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Abstract. We study rigidity properties of certain homomorphisms from right-angled Artin groups
to mapping class groups. As an application we show that if Γ ⊂ Map(S) is a subgroup that contains
some power of every Dehn twist, then any injective homomorphism Γ→ Map(S) is a restriction of
an automorphism of Map(S).

Résumé. Nous examinons la rigidité de certains homomorphismes entre groupes d’Artin rectangu-
laires et groupes modulaires. Nous démontrons que si Γ ⊂ Map(S) est un sous-groupe qui contient
quelque puissance de tout twist de Dehn, alors tout homomorphisme injective Γ→ Map(S) est la
restriction d’un automorphisme de Map(S).

Version française abrégée. Soit S une surface connexe et orientable, de genre g et avec n
pointes. Nous supposerons que S est non-exceptionelle, c’est-à-dire que 3g + n ≥ 5 et (g, n) 6=
(1, 2). Le groupe modulaire étendu Map∗(S) est le groupe de difféomorphismes de S à isotopie
près. Le groupe modulaire Map(S) est le sous-groupe d’indice 2 en Map∗(S) dont les éléments sont
représentés par les difféomorphismes préservant l’orientation de S. Finalement, le groupe modulaire
pur P Map(S) ⊂ Map(S) est le sous-groupe des éléments de Map(S) qui fixent chaque pointe de S.

Le groupe d’Artin rectangulaire A(X) associé à un complexe simplicial X est le groupe engendré

par l’ensemble X(0) des sommets de X, et tel que les éléments correspondant à deux sommets
voisins commutent. On remarque que si ∆ ⊂ X est un simplex, alors A(∆) est un sous-groupe de

A(X) isomorphe à Zdim(∆)+1.
Dans cet article on s’intéresse aux homomorphismes faiblement injectifs ρ : A(X)→ Map(S), où

X est un sous-complexe rigide [1] du complexe des courbes C(S) de S [14]. Ici, nous disons que
X ⊂ C(S) est rigide si toute application injective et simpliciale ω : X → C(S) est la restriction d’un
automorphisme de C(S). Un homomorphisme ρ est faiblement injectif si pour tous les simplexes
∆,∆′ ⊂ X et pour tous les éléments γ ∈ A(∆), γ′ ∈ A(∆′), si ρ(γ) = ρ(γ′) alors γ = γ′. Dénotant
par δγ le twist de Dehn le long de γ ∈ C(S), on montre:

Théorème 1. Soit S une surface connexe, orientable et non-exceptionnelle. Soit aussi X ⊂ C(S)
un sous-complexe rigide avec dim(X) = dim(C), et tel que chaque simplexe de X est l’intersection
des simplexes de dimension maximale de X qui le contiennent. Pour tout homomorphisme faible-
ment injectif ρ : A(X) → Map(S) il existe f ∈ Map∗(S) et fonctions a, b : X(0) → Z \ {0} telles

que ρ(γa(γ)) = fδ
b(γ)
γ f−1 pout tout γ ∈ X(0). De plus, f est unique si S n’est pas la surface fermeé

de genre 2.

Nous remarquons qu’il y a des constructions d’ensembles rigides finis de C(S) [1] qui satisfont
les hypothèses du Théorème 1. Par exemple, soit Xn le complexe simplicial dont les simplexes
de dimension k correspondent aux ensembles de k + 1 diagonales disjointes du polygone avec n
sommets. Pour n ≥ 5, Xn est un sous-complexe rigide du complexe de courbes de la sphère S0,n

avec n pointes [1]. Donc, si ρ0 : A(Xn) → P Map(S0,n) est l’homomorphisme faiblement injectif
donné par ρ0(γ) = δγ pour tout γ, alors tout homomorphisme injectif ρ : A(Xn)→ P Map(S0,n) a la
forme ρ(·) = f ((ρXn ◦ τ)(·)) f−1, où f ∈ Map∗(S0,n) et τ : A(Xn)→ A(Xn) est un monomorphisme.
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Par ailleurs, le complexe des courbes lui même est rigide [22]. En lui appliquant le Théorème 1,
on montre:

