(i)

(rankR)λ(A) = 1
2λ‖A‖

2
F −

1
2λ

r∑
i=1
{σ2

i (A)− [(σi(A)−R)+]2 − 2λ}+. (31)

(ii) One minimizer in (31), i.e. one element in Proxλ(rankR)(A), is provided by B := UΣBV

with ΣB = diagm,n[σ1(B), . . . , σp(B)], where

• (U, V ) ∈ O(m,n)A, i.e. U and V are orthogonal matrices such that A = UΣAV , with
ΣA = diagm,n[σ1(A), . . . , σr(A), 0, . . . , 0] (a singular value decomposition of A with
σ1(A) ≥ · · · ≥ σr(A) > 0);

• If
√

2λ ≥ R

σi(B) :=


R if σi(A) > 2λ+λ2

2λ ,

0 or R if σi(A) = 2λ+λ2

2λ ,

0 if σi(A) < 2λ+λ2

2λ .

• If
√

2λ < R

σi(B) :=



R if σi(A) > R,

σi(A) if
√

2λ < σi(A) ≤ R,
0 or σi(A) if

√
2λ = σi(A),

0 if σi(A) <
√

2λ.

Comments

1. As the positive parameter λ is supposed to approach 0 in the proximal approximation
process, the second case of (ii) in the theorem above is more important than the first one.

2. When ‖A‖sp = maxi=1,...,p σi(A) ≤ R, both Moreau-Yosida approximates (rank)λ and
(rankR)λ coincide at A.
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Figure 2: The Moreau-Yosida approximations of the rank.

Figure 3: The Moreau-Yosida approximations of the restricted rank. R = 4 here.

The pictures in Figure 2 and Figure 3 show, in the one dimensional case, the behaviour of
(rank)λ := cλ and (rankR)λ = (cR)λ as λ→ 0.

We know from Section 5 that the convex relaxed form of the restricted rank function rankR
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is

co(rankR) = ψR(A) =

 1
R‖A‖∗ if ‖A‖sp ≤ R,
+∞ otherwise.

It is interesting to calculate explicitly the Moreau-Yosida approximations (ψR)λ of ψR, and to
compare them with those of rankR in Theorem 13. Here we are in a more familiar convex
framework, so that calculations are easier to carry out. Since the proximal set-valued mapping
ProxλψR is actually single-valued on Mm,n(R), we adopt the notation

ProxλψR(A) = {proxλψR(A)}.

Theorem 14. Let U and V be orthogonal matrices such that A = UΣAV ,
with ΣA = diagm,n[σ1(A), . . . , σr(A), 0, . . . , 0] (a singular value decomposition of A with σ1(A) ≥
σ2(A) ≥ · · · ≥ σr(A) > 0). We set

pRλ (A) = (y1, . . . , yp),

with

yi =


R if σi(A) ≥ λ

R +R,

σi(A)− λ
R if λ

R ≤ σi(A) < λ
R +R,

0 if σi(A) < λ
R .

(32)

Then, the proximal mapping and the Moreau envelope of ψR are described as following.

(i) [ Proximal mapping]
proxλψR(A) = Udiagm,n(y1, . . . , yp)V ; (33)

(ii) [ Moreau envelope]

We define, for t ∈ R,
f iλ
R

(t) := t2 − 2σi(A)t+ 2 λ
R
|t|,

and for x = (x1, . . . , xp)

f λ
R

(x) :=
p∑
i=1

fi(xi).

Then,
(ψR)λ(A) = 1

2λ‖A‖
2
F −

1
2λf λR [pRλ (A)]. (34)

Moreover, for A such that ‖A‖sp ≤ R,

(ψR)λ(A) = 1
2λ‖A‖

2
F −

1
2λ‖p

R
λ (A)‖2. (35)
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The picture below shows, in the one dimensional case, the behaviour of (ψR)λ when λ→ 0,
as well as how it compares with (rankR)λ. It also illustrates the following fact: the convex hull
(or closed convex hull) of (rankR)λ is exactly (ψR)λ.

