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Abstract We consider the problem of minimizing an indefinite quadratic form

over the nonnegative orthant, or equivalently, the problem of deciding whether

a symmetric matrix is copositive. We formulate the problem as a difference of

convex functions (d.c.) problem. Using conjugate duality, we show that there

is a one-to-one correspondence between their respective critical points and

minima. We then apply a subgradient algorithm to approximate those critical

points and obtain an efficient heuristic to verify non-copositivity of a matrix.
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1 Introduction

Consider the problem of minimizing a (homogeneous) quadratic form over the

nonnegative orthant:

(P)
min 1

2x
TAx

s. t. x ∈ Rn+.
As we do not assume the matrix A to be positive semidefinite, (P) is a noncon-

vex constrained minimization problem. It is equivalent to the problem of deter-

mining whether A is copositive: A matrix A is called copositive, if xTAx ≥ 0
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holds for all x ∈ Rn+. Copositivity has recently attracted quite an amount of

interest in mathematical optimization, see [1,6,8] for surveys. The problem of

determining copositivity, and consequently also problem (P), are known to be

co-NP-complete [12].

In this note, we transfer the copositivity problem into an unconstrained

problem in the same number of variables. A similar approach has been pursued

by Bomze and Palagi [4], who use an exact penalization method to arrive at

an objective function which is a polynomial of degree six. Our approach differs

from theirs in that we formulate (P) as an unconstrained difference-of-convex

(d.c. in short) optimization problem which allows us to use specific duality

schemes from convex analysis and nonconvex optimization. As opposed to

the objective function of Bomze and Palagi [4] which is C∞, we derive a

nonsmooth objective which is a combination of a quadratic function and the

indicator function of the convex feasible set.

To be more specific, let r > max{λmax(A), 0}, where λmax denotes the

maximal eigenvalue of A. Then the matrix rI −A is positive definite. We now

decompose the objective function as follows: For all x ∈ Rn, let

f(x) = g(x)− h(x),

with

g(x) = r
2‖x‖

2 + ΨRn
+

(x), h(x) = 1
2x

T (rI −A)x,

where ΨRn
+

(x) is the indicator function of Rn+, that is: ΨRn
+

(x) = 0 if x ∈ Rn+
and ΨRn

+
(x) = +∞ if x /∈ Rn+. Note that both g and h are convex functions,

whence g − h is a description of f as a d.c. function.

On Rn+, the feasible set of (P), f coincides with the objective function

of (P). Outside Rn+, f ≡ +∞. Hence, (P) translates to the unconstrained

d.c. minimization problem

(P) min
x∈Rn

f(x) = g(x)− h(x).

The copositivity property of A is now that infx∈Rn f(x) = 0, (actually, the

minimal value 0 of f on Rn is attained since f(0) = 0).

In dealing with d.c. minimization problems, there is a duality scheme spe-

cially tailored for these problems which has proved useful in various contexts,

starting with calculus of mechanics, cf. [17,18,19]: the adjoint or dual problem

associated with (P) is

(P
�
)

min f�(y) := h∗(y)− g∗(y)

s. t. y ∈ Rn,

where ϕ∗ stands for the Legendre-Fenchel conjugate of ϕ (see [7, Chapter X]).

In our situation, for all y ∈ Rn we have

h∗(y) = 1
2y
T (rI −A)−1y, g∗(y) = 1

2r‖y
+‖2,
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where y+ means the vector (y+1 , . . . , y
+
n ) with y+i = max{yi, 0}.

The new problem (P
�
) is again a d.c. minimization problem, now uncon-

strained, with a C1 (but not C2) objective function. Note that with the help

of the Legendre-Fenchel transformation, the nonnegativity constraint in (P)

has been integrated in the expression ‖y+‖2 appearing in (P
�
).

The construction of (P
�
) from (P) depends the decomposition f = g − h

more than on f itself. This flexibility is indeed an advantage, for example

adding a convex function ϕ to both g and h would not change the initial

problem since f = (g + ϕ) − (h + ϕ) = g − h, but would give rise to a

different adjoint problem (P
�
). Most of the arguments in this paper hold for

d.c. decompositions other than the one described above, but the numerical

performance of d.c. optimization algorithms will depend on the choice of the

decomposition. Bomze and Locatelli [3] discuss this problem. The authors give

evidence that in case of a quadratic objective xTAx, the so called spectral

d.c. decomposition is preferable. This decomposition consists of writing A as

A = A+−A−, where both A+ and A− are (close to) nonsingular and collect the

positive (negative) eigenvalues of A, respectively. In our approach, however,

we prefer to work with nonsingular decompositions, as we will frequently use

the one-to-one relation between problems (P) and (P
�
).

