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Abstract. We consider, and study with elementary mathematics from
Calculus, the polyhedral norms ‖x‖(k) = sum of the k largest among the
|xi|’s. Besides their basic properties, we provide various expressions of the
unit balls associated with them, and determine all the facets and vertices of
these balls. We do the same with the dual norm ‖.‖∗(k) of ‖.‖(k). The study of
these polyhedral norms is motivated, among other reasons, by the necessity
of handling sparsity in some modern optimization problems, as it is explained
at the end of the paper.
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Introduction
Ask a student about examples of norms in Rn... Very likely he will answer

with the usual Euclidean norm ‖.‖2 or, with p > 1, the general `p-norms ‖.‖p
defined as follows:

Rn 3 x = (x1, x2, ..., xn) 7→ ‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

.

Drawing the unit balls Bp(0, 1) =
{
x : ‖x‖p 6 1

}
in two or three dimen-

sions, seeing how they change when p increases, are interesting and standard
exercises. One should however not hide the difficulty of a numerical calcu-
lation of ‖x‖p, for large p, due to the opposition between the powers p and

1/p in the expression (
∑n

i=1 |xi|
p)

1
p . The case p = 1 is a little apart since

it is the only case where ‖.‖p is polyhedral (one also says polytopal): ‖.‖1

is the maximum of a finite number of linear forms, the associated unit ball
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B1(0, 1) is a polytope. Considering the limiting case, p → +∞, is also the
opportunity of an interesting exercise: for all x = (x1, x2, ..., xn) ∈ Rn,

lim
p→+∞

‖x‖p = max
i=1,...,n

|xi| .

This result is precisely the reason why the notation ‖x‖∞ is used for maxi=1,...,n |xi|.
Indeed, ‖.‖∞ is another norm, polyhedral like ‖.‖1, called the max norm or
even the Tchebychev3 norm. When p increases, ‖x‖p decreases, so that we
have the following string of inclusions between associated unit balls: when-
ever q > p,

B1(0, 1) ⊂ ... ⊂ Bp(0, 1) ⊂ Bq(0, 1)... ⊂ B∞(0, 1).

All the “intermediate” norms, that are corresponding to p ∈ (1,+∞),
are “smooth” ones, in the sense that the boundaries of Bp(0, 1) are smooth
surfaces. Another point: calculating the dual norm of ‖.‖p leads to the norm
‖.‖q, where p and q are related by the equation 1/p + 1/q = 1 (with its
extension 1/1 + 1/∞ = 1), so that there is nothing new under the sun.

At this stage, the student we imagined at the start of the introduction
to be asked about the norms in Rn, could think that the essentials has been
said, or even that is the end of the story. Actually, there is an infinity of ways
to interpolate or deform ‖.‖1 into ‖.‖∞; one of them is very interesting for the
structure and properties of obtained norms, all polyhedral. Their unit balls
therefore are all polytopes. The objective of this paper is to study them (and
their dual versions) with basic analysis and algebra tools from the undergrad-
uate level. This is again an opportunity to see how mathematical aspects
from various fields like linear algebra, convex geometry, combinatorics, real
analysis blend harmoniously.

1. Basic definitions
For an integer k lying between 1 and n, we consider the following real-

valued function Nk defined on Rn:

Nk(x1, x2, ..., xn) = max {|xi1|+ |xi2|+ ...+ |xik | : 1 6 i1 < ... < ik 6 n} .
(1)

Clearly, N1 is the ‖.‖∞ norm, while Nn is the ‖.‖1 norm. Actually, Nk

is also a norm, “intermediate” between them: ‖.‖∞ 6 Nk 6 ‖.‖1; it was
introduced in [10] as a tool to solve linear approximation problems. To prove
that Nk is a norm, the only axiom whose verification requires some reasoning

3This is an opportunity to recall that we commemorate in 2021 the birth of this eminent
mathematician 200 years ago.
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is the triangle inequality. For that purpose, consider a k -uple i1 < ... < ik
for which

Nk(x1 + y1, ..., xn + yn) = (|xi1 + yi1|) + (|xi2 + yi2|) + ...+ (|xik + yik |) .

Applying the triangle inequality |xi` + yi` | 6 |xi` | + |yi`| for every ` =
1, 2, ..., k, one gets

Nk(x1 + y1, ..., xn + yn) 6 (|xi1|+ |xi2|+ ...+ |xik |)
+ (|yi1|+ |yi2|+ ...+ |yik |)

6 Nk(x1, x2, ..., xn) +Nk(y1, y2, ..., yn).

From now on, we use the following notations: ‖.‖(k) for Nk, and B(k) for
the (closed) unit ball associated with ‖.‖(k). In order to avoid confusion and
keep old habits, we continue to denote B∞(0, 1) (resp. B1(0, 1)) the unit ball
associated with ‖.‖∞ (resp. with ‖.‖1).