Figure 4: The Moreau-Yosida approximations of the restricted rank and nuclear norm.

The case where R = 1 deserves some additional comments. Recalling that

ψ1(A) =

 ‖A‖∗ if ‖A‖sp ≤ 1
+∞ otherwise,

we have
(ψ1)λ(A) = 1

2‖A‖
2
F −

1
2fλ[p1

λ(A)], (36)

where p1
λ(A) = (y1, . . . , yp), with

yi =


1 if σi(A) ≥ λ+ 1,

σi(A)− λ if λ ≤ σi(A) < λ+ 1,
0 if σi(A) < λ.

(37)

In short,
yi = [σi(A)− λ]+ − [σi(A)− (λ+ 1)]+ for all i = 1, . . . , p,
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so that
proxλψ1(A) = Udiagm,n{([σi(A)− λ]+ − [σi(A)− (λ+ 1)]+)i}V, (38)

(ψ1)λ(A) = 1
2λ‖A‖

2
F −

1
2λ

p∑
i=1

f iλ(yi)

= 1
2λ

r∑
i=1

σ2
i (A)− 1

2λ

r∑
i=1

f iλ([σi(A)− λ]+ − [σi(A)− (λ+ 1)]+). (39)

These formulas (38) and (39) should be put side by side with the expressions of (‖.‖∗)λ and
proxλ(‖.‖∗), such as given in [50] for example:

proxλ(‖.‖∗)(A) = Udiagm,n[σi(A)− λ]+V, (40)

(‖.‖∗)λ(A) = 1
2‖A‖

2
F −

1
2

r∑
i=1
{([σi(A)− λ]+)i}2.

= 1
2

r∑
i=1

σ2
i (A)− 1

2

r∑
i=1
{[σi(A)− λ]+}2. (41)

As expected, since ‖.‖∗ ≤ ψ1, one has (‖.‖∗)λ ≤ (ψ1)λ for all λ > 0. Also, for λ small enough,
namely for λ ≤ σr(A),

(‖.‖∗)λ(A) = (ψ1)λ(A).

Note however that the convex relaxed form of (rank)λ is not (‖.‖∗)λ; as said before, to compare
the relaxed form of the rank function with ‖.‖∗, as well as their corresponding Moreau-Yosida
regularized forms, one has to consider their restricted versions on balls {A| ‖A‖sp≤R}.

The formulas (40) and (41) are used for designing a proximal point algorithm scheme for
nuclear norm minimization ([50]).

8 The generalized subdifferentials of the rank function

Although the rank function is not differentiable, not even continuous, it is possible to cal-
culate the so-called generalized subdifferentials of it (kinds of generalizations of gradients for
differentiable functions). These mathematical objects are now much used in nonsmooth anal-
ysis and optimization, for theoretical purposes as well as for algorithmic ones. Dealing with
the calculation of the generalized subdifferentials of the rank function directly is very difficult
because:
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• the behaviour of difference quotients like

rank(A′ + tD)− rank A′

t

when A′ → A and t > 0 goes to 0 is hard to control, and their limits impossible to
determine;

• the singular values involved in the regularized versions of the rank function are themselves
nonsmooth.

So, we adopted another strategy: to use the relationship between the counting and the rank
function, as in [34]. We first calculate the generalized subdifferential(s) of the counting function;
then, by using the results of Lewis and Sendov ([39], [40]), we obtain the generalized subd-
ifferential(s) of the rank function. Good news: All the generalized subdifferentials turn out to
be equal. Moreover, this (common) generalized subdifferential turns out to be a vector space.
Certainly 0 always belongs to it. This was foreseen by the fact that “Every point is a local
minimizer of the rank function” (see Section 4). Finally, with the help of an alternate expression
of the common subdifferential as a tensor product of vector spaces, we provide its dimension.
All the material of this section is excerpted from [35].

