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Abstract. The objective of this short note is to provide an estimate
of the generalized Jacobian of the inverse of a Lipschitzian mapping when
CLARKE’s inverse function theorem applies. Contrary to the classical C!
case, inverting matrices of the generalized Jacobian is not enough. Simple
counterexamples show that our results are sharp.
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Introduction

In a paper published in 1976 ([3]), F. H. CLARKE proposed a generaliza-
tion of the classical C! inverse function theorem for Lipschitzian mappings
when all the matrices of what he called generalized Jacobian are invertible.
Let us briefly recall what it is about.

When a mapping F' : R® — R" is Lipschitzian (i.e., satisfies a Lips-
chitz property) in a neigborhood of x € R", one firstly defines the limiting
generalized Jacobian

JE(z) = {lim JF(2) : ), = x} (1)

(that is to say, we consider all sequences (z}) converging to x such that F is
differentiable at x; and such that the sequence (JF'(zy)) of Jacobian matrices
converges). The notation JF(xy) is used for the (usual) Jacobian matrix of
F at x; ; the notation ﬂ(x) itself suggests that we collect all the possible

limits of Jacobian matrices. Indeed, ﬂ(m) is a (nonempty) compact set
of (n x n) matrices. Taking the convex hull of JE(x) gives rise to the so-

called CLARKE generalized Jacobian of F at x, denoted here as J F'(z) (other
notations are OF (z) (the original one) and 0cF(x)):

JF(z) = co (ﬂ(x)) . (2)

(Here and below, co(S) means the convex hull of a set S). Therefore, J F(z)
is a convex compact set of (n x n) matrices.
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In the series of questions that we have decided to pose like in a quiz, here
is the first one:

Q1. Does JF(x) enjoy any property as a convexr compact set of matri-
ces?

The answer is No. It has recently been proved in [1] that any convex com-
pact set of matrices is the CLARKE generalized Jacobian of some Lipschitzian
mapping.

An interesting property of JF(z), proved in [7] and [4], is that its con-
struction (see (1) and (2)) is insensitive or “blind” to sets of null (Lebesgue)
measure. That means that in (1) we could impose to zj staying out of a
set of null measure without affecting the final result J F(x). This is useful
in some proofs when one likes to avoid some “nasty” sets; that will happen
once in our note (Step 2 in the proof of the main theorem).

CLARKE’s inverse function theorem for Lipschitzian mappings is as fol-
lows:

Theorem ([3]). Let F' : R" — R" be Lipschitzian around x, € R".
Suppose that all the matrices in JF(x¢) are invertible. There then exist
neighborhoods U C R™ and V. C R"™ of xy and F(xg) respectively, and a
Lipschitzian mapping G : V. — R™ such that

(a) (Go F)(z) =x for all x € U

(b) (FoG)(y) =y forall yeV.

Like in the classical case (i.e., when F is C! in a neighborhood of ), by
abuse of language and writing, we say that G is the (local) inverse of F', and
we denote it by F~! as well. Just as in the classical case, CLARKE’s inverse
function theorem yields an implicit function theorem, as has been noted by
HIRIART-URRUTY ([5, Theorem 11}).

In the classical case, with 3, = F/(x), we have JF " (yo) = [JF(x0)] ", a
perfectly symmetrical situation. Thus a natural question arises: What about
JF~1(yo) when CLARKE s inverse theorem applies? This is the kind of ques-
tion we tackle in this note. To the best of our knowledge, the subsequent
results have not been published, although they are very natural. Moreover,
recent applications feature inversion of CLARKE generalized Jacobians, for-
mally used as classical Jacobians, for implicitely defined input and output
relations (see [8, Theorem 2)] for example). The present work sheds light on
the accuracy of this type of procedure from a Nonsmooth Analysis point of
view.

The main results

Consider the following example proposed by CLARKE in his seminal paper
3] from 1976. It will serve as a “red thread” in our note.
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Let F : R*~ R? be defined by F(z, :(“:f(x’y):|x|+y ).We
VE@D={ 0= gle,g) =20+ Iy

then have:

asom={[4 (2 [4 2] (3 2]} o

srom=o{[3 113 12 213 A])

In a more “compact” form,

JF(o,o):Hg H:ae[—l,u,@e[—Lu}. (5)

Clearly, JF(0,0) is a “flat” convex set in the vector space My (R) of (2 x 2)
matrices; it is of dimension 2 (The dimension of a convex set is, by definition,
the dimension of its affine hull). Here, we are lucky enough to have a compact
form for JF(0,0). That helps to infer that all the matrices in JF(0,0) are
invertible.