2. First properties of ‖.‖(k) and B(k)

2.1 Polyhedral norms ‖.‖(k)

Since |xi1| + |xi2| + ...+ |xik | = maxεi∈{−1,1} (ε1xi1 + ε2xi2 + ...+ εkxik)

and since there are

(
n
k

)
= n!

k!(n−k)!
choices for the k -uples i1 < ... < ik,

‖.‖(k) is the maximum of H(n, k) = 2k
(
n
k

)
linear forms, that is:

‖(x1, x2, ..., xn)‖(k) = max 16i1<...<ik6n
εi∈{−1,1}

(ε1xi1 + ε2xi2 + ...+ εkxik). (2)

‖.‖(k) is therefore a polyhedral norm. The string of inequalities

‖.‖∞ = ‖.‖(1) 6 ... ‖.‖(k) 6 ‖.‖(k+1) ... 6 ‖.‖(n) = ‖.‖1 (3)

expresses that
{
‖.‖(k)

}
k=1,..,n

is an increasing sequence of polyhedral norms

interpolating from ‖.‖∞ = ‖.‖(1) to ‖.‖(n) = ‖.‖1.
Note incidentally that all the H(n, k) linear forms appearing in the right-

hand side of the formula (2) are relevant, none of them can be removed
without affecting the function ‖.‖(k) .

Just note that H(n, 1) = 2n and H(n, n) = 2n.
2.2 Polyhedral unit balls B(k)

According to (2), the (closed) unit ball for ‖.‖(k), B(k) =
{
x : ‖x‖(k) 6 1

}
,

is defined via H(n, k) linear inequalities

ε1xi1 + ε2xi2 + ...+ εkxik 6 1. (4)
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B(k) is therefore a convex polyhedral set (we use the wording “a polytope”).
The string of inclusions

B1(0, 1) = B(n) ⊂ ... ⊂ B(k+1) ⊂ B(k)... ⊂ B(1) = B∞(0, 1) (5)

expresses that
{
B(k)

}
k=1,..,n

is an increasing sequence (in the sense of inclu-

sion) of polytopes deforming B1(0, 1) into B∞(0, 1).

B1(0, 1) = B(n) is the well-known cross-polytope, defined via 2n linear
inequalities

ε1x1 + ε2x2 + ...+ εnxn 6 1, (εi ∈ {−1, 1} for all i = 1, ..., n) ,

with its 2n vertices ±ei = (0, 0, ...,±1, ..., 0) (for i = 1, ..., n) .

B(1) = B∞(0, 1) is the n-dimensional hypercube [−1, 1]n, defined via 2n
linear inequalities

εixi 6 1, (εi ∈ {−1, 1} for all i = 1, ..., n) ,

with 2n vertices (±1,±1, ...,±1, ...,±1).

2.3 The special case of n = 3 or 4 and k = 2

For n = 3, the only “intermediate” norm is, for k = 2,

‖(x, y, z)‖(2) = max (|x|+ |y| , |y|+ |z| , |x|+ |z|) .

Its unit ball B(2) is the so-called rhombic dodecahedron or granatahedron
(rhombic because all the facets are rhombuses (that is, diamond shaped poly-
gons, from Greek rhombos)) ; it has exactly f0 = 14 vertices, f1 = 24 edges,
f2 = 12 facets4. According to its definition, i.e., (|x|+ |y| 6 1, |y|+ |z| 6 1, |x|+ |z| 6 1),
it can be viewed as the intersection of three mutually orthogonal cylinders
with square sections; see the picture below by A. Esculier.

4For faces of a convex set C, we follow the terminology from [7, p. 42 − 46]: 0-
dimensional faces are called vertices (or extreme points) of C; 1-dimensional faces are
called edges of C; and so until (n− 1)-dimensional faces called facets of C.
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Figure 1. The unit ball B(2) (right) as the intersection of 3 orthogonal
cylinders (left).

More on this polytope can be found on the website mathcurve.com by
R. Ferreol.

We ask sometimes our students in Calculus to draw the part of B(2) which
is on the positive orthant of R3, that isB+

(2) =
{

(x, y, z) ∈ B(2), x > 0, y > 0, z > 0
}

;

they have difficulties... It is a polytope with vertices (0, 0, 0), (0, 1, 0), (1, 0, 0), (0, 0, 1)
and (1/2, 1/2, 1/2).