8.1 Definitions and preliminary properties

The definitions and properties of generalized subdifferentials have been developed in sev-
eral works, beginning with the case of locally Lipschitz functions ([11]). Then, they have been
generalized for lower-semicontinuous functions. In this section, we only consider the lower semi-
continuous case, since it is that of the rank function. Our context is therefore the following:

• f : E → R ∪ {+∞} is proper, lower-semicontinuous (l.s.c) and x̃ is a point at which f is
finite-valued.

• (E, 〈., .〉) is an Euclidean space, for example Rp equipped with the usual inner product or
Mm,n(R) equipped with 〈〈., .〉〉.

Definition 1. A vector x∗ ∈ E is a F-subderivative of f at x̃ if

lim inf
y→0

f(x̃+ y)− f(x̃)− 〈x∗, y〉
‖y‖

≥ 0. (42)
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The set of all F-subderivatives of f at x̃ is called the Fréchet subdifferential of f at x̃, and
denoted as ∂F f(x̃).

Definition 2. A vector x∗ ∈ E is a viscosity subderivative of f at x̃ if there exists a C1-function
g : E → R such that Og(x̃) = x∗ and f − g attains a local minimum at x̃.
If, in particular,

g(x) = 〈x∗, x− x̃〉 − σ‖x− x̃‖2

with some positive constant σ, then x∗ is called a proximal subgradient of f at x̃.

The set of all viscosity subderivatives and proximal subgradients of f at x̃ are called the
viscosity subdifferential and the proximal subdifferential of f at x̃ and denoted as ∂V f(x̃) and
∂P f(x̃), respectively.

In a finite dimensional context, the Fréchet and the vicosity subdifferentials coincide. And
this common subdifferential is also called “regular subdifferential” in some other works (see [39],
[40], [47]).

Definition 3. A vector x∗ ∈ E is a limiting subgradient of f at x̃ if there is a sequence of points
xν in E approaching x̃ with values f(xν) approaching the finite value f(x̃), and a sequence of
yν in ∂F f(xν) approaching x∗.

The set of all limiting subgradients is called the limiting subdifferential and denoted as
∂Lf(x̃).

Definition 4. The Clarke subdifferential ∂Cf(x̃) of f at x̃ is the set of all x∗ ∈ E such that

∀v ∈ E, 〈x∗, v〉 ≤ f0(x̃, v) := lim
ε↓0

lim sup
y ↓f x̃

t ↓ 0

inf
w∈v+εB

f(y + tw)− f(y)
t

, (43)

where B is the unit ball in E and y ↓f x̃ signifies that y and f(y) converge to x̃ and f(x̃),
respectively.
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Remark 9. We can also define the Clarke subdifferential of f at x̃ as the set of x∗ for which
(x∗,−1) lie in some appropriate normal cone to epif at (x̃, f(x̃)) (see [11]). Thus, ∂Cf(x̃) is
closed and convex for every x̃ in E.

Moreover, since we are in a finite dimensional context, we have the next string of inclusions

∂P f(x̃) ⊂ ∂V f(x̃) = ∂F f(x̃) ⊂ ∂Lf(x̃) ⊂ ∂Cf(x̃). (44)

8.2 The main results

Let us fix some notations:

• As previously, for x ∈ Rp, let diagm,n(x) denote anm×nmatrix with entries diagm,n(x)i,i =
xi for all i, and diagm,n(x)i,j = 0 for i 6= j.

• O(n) is the set of orthogonal matrices in Mn(R).

Theorem 15. All the generalized subdifferentials (proximal, Fréchet, viscosity, limiting, Clarke)
of the rank function coincide. We denote ∂(rank) the common subdifferential set-valued mapping.
For A ∈Mm,n(R), ∂(rank)(A) is constructed as follows:

• Consider the matrices U ∈ O(m) and V ∈ O(n) such that

Udiagm,n(σ(A))V = A

(in other words, we collect all the orthogonal matrices U and V which give a singular
value decomposition of A; elsewhere in this paper, the set of all such (U, V ) is denoted as
O(m,n)A).