A question that could cross our minds: If & C M, (R) contains only
invertible matrices, is it the same for co(S)? The answer is clearly No: a
line-segment with endpoints invertible matrices may contain singular (i.e.
not invertible) matrices. The answer however is Yes if all the matrices in
S are positive definite (or negative definite). That brings us to the table
the difficulty that may exist in verifying the hypotheses in CLARKE’s inverse
function theorem.

In our specific example,

[TF(0,0)] ' := {M™: M e JF(0,0)} (6)

:{aﬁl_z{_@ ‘al] :ae[_1,1],5e[—1,1]}. (7)

Mimicing what is known in the classical case, we may ask the following
question:
Q2. Under the assumptions of Clarke’s inverse function theorem, does
T F~(yo) equal [T F(x0)]”" (the latter being, by definition, {M~": M € JF(x0)})?
The answer is No. The reason is that [7F(20)]”" is not, as a general
rule, a convex set. It is just a connected compact set (as the image of a
compact convex set by the continuous mapping (.)~!). To see this possible
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nonconvexity, consider the specific example above (see (6) and (7)). Let us
choose in [T F(0,0)] "

11 -1 -1/2 1)2 : - L
M__é[_Z O} _{ 1 0 }correspondmgtoa—Oandﬁ—l

17 -1 —
N:——{ 1 1}:{1/3 1/3]correspondingtoazlandﬁz—l.

31 -2 1 2/3 —1/3
As a consequence,
1 2. | 1/18 7/18 T =17 -1
For having this matrix of the form of those in the family in (2), one should
have
Ve S g -1 ()
18| -2 4/7| ap—-2| -2 «

for some a € [—1,1], 8 € [—1,1]. This induces three constraints (the fourth
is redundant):

- first, ﬁ = —1—78, hence aff = —% (resulting from equality of antidiag-
onal elements in (9))
- second, f = —1/7, a = 4/7, resulting, afterwards, from equality of

diagonal elements in (9).

One cannot have, at the same time, aff = —4/7, = —1/7, o =4/7.
So, M + 2N belongs to co [T F(0, 0)]™" but not to [JF(0,0)] .

The question posed in the previous page can be answered more generally
as follows. Let M be any compact convex set of non-singular matrices in
M, (R) such that M~! is not convex. By [1] find a Lipschitzian mapping
F : R™ — R" such that F(0) = 0 and JF'(0) = M. This gives the answer.
Such M do exist, even very simple ones like line-segments. For example,

1 O}and

with n = 2, consider the line-segment M with endpoints A = [ 11

B = [ é 1 } . Easy calculations lead to:

1 —

1, 1 [ 1 —1/2 .
g4 +358 {—1/2 1 ]¢M'

In short: Taking the convex hull (the “co” operation) and inverting matrices
(the (.)~! operation) are two operations that do not go well together. The
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“co” operation goes well with linear (or affine) operations on matrices, while
the inversion operation of matrices is quite nasty from the geometrical point
of view.

Q3. Under the assumptions of Clarke’s inverse function theorem, does
TF(yo) equal co[TF(xo)] "2

The answer is again No. We will see a counterexample later on. Never-
theless, with co [7 F(x0)]”", we have an outer estimate of JF~*(y,). Here is
our main theorem.

Theorem 1. Under the assumptions of Clarke’s inverse function theo-
rem, we have:

{M—l M € g(:co)} C JF~, (), (10)
jF_l(yo):CO{M_l :Meg(xo)}, (11)
TF ! (yo) C co[TF(xo)] - (12)

Before going into the proof, note the following:

- Contrary to what one may think at the first glance, the inclusion
(10) cannot be immediately “symmetrized”: nothing guarantees that the
assumption made on F holds true for ', especially that all the matrices
in JF ' (y) (or even in JF~(yy)) are invertible.

- According to the relation between JH(.) and JH(.) for a Lipschitzian

mapping H (see (2)), a consequence of (10) is that
co {M—1 M e g(xo)} C TF Y (yo). (13)

Therefore, what has to be proved to get at (11) is the converse inclusion.
- Due again to the relation between JH(.) and JH(.) for a Lipschitzian

mapping H, (12) is a direct consequence of (11).