Corollaire 2. Soit S une surface connexe, orientable et non exceptionnelle, autre que la surface
fermée de genre 2. Soit aussi Γ ⊂ Map(S) un sous-groupe tel que pour toute γ ∈ C(S) il y a

n(γ) ∈ N avec δ
n(γ)
γ ∈ Γ. Pour tout homomorphisme injectif σ : Γ → Map(S) il existe un unique

élément f ∈ Map∗(S) tel que σ(g) = fgf−1 pour tout g ∈ Γ.

Rappelons que si S a genre au moins 3, les noyaux des homomorphismes du groupe modulaire
dans des groupes de Lie compactes - par exemple les représentations quantiques [21] - satisfont la
condition du Corollaire 2 [3].

On observe aussi que le Corollaire 2 implique que le groupe Γ est cohopfien et que son commen-
surateur abstrait est isomorphe à Map∗(S). Ces résultats sont déjà connus pour le group de Torelli
[11] et pour quelques autres sous-groupes normaux de Map(S) d’indice infini [8, 9]. Toutefois, la
rigidité qu’on trouve dans le Corollaire 2 est bien plus forte que ce qu’on connâıt dans ces cas là:
ici on ne suppose pas que σ(Γ) ⊂ Γ, ni que Γ et σ(Γ) soient commensurables.

1. Introduction

Let S be a connected, orientable surface of genus g with n punctures. Throughout, we will
assume that S is non-exceptional, that is, 3g + n ≥ 5 and (g, n) 6= (1, 2). Denote by Map∗(S)
the extended mapping class group, that is the group of isotopy classes of self-diffeomorphisms of S.
The mapping class group Map(S) ⊂ Map∗(S) the index 2 subgroup consisting of isotopy classes
of those diffeomorphisms that preserve the orientation of S; finally, the pure mapping class group
P Map(S) ⊂ Map(S) is the subgroup of those mapping classes fixing each puncture of S.

Given a simplicial complex X, the right-angled Artin group A(X) associated to X is the group

generated by the set X(0) of vertices of X, subject to the relation that γi, γj ∈ X(0) commute if and
only if they are adjacent in X. Note that every simplex ∆ of X determines an abelian subgroup
A(∆) of A(X), isomorphic to Zdim(∆)+1.

In this note we are interested in homomorphisms from right-angled Artin groups to mapping
class groups. We remark that there are numerous examples of such homomorphisms: for instance,
if X 6= ∅ then A(X) surjects onto Z, and hence we obtain infinitely many homomorphisms A(X)→
Map(S). In addition, so long as X has at least two non-adjacent vertices, A(X) surjects onto the
non-abelian free group of rank 2 and thus we obtain still more homomorphisms A(X)→ Map(S).
Observe, however, that the homomorphisms just described fail to be injective. On the other hand,
Koberda [18] and Clay-Leininger-Mangahas [10] showed that every finitely generated right-angled
Artin group embeds as a subgroup of some mapping class group.

Below, we will prove a rigidity result for a certain class of homomorphisms A(X) → Map(S),
called weakly injective, in the case when X is a rigid subset of the curve complex C(S). We need a
couple of definitions before stating our main result:

Definition (Weak injectivity). Let X be a simplicial complex, and G a group. A homomorphism
ρ : A(X) → G is weakly injective if the following holds: for all simplices ∆,∆′ ⊂ X, and for all
γ ∈ A(∆), γ′ ∈ A(∆′), if ρ(γ) = ρ(γ′) then γ = γ′.