The two problems (P) and (P
�
) are related in an “involutive” manner, i.e.,

(P��) := (P
�
)
�

= (P), since ϕ∗∗ := (ϕ∗)∗ = ϕ holds for any closed convex

function ϕ.

The next results relate infima, global minimizers and critical points in

problems (P) and (P
�
). They are adaptations to our specific context of general

results in d.c. dualization ([17,19], see also [16]).

2 Comparing infima and critical points in (P) and (P
�
)

In minimizing f over Rn+ (our problem (P)), there are only two possibilities:

either f is not bounded below, i.e., infx∈Rn
+
f(x) = −∞, or f is bounded

from below. In that case, necessarily infx∈Rn
+
f(x) = 0 and x̄ = 0 is among

the global minimizers of f on Rn+. Like for quadratic objective functions, this

peculiar property is due to the positive homogeneity of degree 2 of f : if there

were x̃ ∈ Rn+ with f(x̃) < 0, then f(αx̃) = α2f(x̃) for all α > 0 would imply

infx∈Rn
+
f(x) = −∞.

Theorem 1 We have

inf
x∈Rn

+

xTAx = inf
x∈Rn

f(x) = inf
y∈Rn

f�(y),

that is, the infima of (P) and (P
�
) (which are either 0 or −∞) are equal.
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This relationship has been proved directly in [8, Section 7.8] where it gave rise

to the following characterization of copositivity: A matrix A is copositive if

and only if

yT (rI −A)−1y ≥ 1
r‖y

+‖2 for all y ∈ Rn.

We next define what we mean by a critical point of f on Rn+, or critical point

of (P).

Definition 1 A point x̄ ∈ Rn+ is called a critical point of (P) if

−Ax̄ ∈ NRn
+

(x̄), (1)

where NRn
+

(x̄) stands for the normal cone to Rn+ at x̄.

As a motivation for this definition, note hat ∇h(x̄) = (rI −A)x̄ and that the

generalized subdifferential of g at x̄ is ∂g(x̄) = rx̄ + NRn
+

(x̄), whence writing

the optimality condition 0 ∈ ∂f(x̄) = ∂g(x̄)−∇h(x̄) directly leads to (1).

The set Rn+ is a closed convex cone whose polar cone is Rn− := −Rn+. Hence,

the normal cone NRn
+

(x̄) can be given explicitly (see [7, Chapter III]):

ȳ = (ȳ1, . . . , ȳm) ∈ NRn
+

(x̄) ⇔ ȳ ∈ Rn− and ȳi = 0 whenever x̄i > 0.

As a consequence, we have the following.

Proposition 1 A point x̄ ∈ Rn+ is a critical point of (P) if and only if

Ax̄ ≥ 0 and (Ax̄)i = 0 for all i such that x̄i > 0. (2)

Observe that x̄ = 0 is always a critical point of (P), and so is any local

minimizer of f on Rn+. Due to the positive homogeneity of degree 2 of the

objective function f in (P) (i.e., f(αx) = α2f(x) for all α > 0 and x ∈ Rn),

positive homogeneity also holds true for the set of critical points in (P): if x̄

is a critical point of (P) and α > 0, then αx̄ is also a critical point of (P).

Therefore, we have “critical rays”.

In [15], the authors considered the problem of minimizing the function
1
2x

TAx over S = Rn+ ∩ {x ∈ Rn | ‖x‖ = 1}. The resulting definition of critical

point they adopted ([15, Theorem 1]),

Ax̄− (x̄TAx̄)x̄ ∈ Rn+

is less stringent than ours.

In problem (P
�
), the objective function f� is differentiable, so that defining

critical points does not pose any difficulty.

Definition 2 A point ȳ ∈ Rn is a critical point of (P
�
) if

(rI −A)ȳ+ = rȳ. (3)
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Indeed, ∇f�(ȳ) = ∇h∗(ȳ)−∇g∗(ȳ) = (rI −A)−1ȳ− 1
r ȳ

+, so that the relation

∇f�(x̄) = 0 directly leads to (3).