• Consider the “pseudo-diagonal” matrices diagm,n(x∗), where x∗ ∈ Rp is such that x∗i = 0
for all i = 1, . . . , r (recall that r = rank A).

• Then, collect all the matrices of the form Udiagm,n(x∗)V .

In a single formula,

∂(rank)(A)
= {Udiagm,n(x∗)V | U ∈ O(m), V ∈ O(n) such that Udiagm,n(σ(A))V = A,

x∗i = 0 for all i = 1, . . . , r}.
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A further interesting property of ∂(rank)(A) is that it is not only a closed convex set but a
vector space.

Proposition 1. For A ∈Mm,n(R), ∂(rank)(A) is a vector space.

An alternate expression of ∂(rank)(A), a more palpable one, is possible. The subdifferential
of the rank function can be also represented as the tensor product of two vector spaces in Rm

and Rn, as indicated in the following proposition.

Proposition 2. Let N(A) and N(AT ) denote the null spaces of matrices A and AT , respectively.
Then

∂(rank)(A) = N(AT )⊗N(A),

where ⊗ denotes the tensor product. In a more detailed form,

N(AT )⊗N(A) =
{∑

i,j aijαiβ
T
j | (αi) is a basis of N(AT ) ,

(βj) is a basis of N(A)} .

Consequentely, the dimension of ∂(rank)(A) is (m− r)(n− r), where r is the rank of A.

We now have a good knowledge of ∂(rank); it is also possible to calculate ∂(rankλ) and link
Sections 7 and 8. The formulas obtained serve as an illustration or example of general results
linking the generalized subdifferentials of f and of its Moreau envelope, like those displayed in

• [12, Section 5] on the so-called quadratic inf-convolutions (for example, properties at a
point M where ∂P (rankλ)(M) is nonempty).

• [47, Section 10.32] on the “subsmoothness” of Moreau envelopes.

• [30, Section 5] on the limits (of various kinds) of the generalized subdifferentials of fλ when
λ > 0 goes to 0.

Remark 10. In a paper that we came aware of after a first writing of the present paper, Luke
(in [43, Proposition 3.6]) gives the common expression of various generalized normal cones to Sk
at A ∈ Sk. Due to the existing relationship between generalized subdifferentials and generalized
normal cones, via the indicator function, his results are consistent with our Theorem 15.
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Remark 11. The rank function is an example of semi-algebraic function for which every point
is a critical point (in the sense that 0 belongs to the (here common) generalized subdifferential
of the function at any point). For semi-algebraic extended-real-valued functions defined on
Rd, the graphs of the generalized subdifferentials are semi-algebraic subsets of Rd × Rd whose
appropriately defined dimensions (local and global) can be defined and studied ([13], [14]). In
the case of the rank function defined onMm,n(R) ≡ Rm×n, the dimension of the subdifferential
graph (both in the local sense and in the global one) is equal to the dimension of the underlying
space, namely d = m× n7.

9 Further notions related to the rank: the spark, the rigidity,
the cp-rank of a matrix.

The notion of rank of a matrix dates back to the mathematician Sylvester (1814-1897);
there have been since several further concepts whose definitions resemble that of rank, or whose
definitions use that of rank. We mention here three of them: the spark, the rigidity and the
cp-rank.

9.1 The spark of a matrix

Given A ∈Mm,n(R), the spark of A is the smallest positive integer k such that there exists a
set of k columns of A which are linearly dependent. Remember that the rank of A is the largest
number of columns of A which are linearly independent. The term spark seems to have been
coined by Donoho and Elad in 2003 (see [10] and [17] for comments on it and some properties);
it is also known as the girth in matroid theory, or even (within one unity) the Kruskal rank (see
below).

Actually, the given definition of spark is a bit uncomplete: If A is of full column rank, i.e.
if rank A = n, there is no set of k columns of A which are linearly dependent. In that case, we
should adopt +∞ as for the spark of A (the infimum over the empty set).