Figure 2. The unit ball B(2) between the hypercube and the cross-polytope.

For n = 4, the “intermediate” norm ‖(x, y, z, t)‖(2) is also of interest.
The associated unit ball B(2) is the so-called 24 -cell polytope (or icosite-
trachoron or hypergranatohedron), whose visual aspect (i.e., projections on
3-dimensional spaces) can easily be found on websites; it has exactly f0 = 24
vertices, f1 = 96 edges, f2 = 96 two-dimensional faces (also called ridges),
and f3 = 24 facets.
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Just note on these two examples the illustration of Euler’s formula (for
polytopes in R3) : f0 − f1 + f2 = 2 and Euler-Poincaré formula (for
polytopes in R4) f0 − f1 + f2 − f3 = 0.

2.4 Hausdorff distances between B1(0, 1) and B(k), between B(k)

and B∞(0, 1)
When a compact convex set C is included in another compact convex set

D, the so-called Hausdorff (or Pompeiu-Hausdorff) excess of D over
C, or Hausdorff distance between C and D, is

∆H(C,D) = max
x∈D

dC(x), (6)

where dC(x) denotes the distance from x to the set C, that is miny∈C ‖x− y‖.
Here, only the usual Euclidean distance ‖.‖ is invoked.

Consider therefore C = B1(0, 1) and D = B(k). For symmetry reasons,
the maximum in (6) is achieved for x = ( 1

k
, 1
k
, ..., 1

k
), while dB1(0,1)(x) =∥∥x− ( 1

n
, 1
n
, ..., 1

n
)
∥∥. This is easy to accept with the expression, to be seen

later (formula (14)), of B(k) as the convex hull of B1(0, 1) ∪ B∞(0, 1
k
). An

alternate argument, used for example in [7, Example 1.3.4] for getting at
∆H(B1(0, 1), B∞(0, 1)) = n−1√

n
, is to use an expression of ∆H(C,D) via the

support functions σC of C and σD of D ([7, Theorem 3.3.6]): ∆H(C,D) is
the maximum of (σD(d)− σC(d)) over unit vectors d 5. Anyway

∆H(B1(0, 1), B(k)) =
n− k
k
√
n
. (7)

Similarly, ∆H(B(k), B∞(0, 1)) =
∥∥(1, 1, ..., 1)− ( 1

k
, 1
k
, ..., 1

k
)
∥∥, that is

∆H(B(k), B∞(0, 1)) =
√
n

(
k − 1

k

)
. (8)

Indeed

∆H(B1(0, 1), B∞(0, 1)) = ∆H(B1(0, 1), B(k)) + ∆H(B(k), B∞(0, 1)), (9)

which is fairly easy to understand, even “visually”.

3. Norms, gauges, support functions. Applications to ‖.‖(k) and

its dual ‖.‖∗(k)

3.1 Some recalls

5As it will be explained in detail later, σB(0,1)(d) = ‖d‖∞ and σB(k)
(d) =

max
(

‖d‖1

k , ‖d‖∞
)
.
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Norms are special examples of (finite) positive sublinear functions, that
are positively homogeneous positive convex functions, studied in detail in [7,
chapter C].

The gauge γC of a compact convex set C ⊂ Rn containing the origin in its
interior is the function Rn 3 x 7→ γC(x) = inf (λ > 0 : x ∈ λC); we recover
C by taking the sublevel-set at level 1 of γC , that is C = {x : γC(x) 6 1}. A
norm ‖.‖ is indeed a gauge function, the gauge function of its unit ball B =
{x : ‖x‖ 6 1} .

The support function σC of a compact convex set D ⊂ Rn is defined as
Rn 3 s 7→ σD(x) = maxs∈D 〈s, x〉; here, we recover D by collecting the slopes
s of all linear functions minorizing σD, that isD = {s : 〈s, x〉 6 σD(x) for all x}.
A norm ‖.‖ is also a support function, that of

B∗ = {s : 〈s, x〉 6 1 for all x in the unit ball B of ‖.‖} .

This set B∗ is called the polar set of B, it is also denoted as B
◦

in the
literature. It is actually the unit ball of another norm, called dual norm of
‖.‖, denoted as ‖.‖∗, and defined as

‖s‖∗ = sup
x∈B

〈s, x〉 . (10)

All these correspondences are explained in [7, pages 146 − 151]. The
following scheme clarifies and summarizes everything.