Observe that ȳ = 0 as well as any local minimizer of f� on Rn are always

critical points. Like for (P), the positive homogeneity of degree 2 of the objec-

tive function f� in (P
�
) yields the positive homogeneity of the set of critical

points of (P
�
): if ȳ is a critical point of (P

�
), then αȳ is a critical point of (P

�
)

for any α > 0.

There are some specific properties of the critical points in (P
�
) which can

be derived from (3). Here are a few examples:

Proposition 2 The critical points of (P
�
) have the following properties:

1. The critical points located in Rn+ are the points in Rn+ ∩KerA. Hence, if A

is nonsingular, there is no critical point in Rn+, except for ȳ = 0.

2. There is no critical point in Rn−, except for ȳ = 0.

3. All the critical points belong to the cone

K := Rn+ −A(Rn+). (4)

Proof 1. The characterization (3) of critical points ȳ located in Rn+ is

(rI −A)ȳ = rȳ,

that is to say Aȳ = 0.

2. If ȳ lies in Rn−, then ȳ+ = 0, so (3) reads rȳ = 0 whence the result follows.

3. According to (3), a critical point ȳ equals ȳ+− 1
rAȳ

+ which belongs to the

cone Rn+ −A(Rn+).

2

With the help of ȳ− = (y−1 , . . . , y
−
n ) where y−i = max{−yi, 0} so that

y = y+ − y−, we can rewrite characterization (3) as follows: y is a critical

point in (P
�
) if and only if

Ay+ = ry−.

While the notion of a critical point in (P) does not depend on r (still chosen

greater than max{λmax(A), 0}), the critical points in (P
�
) depend a priori on r.

However, the closed convex cone K defined in (4) does not depend on r. It

gives a rough estimate of the location of the critical points in (P
�
) for all the

admissible r. The main point in this section is the correspondence between

critical points (as well as critical values) in the original problem (P) and in

the adjoint problem (P
�
).

Theorem 2 1. If x̄ is a critical point in (P), then ȳ := (rI−A)x̄ is a critical

point in (P
�
), and the corresponding critical values are equal: f(x̄) = f�(ȳ).

2. If ȳ is a critical point in (P
�
), then x̄ := (rI − A)−1ȳ = 1

r ȳ
+ is a critical

point in (P), with equality in the critical values: f�(ȳ) = f(x̄).
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Proof 1. Let x̄ be a critical point in (P). By the very first definition, we have

(rI −A)x̄ = ∇h(x̄) ∈ ∂g(x̄) (5)

and f(x̄) = 1
2 x̄

TAx̄. Let ȳ := (rI −A)x̄. By an elementary property of the

Legendre-Fenchel conjugate, we have

ȳ ∈ ∂g(x̄) ⇔ g∗(ȳ) + g(x̄) = x̄T ȳ (or, equivalently, ≤ x̄T ȳ),

ȳ = ∇h(x̄) ⇔ h∗(ȳ) + h(x̄) = x̄T ȳ.
(6)

Since (g∗)∗ = g and (h∗)∗ = h, we deduce from (6):

(g∗)∗(x̄) + g∗(ȳ) = x̄T ȳ

(h∗)∗(x̄) + h∗(ȳ) = x̄T ȳ
(7)

as well as

g(x̄)− h(x̄) = h∗(ȳ)− g∗(ȳ). (8)

Equations (7) state that x̄ ∈ ∂g∗(ȳ) ∩ ∂h∗(ȳ). Since both g∗ and h∗ are

differentiable at ȳ, this means that ∇g∗(ȳ) = ∇h∗(ȳ) or equivalently, 0 =

∇h∗(ȳ)−∇g∗(ȳ) = ∇f�(ȳ). So ȳ is indeed a critical point of (P
�
). Equality

of the critical values has been observed in (8).