The other extreme case is when one column of A is a zero-column: then spark A = 1. In
7D.Drusvyatskiy, personal communication (August 2012).
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short, if A does not contain any zero-column and is not of full column rank, we have

2 ≤ spark A ≤ rank A+ 1. (45)

Just for an example, consider

A =


1 1 0
0 0 1
1 1 1

 , so that AT =


1 0 1
1 0 1
0 1 1

 .
Here, rankA = rank AT = 2 while spark A = 2. Note that spark AT = 3, so that spark A 6=
spark AT as a general rule.

The spark of A is much more difficult to calculate than the rank of A. There however is a
variational formulation of spark A (i.e., as the result of some minimization problem). Indeed,
to have columns Ai1 , Ai2 , . . . , Aik to be linearly dependent means that there exists a non-zero
λ = (λi1 , λi2 , . . . , λik) ∈ Rk such that

∑k
l=1 λilAil = 0; in other words

Aλ = 0 for λ = (0, . . . , λi1 , . . . , 0, . . . , λik , . . . , 0) ∈ Rn.

To summarize in a single formula,

spark A = min
Aλ = 0,
λ 6= 0

c(λ). (46)

Problem (46) is an example of rank minimization problem (see the Introduction), where
the constraint set C := {λ ∈ Rn, Aλ = 0, λ 6= 0} is nonempty when A is not of full column
rank. A related notion is due to Kruskal (1977) who introduced it in the context of fitting
trilinear arrays by simple models ([31]); this notion therefore has been called later the Kruskal
rank, and denoted as K-rank. By definition, the Kruskal rank of A, K-rank A, is the maximal
positive integer k such that any subset of k columns of A are linearly independent. For example,
K-rank A = n if A is of full column rank, and K-rank A ≥ 1 except if A = 0 (in which case it is
not defined). The relation between K-rank and spark is now clear: if A 6= 0 is not of full column
rank,

spark A = K-rank A+ 1. (47)
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9.2 The matrix rigidity

Suppose m = n. Then, the rigidity of A ∈Mn(R), denoted by RA(k), is the smallest number
of entries that need to be changed in order to reduce the rank of A below k. This notion take
roots in computer science ([49]), and obtaining bounds on rigidity has a number of implications
in complexity theory ([42]). However, computing the rigidity of a matrix is in general a NP-hard
problem. For A ∈Mn(R) and any integer k, one can check that

RA(k) ≤ (n− k)2. (48)

A variational formulation of RA(k) can easily be proposed as a rank minimization problem:

RA(k) = min
M∈A+Sk

c(M), (49)

where c(M) denotes the number of nonzero entries in the matrix M (or the counting number of
(m11, . . . ,mnn)) and Sk = {S ∈Mn(R)| rank S ≤ k}.

9.3 The cp-rank of a matrix

9.3.1 Definition and first properties

The cp-rank is defined for a specific class of symmetric matrices called completely positive
matrices; the prefix “cp” is precisely there for recalling the wording “completely positive”. Before
defining completely positive matrices, we recall what copositive matrices are.

A matrix M ∈ Sn(R) is said to be copositive if

〈Mx, x〉 ≥ 0 for all x ∈ Rn+.

The set of all copositive matrices is a closed convex cone of Sn(R) which we denote by Cn(R).
A matrix A ∈ Sn(R) is then called completely positive if

〈〈A,M〉〉 ≥ 0 for all copositive matrices M. (50)

Thus, the set of all completely positive matrices is again a closed convex cone of Sn(R); we
denote it by CPn(R). Hence, using the terminology of convex analysis, CPn(R) is the (positive)
polar or dual cone of Cn(R). Expressed in other ways,

CPn(R) = co{xxT | x ∈ Rn+} (51)

= {BBT | B is a nonnegative matrix}. (52)
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A completely positive matrix A necessarily has nonnegative entries and is positive semidefinite.

Definition 5. The smallest number of columns of a nonnegative matrix B in a factorization
A = BBT of a completely positive matrix A is called the cp-rank of A and denoted as cp-rank A.