Norm −→ Take the sublevel-set at level 1 −→ Unit ball B

Take the
support function

↑ ↙ Polarity between unit balls ↗ ↓ Take the
support function

Unit ball B∗ ←− Take the sublevel-set at level 1 ←− Dual norm

The game ends here since (B∗)∗ = B and (‖.‖∗)∗ = ‖.‖ .
3.2 Applications to ‖.‖(k)

The dual norm of ‖.‖1 is ‖.‖∞, the dual norm of ‖.‖∞ is ‖.‖1. Stated in
terms of balls, the polar set of B∞(0, 1) is B1(0, 1), the polar set of B1(0, 1)
is B∞(0, 1). Expressed in terms of support functions, the support function
of B∞(0, 1) is ‖.‖1, the support function of B1(0, 1) is ‖.‖∞. So, what about
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‖.‖(k)? The question which naturally arises is:

- ‖.‖(k) is the support function of what polytope?

or, equivalently,

- what is the polar polytope of B(k)?

or, equivalently,

- what is the dual norm ‖.‖∗(k) of ‖.‖(k) ?

Different paths can be followed for answering these questions... We choose
one of them.

Theorem 1. Let Π(k) be the polytope in Rn defined as the set of all
(α1, α2, .., αn) satisfying the following inequalities:{

−1 6 αi 6 1 for all i = 1, ..., n∑n
i=1 |αi| 6 k.

(11)

Then, its support function is precisely ‖.‖(k).

Here are immediate consequences of Theorem 1 and some additional ob-
servations.

- Since (11) is sumarized as
(
‖α‖∞ 6 1 and

‖α‖1
k
6 1
)

, according to what

has been explained in § 3.1, the polar set of the unit ball B(k) for ‖.‖(k) is

B∗(k) = kB1(0, 1) ∩B∞(0, 1). (12)

- Since the polytope defined in (12) is the unit ball for the dual norm
‖.‖∗(k) of ‖.‖(k) (see again § 3.1), we have:

‖.‖∗(k) = max

{
‖.‖1

k
, ‖.‖∞

}
. (13)

This formula (13) covers the two well-known “extreme” cases, that are
for k = 1 and k = n. Indeed, since ‖.‖∞ 6 ‖.‖1, we get that

‖.‖∗∞ = ‖.‖∗(1) = max

{
‖.‖1

k
, ‖.‖∞

}
= ‖.‖1 .

Similarly, since ‖.‖1 6 n ‖.‖∞, we get that

‖.‖∗1 = ‖.‖∗(n) = max

{
‖.‖1

n
, ‖.‖∞

}
= ‖.‖∞ .

8



- By playing with simple calculus rules on polarity dealing with compact
convex sets C and D containing the origin in their interior, like (see [3, §6]):

(C ∩D)∗ = co(C∗ ∪D∗),
(co(C ∪D))∗ = C∗ ∩D∗,

(rC)∗ =
1

r
C∗ whenever r > 0,

where co(S) stands for the convex hull of S, we get from (12) an alternate
expression of the unit ball B(k) of ‖.‖(k):

B(k) = co(B1(0, 1) ∪B∞(0,
1

k
)). (14)

This alternate formulation paves the way to the definition of a norm ‖.‖(k)

when k is no more an integer: for 1 6 k 6 n, ‖.‖(k) is the polyhedral norm
whose unit ball is the polytope B(k) such as defined in (14). In doing so, we

have a “continuous family of polyhedral norms”
{
‖.‖(k)

}
16k6n

, decreasingly

interpolating from ‖.‖∞ (which is ‖.‖(1)) to ‖.‖1(which is ‖.‖(n)), like in the
“discrete” case (5). This is what has been studied in the recent work [4].

- We have another string of inclusions, a “dual string” to the one displayed
in (5):

B∞(0, 1) = B∗(n) ⊃ ... ⊃ B∗(k+1) ⊃ B∗(k)... ⊃ B∗(1) = B1(0, 1), (5*)

expressing that
{
B∗(k)

}
k=1,..,n

is an decreasing sequence (in the sense of in-

clusion) of polytopes deforming B∞(0, 1) into B1(0, 1).
- There are still other expressions of ‖.‖(k), one of them being in terms of

‖.‖1 and ‖.‖∞ alone via the so-called infimal convolution (a sort of mixture)
of convex functions. This operation on convex functions is a very basic one
in Convex Analysis, as important as the mere addition of functions (cf. [7]).
Given two convex functions f and g, the infimal convolution of the convex
functions f and g is a new convex function, denoted as f � g, defined as

x 7→ (f � g)(x) = inf
u+v=x

{f(u) + g(v)} . (15)