2. We play the same game as above. Let ȳ be a critical point of (P
�
). We

have:

(rI −A)−1ȳ = ∇h∗(ȳ) = ∇g(ȳ) = 1
r ȳ

+. (9)

Define x̄ := (rI −A)−1ȳ. Similar to (6), we have

x̄ = ∇h∗(ȳ) ⇔ (h∗)∗(x̄) + h∗(ȳ) = x̄T ȳ,

x̄ = ∇g∗(ȳ) ⇔ (g∗)∗(x̄) + g∗(ȳ) = x̄T ȳ.
(10)

Again, since (h∗)∗ = h and (g∗)∗ = g, we derive from (10):

h(x̄) + h∗(ȳ) = x̄T ȳ

g(x̄) + g∗(ȳ) = x̄T ȳ
(11)

and

h∗(ȳ)− g∗(ȳ) = g(x̄)− h(x̄). (12)

What (11) expresses is:

ȳ = ∇h(x̄) and ȳ ∈ ∂g(x̄),

that is to say: ∇h(x̄) ∈ ∂g(x̄), a formulation equivalently saying that x̄

is a critical point in (P). The fact that x̄ = (rI − A)−1ȳ ∈ Rn+ was a

by-product of (9). Equality of the critical values, i.e., f�(ȳ) = f(x̄) was

observed in (12).

2
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In the scheme below we summarize the correspondence between critical

points in (P) and (P
�
) via the nonsingular linear mapping rI −A:

(P) (P�)

critical point x̄
rI−A−→ critical point ȳ = (rI −A)x̄

critical point x̄ = (rI −A)−1ȳ
(rI−A)−1

←− critical point ȳ

3 Comparing global and local minimizers in (P) and (P
�
)

We have shown in Section 2 that the infima in (P) and (P
�
) are the same.

Now, using the same techniques from convex analysis as in Section 2, we show

that there is also a one-to-one correspondence between global minimizers in

(P) and (P
�
).

Theorem 3 Let x̄ be a global minimizer in (P). Then

(i) x̄TAx̄ = 0,

(ii) ȳ := (rI −A)x̄ is a global minimizer in (P
�
),

(iii) ȳT (rI −A)−1ȳ = 1
r‖ȳ

+‖2.

Conversely, let ȳ be a global minimizer in (P
�
). Then

(i’) ȳT (rI −A)−1ȳ = 1
r‖ȳ

+‖2
(ii’) x̄ := (rI −A)−1ȳ = 1

r ȳ
+ is a global minimizer in (P).

Proof Let x̄ be a global minimizer in (P). Then necessarily x̄TAx̄ = 2f(x̄) = 0.

With ȳ := (rI − A)x̄, we have f�(ȳ) = 0 (cf. Theorem 1), and it remains to

prove that f�(ȳ) = h∗(ȳ) − g∗(ȳ) = 0. By linearity of the constraints, no

qualifications are needed to ensure that x̄ is a critical point. Then Theorem 2

gives the desired results (ii) and (iii). The proofs of (i’) and (ii’) are in the

same vein. 2

What we have proved for global minimizers also holds true for local min-

imizers: the proofs have to be slightly adapted. We present below the version

”from (P
�
) to (P)”, which is the case of more interest.

Theorem 4 If ȳ is a local minimizer in (P
�
), then x̄ = (rI − A)−1ȳ = 1

r ȳ
+

is a local minimizer in (P).

Proof Let ȳ be a local minimizer in (P
�
). Then there exists a neighborhood V

of ȳ such that

h∗(y)− g∗(y) = f�(y) ≥ f�(ȳ) = h∗(ȳ)− g∗(ȳ) for all y ∈ V. (13)
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Since ∇h : x ∈ Rn 7→ ∇h(x) = (rI − A)x is a bijective linear mapping, there

exists a neighborhood N of x̄ = (rI−A)−1ȳ such that ∇h(N) ⊂ V . So choose

x ∈ N . Then y = ∇h(x) and x satisfy

h∗(y) + h(x) = xT y

(this is the characterization of ∇h(x) in terms of h∗), and

g∗(y) + g(x) ≥ xT y

by the definition of the conjugate fuction. Because y = ∇h(x) lies in V , these

two inequalities combined with (13) imply

g(x)− h(x) ≥ h∗(y)− g∗(y) ≥ f�(ȳ). (14)

We know from Theorem 2 that f�(ȳ) = f(x̄). So, we have proved with (14)

that

f(x) ≥ f(x̄) for all x in the neighborhood Nof x̄,

which completes the proof. 2

4 DC Algorithm

Any local optimization procedure can be used to compute critical points of

(P) and (P
�
). In our context, it seems suitable to adapt the DCA algorithm

of [14,13,9]. This method works as follows: given a starting point x0 ∈ Rn, we

construct sequences {xk} and {yk} with

yk ∈ ∂h(xk) and xk+1 ∈ ∂g∗(yk)

such that the sequences (g − h)(xk) and (h∗ − g∗)(yk) are decreasing and

such that the limit points of {xk} (resp. {yk}) is a critical point of (g − h)