Proof of Theorem 1.

Step 1. Proof of the inclusion (10).

There is no loss of generality in assuming xq = 0 and F(z() = 0.

To get at (10), the reasoning is rather similar to the one used in the
classical case. It is indeed a consequence of Lemma 6.1 and the proof of it in
[6, page 104]; it says the following.

Lemma 1. If F': R®™ — R" is a Lipschitzian homeomorphism near 0 and
x € R™ is a point where F is differentiable, with JF(x) invertible, then the
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inverse mapping G := F~' is differentiable at the image-point y = F(x) with
-1

JG(y) = [JF(z)] .

For the convenience of the reader, we provide here a self-contained proof
of this statement.

Let

A:=F71 [F(z)+h) - F [Fz)] - [JF()] " h
= F Y [F(x)+h]—z—[JF(z)] " h.

We intend to prove that A = o(h).

By assumption, F' is differentiable at x, hence

F(x+d) = F(z) + JF(x)d + o(d).
We rewrite this first-order development with d := [JF(x)]”" h; we get at
F{z+ [JF(x)]" h} = F(z) + h+ o(h).
Now, because F'~! is Lipschitzian around y, we infer from the above
x4+ [JF ()] h=F [F(z)+ h] + o(h).

Thus, A = o(h). The lemma above is proved.
Now pick any M € JE(0) C JF(0). By assumption in the Theorem
1, M is invertible. Due to the definition of Q(O), there exists a sequence

(x) converging to 0 such that F' is differentiable at x; and such that the
sequence (JF(zg)) of Jacobian matrices converges to M. Consider y, =
F(zr). According to the lemma 1 above, for every k, the inverse mapping
G := F ! is differentiable at y;, = F(x},) and JG(yy) = [JF(zx)]”". Clearly,
due to the continuity of F' and that of the (.)"!operation on the open set of
invertible matrices, when k£ — oo, we have:

]—1

JGyw) = [JF(a)] — M~"

Hence, M~! € JG(0) = JF~(0). We thus have proved that
{M*l M e j_];(())} c JFY(0).
Step 2. Here, we intend to prove
JF(0) C co {M—l M e Q;(O)} , (14)
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that is the converse inclusion to (13).

Let Ay and A; denote the sets of points where F' and F'~! fail to be differ-
entiable, respectively. These sets are of null (Lebesgue) measure. Because F'
is Lipschitzian, a simple reflexion reveals that F'(Ay) is also of null measure.
Thus A := Ag U Ay U F(Ay) is of null measure. As recalled at the beginning
(after the answer to Q1), the construction of JF~!(0) is insensitive to sets
of null measure, so

JF10) = co{lim JF " (ys) : yr. = O,y & A}. (15)

The trick in our proof is to work only with points yx ¢ A. Fix any y, ¢ A.
Realizing that F~! is differentiable at y, and F is differentiable at x; :=
F~'(yy), chain rule for differentiable mappings yields

I, = J(Idgn)(3s) = JF () JF (3.

Recalling that JF(0) consists of invertible matrices only, we conclude that
for k large enough (because xj, — 0), JF () is invertible; so JF ™! (y;) =
[JF(x3,)]”". Moreover, JF(z;) converges to an invertible matrix (in JE(0));
thus, JF~!(yx) converges to the inverse of a matrix in JE(0).

Finally, the description (15) leads to the announced inclusion (14).

At this stage, it is natural to pose the question of sharpness in the general
inclusion (12).

Q4. Under the assumptions of Clarke’s inverse function theorem, could
the inclusion (12) be strenghtened to an equality?

The answer is No. There are examples where equality holds true in (12)
and examples where the inclusion in (12) is strict.

Q5. Under the assumptions of Clarke’s inverse function theorem, if equal-
ity (resp., a strict inclusion) holds true for F in (12), does equality (resp.,
a strict inclusion) hold true for G := F~' in (12)?

The answer is again No.