When both f and g are sublinear functions, like norms, f �g is also the convex
envelope of the function min (f, g) ([7, Proposition 1.3.2 in Chapter C]). The
construction in (15) is the one used in Functional Analysis to define a new
norm “mixing” or “interpolating” two other ones. So, to say things shortly,
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using techniques from Convex Analysis, like the Legendre-Fenchel trans-
formation on sublinear functions, one gets at

‖.‖(k) is the convex envelope of min (‖.‖1 , k ‖.‖∞) , (16){
‖.‖(k) = ‖.‖1 � k ‖.‖∞ ,

that is to say, ‖x‖(k) = infu+v=x {‖u‖1 + k ‖v‖∞} .
(17)

The formulation (17) was observed and proved in ([2, Proposition IV.1.5])6.
- In a way similar to what has been carried out in § 2.4, we measure the

Hausdorff distance between B∗(k) and B∞(0, 1), and that between B1(0, 1)
and B∗(k); indeed

∆H(B∗(k), B∞(0, 1)) =
n− k√

n
; (7*)

∆H(B1(0, 1), B∗(k)) =
k − 1√
n
. (8*)

Also,

∆H(B1(0, 1), B∗(k)) + ∆H(B∗(k), B∞(0, 1)) = ∆H(B1(0, 1), B∞(0, 1)). (9*)

Proof of Theorem 1. We intend to prove that, for all x ∈ Rn,

sup
α∈Π(k)

〈α, x〉 = ‖x‖(k) .

We provide a self-contained proof, using elementary techniques from Cal-
culus.

Let x = (x1, x2, ..., xn) ∈ Rn. We consider 1 < k < n. Without loss of
generality, we may suppose that

|x1| > |x2| > ... > |xk| > |xk+1| > ... > |xn| .

Let α = (α1, α2, .., αn) ∈ Π(k), that is satisfying the inequalities in (11).

We firstly intend to prove that 〈α, x〉 =
∑n

i=1 αixi 6
∑k

i=1 |xi| = ‖x‖(k).

6We even can prove that the infimal convolution is exact at all x ∈ Rn, that is to say: the
infimum in (17) is achieved. This is a property of utmost importance in treating properties
of the inf-convoluted function. For that, consider, without loss of generality, that x1 >
x2 > ... > xk > xk+1 > ... > xn > 0. Then, for ux = (x1 − xk, x2 − xk, ..., xk − xk, 0, .., 0)
and vx = (xk, xk, ..., xk, xk+1, .., xn), we note that ‖ux‖1 + k ‖vx‖ = (‖.‖1 � k ‖.‖∞)(x).
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For that, we begin by noticing that

k∑
i=1

(1− |αi|) >
n∑

i=k+1

|αi| , because
n∑
i=1

|αi| 6 k. (18)

Furthermore,

n∑
i=k+1

αixi 6
n∑

i=k+1

|αi| . |xi| 6

(
n∑

i=k+1

|αi|

)
|xk| (19)

n∑
i=k+1

αixi 6

(
k∑
i=1

(1− |αi|)

)
|xk| , because of (18)

n∑
i=k+1

αixi 6
k∑
i=1

(1− |αi|) |xi| (20)

because |xk| 6 |xi| for all i = 1, ..., k.

Consequently,

n∑
i=1

αixi =
k∑
i=1

αixi +
n∑

i=k+1

αixi

6
k∑
i=1

|αi| |xi|+
n∑

i=k+1

αixi

6
k∑
i=1

|αi| |xi|+
k∑
i=1

(1− |αi|) |xi|

because of (20),

6
k∑
i=1

|xi| .

We therefore have proved that supα∈Π(k)
〈α, x〉 6 ‖x‖(k) .

Consider now a specific α ∈ Π(k) with
αi = 0 for i = k + 1, ..., n

αi = 1 or − 1 for i = 1, ..., k,
according to whether xi > 0 or xi > 0.

Thus, 〈α, x〉 =
∑n

i=1 αixi =
∑k

i=1 |xi| = ‖x‖(k). �
3.3 The special case of n = 3 or 4 and k = 2
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For n = 3 and k = 2,

‖(x, y, z)‖∗(2) = max

(
|x|+ |y|+ |z|

2
, |x| , |y| , |z|

)
. (21)

Its unit ball B∗(2) is the so-called cuboctahedron or heptaparallelohedron (or

even dymaxion by some architects); it has exactly f0 = 12 vertices (of Carte-
sian coordinates (±1,±1, 0), with permutations, f1 = 24 edges, f2 = 14
facets (8 triangles and 6 squares) ; see the picture below by L. Pournin.