Recall that the curve complex C(S) is the simplicial complex whose k-simplices correspond to
sets of k+1 distinct free isotopy classes of essential simple closed curves on S with pairwise disjoint
representatives [14]. Denote by δγ the right Dehn twist along the simple closed curve γ ∈ C(S). If
X ⊂ C(S) is an arbitrary subcomplex, then the homomorphism

(1) ρ0 : A(X)→ Map(S), ρ0(γ) = δγ for every vertex γ ∈ X(0)
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is weakly injective; see [12], in particular Section 3.3, for basic facts about Dehn twists. Note,
however, that the map ρ0 is not injective in general; compare with [13]. As mentioned earlier, we
will be interested in subcomplexes of C(S) that are rigid:

Definition (Rigid subcomplex). A simplicial subcomplex X of C(S) is rigid if for every injective
simplicial map ω : X → C(S) there is an automorphism φ ∈ Aut(C(S)) of C(S) with ω(γ) = φ(γ)

for all γ ∈ X(0).

Since S is assumed to be non-exceptional, the combination of results of Ivanov [17], Korkmaz
[19], and Luo [20], implies that every automorphism of C(S) is induced by an element of Map∗(S).
Furthermore, if S is not the closed surface of genus 2, then the said element is unique – see [20].

We are finally ready to state our main result:

Theorem 1. Let S be a connected, orientable and non-exceptional surface. Suppose that X is a
rigid subcomplex of C(S), with dim(X) = dim(C(S)), and such that every simplex of X is equal to
the intersection of all maximal dimensional simplices of X that contain it. For every weakly injective
homomorphism ρ : A(X) → Map(S) there are f ∈ Map∗(S) and functions a, b : X(0) → Z \ {0}
with ρ(γa(γ)) = fδ

b(γ)
γ f−1, for every γ ∈ X(0). Moreover, f is unique unless S is a closed surface

of genus 2.

The equality ρ(γa(γ)) = fδ
b(γ)
γ f−1 asserts that ρ(γ) is a root of a power of the Dehn twist along

f(γ). In the absence of roots – for instance if ρ takes values is the pure mapping class group
P Map(S0,n) of the n-punctured sphere – we deduce that ρ(γ) is in fact a power of a Dehn twist;
with the notation of Theorem 1 this means that a(γ) = 1.

Concrete examples of finite rigid subsets of C(S0,n) were given in [1]. Indeed, the simplicial
complex Xn whose k-simplices correspond to sets of k+1 pairwise disjoint diagonals of the polygon
with n vertices is a rigid subcomplex of C(S0,n) for n ≥ 5. The complex Xn is the dual polytope to
the associahedron, and hence every simplex is equal to the intersection of all maximal dimensional
simplices containing it. We thus deduce from Theorem 1 that, for n ≥ 5, every weakly injective
homomorphism ρ : A(Xn) → P Map(S0,n) is of the form ρ(·) = f ((ρ0 ◦ τ)(·)) f−1, where f ∈
Map∗(S0,n), ρ0 is as in (1), and τ : A(Xn)→ A(Xn) is the injective homomorphism determined by

τ(γ) = γb(γ) for γ ∈ X(0)
n .

We stress that in Theorem 1 we are not assuming that the subcomplex X be finite. In particular,
applying the theorem to X = C(S), which is itself rigid by the work of Shackleton [22], we prove:

Corollary 2. Let S be a connected, orientable and non-exceptional surface, other than the closed
surface of genus 2. Let Γ ⊂ Map(S) be a subgroup such that for every γ ∈ C(S) there is n(γ) ∈ N
with δ

n(γ)
γ ∈ Γ. For every injective homomorphism σ : Γ→ Map(S) there is a unique f ∈ Map∗(S)

such that σ(g) = fgf−1, for all g ∈ Γ.

Since any finite index subgroup Γ ⊂ Map(S) automatically satisfies the hypothesis above, Corol-
lary 2 implies the results in [6, 7, 15, 16, 22] about injections of finite index subgroups of mapping
class groups.