To illustrate all these answers, let us go back to CLARKE’s example F
given at the beginning. Is it possible to get at an explicit expression of

P = (22500

(u,0) y = ¢(u,v)
at least in a neighborhood of (0,0) (where F' is known to have an inverse)?
Indeed, F is globally invertible (on R?), its inverse is again a piecewise linear
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mapping. We are fortunate enough to have an explicit expression of G :=
F~1. Here it is:

, (y:c:;u—_l;)ifugvgm

o ( ;:((21;;7;))//33 ) if —2u<wv<u »
( ;:((224112)//33 ) if 2u < v and —u < v;
(oot ) itos —wand o< -2
We have:

zgon=g[ 3 Al [ [sh Aa [0 ]l
17
JG(0,0) = co (@(o, 0)) . (18)

Unfortunately, we have no “compact expression” for 7G(0, 0) like for 7 F'(0, 0)
in (5).

As expected (see (10) and the proof of (11)) - and easy to check in our
particular example - we have the following relationship

JG(0,0) = {M~": M € TE(0,0)}.

Nlustration 1. According to (12) applied to G, knowing that G™! = F,
we have

JG710,0) = JF(0,0) C co[TG(0,0)]". (19)

The inclusion (19) is strict. One can think of two ways of proving it. First,
as observed in [2, page 17], the convex set co [[JG(0,0)] " is of dimension 3,
while we know that JF'(0,0) is a convex set of dimension 2. Another way,
more explicit, is to exhibit a matrix M which lies in co [JG(0,0)] ™" (even in
the smaller [7G(0,0)]™") but which does not belong to JF(0,0). For that
purpose, consider the four matrices My, ... , My in &(0,0), see (17), and

define M = 3(My + My + M3 + M,) € JG(0,0). We have:

M= {4(/)3 2(/)3},sothatM1: [3(/)2 364].
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This matrix M~! does not belong to JF(0,0) (whose general form is given

in (5)).
Hlustration 2. The inclusion (12) for our particular F' at (0, 0) is actually
an equality, that is:

JF710,0) = co [T F(0,0)]". (20)
For that, it is enough to prove the following:

meﬁW*Cm{MﬂpMeggmm}, (21)

that is to say: given any matrix S, 5 in [7F(0,0)]”" (we know a parametriza-
tion of it, see (7)), one should find a convex combination of the four matrices

SAHQEAmﬁMg{mr%A4eggmﬁg)@%(n»wmmewm&%ﬂ

We therefore have to solve the following linear system (real variables x, y, z, t)

ZL’Sl + ySg + ZSg + tS4 = Sawg, (22)
which gives in detail:
y 2 s
—r - Z — t =
rTyty T 0B —2
+ Yt —
€T —_ —_ =
3 3 af — 2
+2_Z4y a
—T z —
3 3 aff —2
2y 2z —2
2 — 4+ —+2t =
T+ 3 + 3 + 0B —2

r+y+z+t = 1,

where o € [—1,1], 5 € [-1,1] (two independent parameters). In the above
list, we note that the second and the fourth equations coming from equality
(22) between (2 x 2) matrices are the same.
The (unique) solution of (22) is:
_ (e+D(B+D)
= “i@-ap)
Y = 3(5;)(5;1)7
_ stainiig) (23)
1o—ap)
4 (—a)(18)
i3-aB)

All these coefficients are nonnegative. We therefore have found coefficients
x,y, z,t such that the convex combination x.S; +yS; 4+ 253 + 1S4 equals S, 3.
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To summarize the two illustrations above, (12) is an equality for the
considered (piecewise linear) mapping F', while it is a strict inclusion for the
(piecewise linear) mapping G := F~!. With these two examples, it is also
easy to imagine a mapping ® : R*— R* where the inclusion (12) is strict for
both ® and &~ 1.

Remark. Of course, things are easier and much simplified in the one-
dimensional case (n = 1), something observed for a long time: if all the

elements of the generalized derivative do(xg) are nonzero, then do~!(yo) =
1
9o (20) "

Conclusion

Under the assumptions of CLARKE’s inverse function theorem on F' at
xo, the main result that we have proved is a nonsymmetrical relationship on
generalized Jacobians of F' at z and that of F~'at yo = F(x0):

TF " (yo) C co[TF(x)] "

Examples above show that one cannot do better than that.

This state of affairs, deemed unsatisfactory for what they aimed at, led
the authors in [2] to define and study “conservative” generalized Jacobians
JCF(z). This was justified by the need for a conservative calculus in a
framework of inverse functions, and to provide a variational meaning to

[(TeF ()]
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