Figure 3. The unit ball B∗(2) between the cross-polytope and the hypercube.

More on this polytope can be found on the website mathcurve.com by
R. Ferreol.

For n = 4, something very interesting happens: B∗(2) has the same number
of vertices, edges, ridges and facets as the 24-cell polytope B(2). The reason
is that one can transform B(2) into B∗(2) via a simple affine transformation in

R4 (a rotation followed by a dilation).

4. Extreme points, facets, of B(k) and of its dual B∗(k)

Due the “polarity relation” between vertices and facets of a polytope and
of its polar polytope ([3, Theorem 9.1 and Theorem 9.8]), once we have the
number of facets (resp. of vertices) of B(k), we have the number of vertices
(resp. of facets) of B∗(k). There are several paths of getting at them. We
choose one, the shortest one we believe; we pull the right thread from the
spool, and everything unwinds.

We begin with facets of B(k) and vertices of B∗(k).

Theorem 2. - B(k) has exactly H(n, k) = 2k
(
n
k

)
facets.

-B∗(k) has exactly H(n, k) = 2k
(
n
k

)
vertices. They are α = (α1, α2, ..., αn)

in Rn in which all the coordinates αi are zero except k of them which are
±1.
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Proof. We have observed from the beginning (see § 2.2) that B(k) is
defined via H(n, k) linear inequalities

ε1xi1 + ε2xi2 + ...+ εkxik 6 1,

built up from k -uples i1 < ... < ik and εi ∈ {−1, 1}. None of these inequalities
can be removed without affecting B(k). So, when we have a representation
like this, say, for C, 〈

vi, x
〉
6 1 for all i = 1, 2, ..., `,

C has ` facets, the polar set C∗ of C is co {vi : i = 1, 2, ..., `}, and all the vi’s
are vertices of C∗ ([3, Theorem 9.1]).

Actually, we have seen that in another way of proving Theorem 1: the
polar set B∗(k), whose support function is ‖.‖(k), is the polytope Π(k) evoked

in Theorem 1; its vertices are all the α = (α1, α2, ..., αn) ∈ Rn in which all
the coordinates αi are zero except k of them which are εi. �

Now it’s the turn of facets of B∗(k) and vertices of B(k). We already know

the situation for the two “extreme” k: the cross-polytope B∗(1) = B1(0, 1) has

2n facets and 2n vertices; the hypercube B∗(n) = B∞(0, 1) has 2n facets and
2n vertices.

Theorem 3. Let 1 < k < n. Then:
- B∗(k) has exactly 2n+ 2n facets.

- B(k) has exactly H(n, k) = 2n+ 2n vertices. They are (0, 0, ...,±1, ..., 0)
and

(
± 1
k
,± 1

k
, ...,± 1

k

)
, with their permutated versions.

Proof. We start with the formulation of B∗(k) seen in (12):

B∗(k) = kB1(0, 1) ∩B∞(0, 1).

Because 1 < k < n, the intersection operation cannot be removed above.
Hence, B∗(k) is defined via a conjunction of two series of (irredundant) linear

inequalities: the ones defining kB1(0, 1) (there are 2n) and the ones defining
B∞(0, 1) (there are 2n). In an explicit format, they are:〈(

±1

k
,±1

k
, ...,±1

k

)
, x

〉
6 1,

〈(0, 0, ...,±1, ..., 0) , x〉 6 1.

Accordingly, we get at all the vertices of
(
B∗(k)

)∗
= B(k).
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Remark 4.1. There are three other ways to find the vertices of B(k) (or
B∗(k)). Let us briefly present them for B(k).

- First way (a usual one). A way to prove that a given set of points
{x1, x2, ..., xp} provides the vertices of a polytope C is: to show that every
element in C is a convex combination of these points, and that none of the
points is a convex combination of the others ([3, Theorem 7.2]). Here, due to
the representation B(k) = co(B1(0, 1) ∪B∞(0, 1

k
)) (cf. (14)), the process can

be carried out with the points xi = (0, 0, ...,±1, ..., 0) and
(
± 1
k
,± 1

k
, ...,± 1

k

)
,

with their permutated versions.