The cp-rank of A is also the minimal number k of summands in a rank 1-decomposition of
A as follows:

A =
k∑
i=1

bib
T
i , with bi ∈ Rn+. (53)

For the zero matrix (which indeed lies in the cone CPn(R), we adopt by convention that its
cp-rank is 0.

For matrices A ∈ Sn(R) which are not in CPn(R), a decomposition like (53) is not possible;
as it is usual in variational analysis, we therefore pose cp-rank A = +∞.

More information about copositive matrices and completely positive matrices can be found
in survey papers like [28], [15], [9].

If one wished to compare the rank and the cp-rank of a matrix, one gets at the following
inequality:

rank A ≤ cp-rank A, (54)

for all completely positive matrices, hence for all symmetric matrices.

Indeed, in some cases, the cp-rank of A is equal to the rank of A; for example this holds
true when n ≤ 3 or when rank A ≤ 2. To give an example where the inequality in (54) is strict,
consider

A =


6 3 3 0
3 5 1 3
3 1 5 3
0 3 3 6

 ∈ S4(R).

Then, rank A = 3, while cp-rank A = 4 ([4, page 140]).

The cp-rank however enjoys some properties similar to those of the rank (see Section 1 and
Section 2).

Theorem 16. (i) If A and B are completely positive,

cp-rank (A+B) ≤ cp-rank A+ cp-rank B. (55)
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(ii) If A is completely positive and c > 0,

cp-rank (cA) = cp-rank A. (56)

(iii) The cp-rank is a lower-semicontinuous function: If (Aν)ν is a sequence of completely
positive matrices converging to A, then A is completely positive and

lim inf
ν→+∞

cp-rank Aν ≥ cp-rank A. (57)

9.3.2 Upper bounds for the cp-rank.

One of the most interesting challenges about the cp-rank is to provide an upper bound of it
in terms of rank. In 1983, Hannay and Laffey ([21]) showed that the cp-rank of a completely
positive matrix of rank k was necessarily less than or equal to k(k+1)

2 . Later, in 2003, this upper
bound was sharpened to k(k+1)

2 − 1 by Barioli and Berman ([7]); they also proved that this
upper bound could be achieved by a completely positive matrix of rank k. In short,

Theorem 17. (i) For every completely positive matrix of rank k ≥ 2,

cp-rank A ≤ k(k + 1)
2 − 1.

(ii) For every integer k ≥ 2, there exists a completely positive matrix A whose rank is k and
whose cp-rank is k(k+1)

2 − 1.

By Theorem 17, if A is a n× n completely positive matrix, then

cp-rank A ≤ n(n− 1)
2 − 1. (58)

But is there a better upper bound on the cp-rank of n × n matrices? Drew, Johnson and
Loewy proved that cp-rank A ≤ n2

4 for every completely positive matrix of order n ≥ 4 whose
graph is triangle free ([16]). The fact that the bound n2

4 was also valid in all other known cases
led the authors to wonder whether this holds for every completely positive matrix of order n ≥ 4.

Conjecture (The DJL Conjecture) If A is an n × n completely positive matrix, with
n ≥ 4, then

cp-rank A ≤ n2

4 . (59)
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The conjecture was proved by Berman and Shaked-Monderer ([3]) for matrices whose
comparison matrices are M-matrices and by Loewy and Tam ([41]) for 5 × 5 matrices whose
graph is not complete. But then, for the first time, Barioli announced (in [6]) an example of
7× 7 completely positive matrix of rank 5 and cp-rank 14. Such matrix is a counter-example to
the DJL Conjecture.

9.3.3 The convex relaxed form of the cp-rank.

Due to properties like (56), it is easy to see that the convex hull of the cp-rank function on
CPn(R) is the zero function. So, like for the rank function (in Section 5), we restrict it to some
appropriate ball. For R > 0, consider

A ∈ Sn(R) 7→ cp-rankR(A) :=

 cp-rank A if A is completely positive and ‖A‖∗ ≤ R;
+∞ otherwise.

(60)
We then have the following result, to be put in parallel with Theorem 4.