(resp. (h∗ − g∗)).
The condition yk ∈ ∂h(xk) is equivalent to xk ∈ ∂h∗(yk), which in turn

means by definition of the subdifferential that

h∗(y)− (xk)T y ≥ h∗(yk)− (xk)T yk for all y ∈ domh∗,

or equivalently, that yk can be derived as

yk ∈ Argmin{h∗(y)− (xk)T y : y ∈ domh∗}. (15)

The latter is equivalent to saying that yk is a solution of the problem

(Dk) inf
y∈domh∗

{h∗(y)− g∗(yk−1)− (xk)T (y − yk−1)}.

which can be interpreted as a linearized version of (P
�
), where we have lin-

earized g∗ at the point yk−1. Observe that in doing so, we have obtained a
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convex problem (Dk). Since xk ∈ ∂g∗(yk−1) by construction, we moreover have

that inf (P
�
) ≤ inf (Dk).

Analogously, the condition xk+1 ∈ ∂g∗(yk) says that xk+1 can be obtained

as

xk+1 ∈ Argmin{g(x)− (yk)Tx : x ∈ Rn}. (16)

which in turn is equivalent to saying that xk+1 is a solution to the problem

(Pk) inf
x∈Rn
{g(x)− h(xk)− (yk)T (x− xk)}.

which just as above can be interpreted as a linearized version of (P), where we

have linearized h at the point xk. Since yk ∈ ∂h(xk), we get inf (P) ≤ inf (Pk).

Note that to actually compute the sequences {xk} and {yk}, we can use (15)

and (16). In our particular setting, (15) reads as:

yk ∈ Argmin{ 12y
T (rI −A)−1y − (xk)T y : y ∈ Rn}.

Since this is a differentiable problem, the solution is obtained by setting the

gradient to zero, which gives

yk = (rI −A)xk.

Similarly, in our context (16) translates to

xk+1 ∈ Argmin{ r2‖x‖
2 − (yk)Tx : x ∈ Rn+}.

Here, the objective function is separable, so we can consider each component

function separately. For each of them, this amounts to minimizing a strictly

convex quadratic function subject to a sign constraint, and the solution is

easily seen to be

xk+1
i =

{
1
ry
k
i if yki ≥ 0,

0 else,
i.e., xk+1 = 1

r (yk)+.

Combined, this yields the recursions:

x0 given, xk+1 = 1
r

[
(rI −A)xk

]+
=
[
(I − 1

rA)xk
]+

y0 = (rI −A)x0, yk+1 = (rI −A) 1
r (yk)+ = (I − 1

rA)
[
yk
]+
.

A detailed convergence theorem for this method is proved in [13]. We present

here a reduced version of this theorem which, however, is sufficient for our

purposes:

Theorem 5 Suppose that the sequences {xk} and {yk} are defined as de-

scribed above. Then we have

(h∗ − g∗)(yk+1) ≤ (g − h)(xk+1) ≤ (h∗ − g∗)(yk) ≤ (g − h)(xk).

If (g − h)(xk+1) = (g − h)(xk), then xk, xk+1 are critical points of g − h.

Similarly, if (h∗ − g∗)(yk+1) = (h∗ − g∗)(yk), then yk, yk+1 are critical points

of h∗ − g∗.
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5 A heuristic for testing non-copositivity

The DC algorithm described in the last section inspires the following easy

heuristic for testing whether a matrix is not copositive.

Algorithm 1: Heuristic to detect whether a matrix A is not copositive.

Input: symmetric matrix A; parameter r > max{λmax(A), 0}
Output: a certificate that A is not copositive

or statement “this instance is undecidable by the heuristic”

1 while stopping criterion is not fulfilled do

2 generate a starting point x0;

3 k ← 0;

4 repeat

5 xk+1 =
[
(I − 1

r
A)xk

]+
;

6 if (xk+1)TA(xk+1) < 0 then

7 return “A is not copositive”

8 end

9 k ← k + 1;

10 until xk+1 = xk or stopping criterion is fulfilled ;

11 end

12 return “this instance is undecidable by the heuristic”

As a stopping criterion, one may choose for example that a prescribed

number of iterations has been performed. Note that this algorithm has the

ability to do many multistarts, and can be parallelized without any further

effort.