- Second way (based on Linear Algebra). By using a representation of
B(k) in the form Ax 6 b like it is done in Linear Programming. Let therefore
C be a polyhedron in Rn described as follows:

C = {x ∈ Rn : Ax 6 b} , (22)

where A ∈Mm,n(R), m > n, none of the row vectors ai is null, and b ∈ Rm.
For a nonempty subset I of {1, 2, ...,m} (with ` elements for example), we
denote


AI the matrix extracted from A by keeping only the rows i ∈ I

(hence AI ∈M`,n(R));
bI the vector extracted from b by keeping only the coordinates

corresponding to i ∈ I (hence bI ∈ R`).

Let x be on the boundary of C; we denote by I(x) the set of indices
i ∈ {1, 2, ...,m} corresponding to the so-called active inequality constraints
at x, that is

I(x) = {i : 〈ai, x〉 = bi} .

Then, x is a vertex of C if and only if the rank of AI(x) equals n.

The method is a bit heavy to apply in the case of C = B(k) in Rn for
large n and k. An interesting exercise is however to do that when n = 3 and
k = 2. Then the 14 vertices of B(2) in R3 are detected. See below.

At a vertex x of C, one has Card I(x) > n; when Card I(x) > n, x is
called a degenerate vertex.

The evoked result is a beautiful example of an interplay between Linear
Algebra and Geometry of convex sets. Let us see how it applies when n = 3
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and k = 2. Our C = B(2) is expressed like in (22) with

A =



1 1 0
1 −1 0
−1 1 0
−1 −1 0
1 0 1
1 0 −1
−1 0 1
−1 0 −1
0 1 1
0 1 −1
0 −1 1
0 −1 −1



∈M12,3(R),

and b = (1, 1, ..., 1)ᵀ ∈ R12.
Take for example x = (1, 0, 0). They are 6 points of that type. We have

I(x) = {1, 2, 5, 6}, so ` = 4, and

AI(x) =


1 1 0
1 −1 0
1 0 1
1 0 −1

 ∈M4,3(R).

Indeed, AI(x) is of rank 3. Hence, x = (1, 0, 0) is a vertex of B(2), a
degenerate one (because Card I(x) = 4 > 3 = n).

Take now x = (1
2
, 1

2
, 1

2
). They are 8 points of that type. We have I(x) =

{1, 5, 9}, so ` = 3, and

AI(x) =

 1 1 0
1 0 1
0 1 1

 ∈M3,3(R).

Indeed, AI(x) is of rank 3. Hence, x = (1
2
, 1

2
, 1

2
) is a vertex of B(2), a

nondegenerate one (because Card I(x) = 3 = n).
- Third way (a more advanced one). We know that the support function

of B(k) is the nonsmooth convex function d 7→ σB(k)
(d) = max

{
‖d‖1
k
, ‖d‖∞

}
.

The subdifferential, in the sense of Convex Analysis, of σB(k)
at d 6= 0 is

exactly the face of B(k)
exposed by the direction d (see [7, Chapter D]). So,

having this exposed face reduced to a singleton (i.e., a vertex ofB(k)) amounts
to the differentiability of σB(k)

at d 6= 0. It therefore remains to collect all the

gradients of the function d 7→ σB(k)
(d) = max

{
‖d‖1
k
, ‖d‖∞

}
whenever they
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exist. When 1 < k < n, the two functions
‖.‖1
k

and ‖.‖∞ have to be taken
into account in the “max expression” of σB(k)

above: their gradients yield(
± 1
k
,± 1

k
, ...,± 1

k

)
and (0, 0, ...,±1, ..., 0), with permutations.

Remark 4.2. It is a bit surprising that the number of vertices of B(k)

does not depend on k... One does not see that, at the first glance, in the
definitions given in § 2.2; the intuition for that is more supported by the
expression (14) of B(k).

For more on the combinatorial and geometric properties of the polytopes
B(k), like their k -dimensional faces, their volume and the volume of their
boundary, see the full-fledged research paper [4].

5. Links with the search of sparse solutions in optimization
problems

In several areas of Applied Mathematics, one has to bound, to control,
to optimize, etc. the largest or the sum of a sample of (positive) data
x1, x2, ..., xn; but it also happens that one has to deal with the sum of the
k largest among these xi’s. This occurs in Numerical Analysis, Statistics,
Optimization. We precisely focus here on one of these topics, namely the
search of sparse solutions in optimization problems. A very recent texbook
on sparse solutions of undetermined linear systems and their applications is
[9].