Theorem 18. We have

A ∈ Sn(R) 7→ co(cp-rankR)(A) :=

 1
R‖A‖∗ if A is completely positive and ‖A‖∗ ≤ R;
+∞ otherwise.

(61)

Before going into the details of the proof, some observations are in order:

• Like for Theorem 4, due to the homogeneity properties of the functions involved, it suffices
to prove Theorem 18 for R = 1.

• When a matrix A is positive semidefinite, which is the case for A completely positive,

‖A‖∗ = sum of the eigenvalues of A = tr A. (62)

Proof. (of Theorem 18)

Let φ denote the function defined in the right-hand side of (61) for R = 1, proposed as
the convex hull of the function cp-rank1. The domain of the function cp-rank1, i.e. the set of
matrices where it is finite-valued, and that of φ are equal: it is the compact convex set

CPn(R) ∩ {A ∈ Sn(R)| ‖A‖∗ ≤ 1}.
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So, if A ∈ Sn(R) lies out of the above set, the function φ and co(cp-rank1) coincide at A, their
common value is +∞.

Let therefore now A be chosen completely positive, with ‖A‖∗ ≤ 1. Firstly, if A is the zero
matrix, it is clear that

co(cp-rank1)(0) = 0 = φ(0).

Secondly, let us assume that A 6= 0. We have to prove that

(cp-rank1)(A) = ‖A‖∗.

Because
cp-rank ≥ rank ≥ ‖.‖∗ on {A ∈ Sn(R)| ‖A‖∗ ≤ 1},

we get a first inequality
co(cp-rank1)(A) ≥ ‖A‖∗. (63)

To get at the converse inequality, decompose A as follows:

A =
k∑
i=1

bib
T
i , bi ∈ Rn+, bi 6= 0, k ≥ cp-rank A.

We “normalize” the decomposition above as:

A =
k∑
i=1

αicic
T
i , with ci := bi

‖bi‖
and αi := ‖bi‖2. (64)

Now,

tr A =
k∑
i=1

αitr(cicTi ) =
k∑
i=1

αi (because tr(cicTi ) = ‖ci‖2 = 1),

so that
k∑
i=1

αi ≤ 1 (because tr A = ‖A‖∗ ≤ 1).

We complete the decomposition (64) with the zero matrix:

A =
k∑
i=1

αicic
T
i + (1−

k∑
i=1

αi)0.
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Thus, due to the convexity of co(cp-rank1),

co(cp-rank1)(A) ≤
k∑
i=1

αicp-rank1(cicTi ) + (1−
k∑
i=1

αi)cp-rank1(0)

≤
k∑
i=1

αi (because cp-rank1(cicTi ) = 1 and cp-rank1(0) = 0)

≤ tr A = ‖A‖∗. (65)

Putting together the inequalities (63) and (65) yield the desired result.

Remark 12. As for the rank function, there is no difference between co(rankR) and its closure
co(cp-rankR).

Remark 13. On the set where both co(rankR) and co(cp-rankR) are finite, i.e. on CPn(R)∩{A ∈
Sn(R)| ‖A‖∗ ≤ R}, they are equal and linear.

Like for the spark of A (cf. 9.1), the cp-rank of A is difficult to determine, much more than
the rank of A.

Since the cp-rank is a lower-semicontinuous integer-valued function, like the rank function, it
is tempting to ask ourselves: what are the generalized subdifferentials of the cp-rank function?
The question was answered in Section 8 for the rank function, we did not succeed in answering
it for the cp-rank function.

By way of conclusion

In this survey, we have painted a broad panorama of the main properties of the rank function
(and of some related notions) in the context of variational analysis and optimization. The
algorithmic aspects of tackling the rank minimization problems concern the convex relaxed
forms of the rank function (such as seen in Section 5); there is indeed a huge specific literature
devoted to this way of doing. It remains to see if, even if we deal with a very bumpy (but
fascinating) function, the variational analysis properties of the rank function itself could be used
for considering directly the rank minimization problems and not their relaxed forms.
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