5.1 Examples

We first study the behavior of our heuristic for a copositive input matrix. In

particular, it is interesting to see the role of the parameter r (recall that by

assumption r > max{λmax(A), 0}). Consider the so-called Horn-matrix

H =


1 −1 1 1 −1

−1 1 −1 1 1

1 −1 1 −1 1

1 1 −1 1 −1

−1 1 1 −1 1


which is known to be copositive (see e.g. [10]). It has λmax(H) = 3.2361, so

we need to choose r bigger than this value. Applying our heuristic to H will

obviously never yield a certificate for non-copositivity.

Running the heuristic for different values of r and 1000 starting points each

gives the results displayed in Table 1. In this table, the columns min/max/average
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iterations

r average min max % failure

20 219.91 2 362 0.12

10 102.99 2 171 0.28

6 54.50 2 87 1.20

4 28.74 2 55 2.93

3.5 21.77 2 45 0.46

3.2365 18.09 2 42 0.53

Table 1 Results for the Horn-matrix: Running the heuristic for different values of r and

1000 starting points each.

iterations gives the respective number of iterations needed by the heuristic un-

til a critical point was reached. In column “% failure” we list the percentage

of instances where the heuristic did not yield a critical point within 1000 iter-

ations.

Observe that convergence seems to be faster for values of r that are closer

to λmax(H).

As a second example, consider the behavior of the heuristic when applied

to noncopositive matrices. To construct such matrices, recall that the clique

number ω of a graph can be written as:

ω = min{α ∈ R : [α(E −A)− E] is copositive },

where E is the all-ones matrix and A is the adjacency matrix of the graph.

Now consider the 5-cycle on a graph with five vertices whose adjacency matrix

is given by

C =


0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0

 .

Its clique number is ω = 2. Therefore, matrices of the form

Bα := α(E − C)− E

are noncopositive for α < 2 and copositive for α ≥ 2. Note that α = 2 is the

smallest value for which this is true, and that we have B2 = 2(E − C)− E =

E − 2C = H, the Horn-matrix from above.

Below is a summary of the behavior of the heuristic. We choose different val-

ues of α, and for the value of r we choose r = cλmax(Bα) with c ∈ {1.1, 2, 10}.
Observe that as α→ 2 from below, the matrix Bα approaches the boundary of

the copositive cone, since for α = 2 = ω, the matrix Bω lies on the boundary

of that cone.



12 Mirjam Dür, Jean-Baptiste Hiriart-Urruty

noncopositive critical point failure

α c % % av. min max %

0.5 1.1 66.3 33.7 2 2 2 0

2 67.2 32.8 2 2 2 0

10 66.2 33.8 2 2 2 0

1 1.1 52.7 47.3 2.782 2 3 0

2 52.0 48.0 2.79 2 3 0

10 52.5 47.5 2.78 2 3 0

1.5 1.1 9 91 306.45 2 5181 0

2 8.4 91.6 355.23 2 5181 0

10 10 90 280.99 3 5179 0

1.7 1.1 6.3 0 – – – 93.7

2 5.3 0 – – – 94.7

10 5.5 0 – – – 94.5

1.9 1.1 2.5 1 2 2 2 97.4

2 2.4 1 2 2 2 97.5

10 2.9 0 – – – 97.1

Table 2 Results for the matrix Bα := α(E − C)− E.

In Table 2, we list the results for various values of α and r for 1000 starting

points each. The column “noncopositive” gives the percentage of runs that

noncopositivity was detected. The next columns list the percentage of runs

where the method converged to a critical point. We also list in which iteration

convergence occurred. Finally, the right-most column indicates the percentage

of runs where the method failed (i.e., neither detected noncopositivity nor

converged to a critical point).

It can be seen that as α → 2, the heuristic performs poorer. As discussed

above, this is due to the fact that in this case Bα approaches the boundary of

the copositive cone. This behavior corresponds to what has been observed in

other methods, see e.g. [5].

Observe that in this setting, the choice of the parameter r does not seem

to have any impact.

In all cases, if the heuristic detected noncopositivity, it was in the very

first iteration, which means the sampled starting point has already been a

certificate for noncopositivity.
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