Indeed, in various applications of modern Optimization, one is faced with
the so-called sparsity constraint on solutions. This happens in data science
and machine learning, mathematical imaging (in Astronomy for example),
Statistics, but not solely. A measure of sparsity of a solution vector x =
(x1, x2, ..., xn) in Rn is the number of non-zero components xi of x. More
specifically, either in the objective function or in the functions defining the
constraints of the optimization problem, one has to deal with

x = (x1, x2, ..., xn) ∈ Rn 7→ Card {i : xi 6= 0} . (23)

Various namings and notations are used in the literature for this function:
cardinality function, counting function, nnz(x) (the number of non-zeros in
x), even pseudo-norm ‖.‖0. This last naming and notation are somehow
misleading: ‖.‖0 is not a norm, not even a quasi-norm... The notation could
let us think that ‖x‖0 is the limit of the usual `p-norm of x, ‖x‖p, when p > 0
tends to 0. This is not the case, we however note that ‖x‖0 is the limit of(
‖x‖p

)p
when p > 0 tends to 0. Since this notation ‖.‖0 is very much spread

in the literature, we agree to use it in this section.
A weakness of ‖.‖0 is its zero-homogeneity: components like xi = 10−6

and xi = 105 contribute in the same way (by 1) to the number ‖x‖0; so, one
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has to bound the considered vectors x in some way or another. To alleviate
the wording, we say that a vector x ∈ Rn is k-sparse whenever ‖x‖0 6 k.

The questions raised here are: what are the relations between ‖.‖0 and
‖.‖(k) or B(k)?

One sometimes reads in papers that “‖.‖1 is the best relaxed convex form
(that is to say, the convex envelope) of ‖.‖0”. This is wrong, since the convex
envelope of the ‖.‖0 function on Rn is just the (everywhere) zero function...
To get something of interest, one has to restrict to balls defined by ‖.‖∞
norms. What is behind the alluded to statement is the following relaxation
result by M. Fazel (PhD thesis, Stanford University, 2002): the convex
envelope of ‖.‖0 on the ball {x : ‖.‖∞ 6 R} is the function 1

R
‖.‖1 (restricted

to the same ball). Actually, the result remains true for the quasiconvex
envelope (an operation consisting in convexifying all the sublevel-sets of the
original function), see [8] and references therein.

Here are the answers to raised questions, in two forms:
- We have, from [8, Theorem 1]:

co {x : ‖x‖0 6 k, ‖x‖∞ 6 1} = {‖x‖1 6 k, ‖x‖∞ 6 1}
= B∗(k). (24)

In other words, the convex hull of the set of bounded (by 1) k-sparse vectors
x is exactly the unit ball of the dual norm ‖.‖∗(k) of ‖.‖(k).

There is another “k-norm” which has recently been introduced (in [1])
for sparse prediction problems, it is basically defined via its unit ball:

C(k) = co {x : ‖x‖0 6 k, ‖x‖2 6 1} . (25)

The difference with (24) is the use of the smooth (Euclidean) norm ‖.‖2

instead of the polyhedral norm ‖.‖∞ for bounding k -sparse vectors. Hence,
the norm whose unit ball is C(k), called “k -support norm” in [1], is no more
polyhedral, we could qualify it as “semismooth”.

- We clearly have that ‖.‖(k) 6 ‖.‖(`) whenever ` > k. In such a case, it
is easy to check (and was observed in [6]) that

‖x‖(k) − ‖x‖(`) = 0 (or > 0)⇐⇒ ‖x‖0 6 k. (26)

In particular, since ‖.‖(n) = ‖.‖1,

‖x‖(k) − ‖x‖1 = 0 (or > 0) ⇐⇒ ‖x‖0 6 k. (27)

Said in words, k-sparse vectors are exactly those on which two norms like
‖.‖(k) coincide. We therefore can substitute the equality constraint c(x) =
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‖x‖(k) − ‖x‖1 = 0 for the “k -sparsity constraint” ‖x‖0 6 k. This is not
a relaxation of the sparsity constraint, but an equivalent reformulation in-
deed.The advantage is that c is the difference of two polyhedral norms (hence
convex functions), whose subdifferentials in the sense of convex minimization
are amenable to numerical computation. This was the objective in [6], and
in [5] for feature selection in SVM.

6. Conclusion

In this paper, we carried out a pedagogical approach of a collection of
polyhedral norms interpolating ‖.‖1 into ‖.‖∞, namely the norms ‖.‖(k) and

their dual ones ‖.‖∗(k). We determined all the facets and vertices of the unit
balls associated with them. A motivation for that study was the necessity of
handling the so-called sparsity constraint in modern optimization problems
(coming from data science and machine learning).

Everything has been done with mathematical knowledge acquired at the
undergraduate level.
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