In addition, there are numerous subgroups Γ ⊂ Map(S) of infinite index that satisfy the condition
of Corollary 2, for example the kernel of any representation of Map(S) to a compact Lie group,
provided that S has genus at least 3 – see Corollary 2.6 of [3]. This applies for instance to the
so-called quantum representations [21] of Map(S), many of which have infinite image. Note also
that Corollary 2 implies that the subgroup Γ is co-Hopfian, and that its abstract commensurator
is isomorphic to Map∗(S). Such results were already known for the Torelli group [11], as well as
for other infinite index normal subgroups of Map(S) [8, 9]. However, we remark that the rigidity
statement in Corollary 2 is more powerful than any of the existing ones, since we do not assume
that σ(Γ) ⊂ Γ, or that Γ and σ(Γ) are commensurable.
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2. Abelian subgroups of the mapping class group.

We recall a few standard facts about abelian subgroups of the mapping class group. See [12] for
basic facts on the mapping class group and [5] for details on its abelian subgroups.

Let S be a connected orientable surface, and A an abelian subgroup of Map(S). By the rank of
A we understand the dimension of A⊗Z Q as a Q-vector space. A reducing system for A is an A-
invariant multicurve λ ⊂ S. If there is no reducing system for A, then A contains a pseudo-Anosov
and hence rank(A) = 1. Thus, every abelian subgroup A of Map(S) with rank(A) ≥ 2 is reducible.
Given any reducing system λ for A we have the exact sequence:

(2) 1→ A ∩ Tλ → A→ Map(S \ λ),

where Tλ is the group generated by the Dehn twists along the components of λ (or half-twists in
the case when the given component bounds a twice-punctured disk or a once-punctured torus). We
say that λ is a complete reducing system for A if, for every component W of S \ λ, either:

(a) there are d > 0 and f in the image of the third homomorphism in (2), such that fd(W ) = W
and fd|W is pseudo-Anosov, or

(b) there is d > 0 with fd|W = Id for every f in the image of the third homomorphism in (2).

There is a unique complete reducing system λ(A) for A, the canonical reducing system [5], contained
in every other complete reducing system for A. The active surface S(A) of A is the union of those
components of S \ λ(A) for which (a) above is satisfied. Noting that no component of S(A) is
homeomorphic to a three-times punctured sphere, the pigeonhole principle and (2) together imply:

Fact 1. Suppose that S has genus g and n punctures. Every abelian subgroup A of Map(S)
satisfies rank(A) ≤ 3g + n− 3 = dim(C(S)) + 1. Moreover, in the equality case one has:

(1) 3g+n− 3 = l(A) + s(A), where l(A) and s(A) are, respectively, the number of components
of λ(A) and S(A);

(2) Every component of S(A) is homeomorphic to either a once-punctured torus or a four-times
punctured sphere;

(3) The group A does not permute the components of λ(A) (resp. S(A)).

Suppose now that f ∈ Map(S) has infinite order and is contained in some abelian subgroup
A < Map(S) of maximal rank. In particular, f is not pseudo-Anosov and thus λ(〈f〉) 6= ∅.
Moreover, observe that λ(〈f〉) ⊂ λ(A), and that S(〈f〉) is a union of connected components of
S(A). Moreover, both λ(〈f〉) and S(〈f〉) are preserved by the centralizer ZMap(S)(f) of f . In fact,
the subgroup of ZMap(S)(f) that preserves each component of λ(f) and each component of S \λ(f)
has finite index in ZMap(S)(f) and contains 〈f,Tλ(f)〉 in its center. Notice that rank(〈f,Tλ(f)〉) ≥ 2
unless S(〈f〉) = ∅ and λ(f) has a single component. Altogether we have:

Fact 2. Let S be a connected, orientable and non-exceptional surface. Suppose that f ∈ Map(S)
has infinite order and is contained in an abelian group of maximal rank. Then, either f is a root
of a power of a Dehn twist, or the centralizer of f in Map(S) has a finite index subgroup G whose
center Z(G) satisfies rank(Z(G)) ≥ 2.

We can now prove:

Lemma 3. Let S be a connected, orientable and non-exceptional surface. If {Ai}i∈I is a collection
of maximal rank abelian subgroups of Map(S) such that rank(∩Ai) = 1, then ∩Ai is a cyclic group
generated by a root of a power of a Dehn twist.

Proof. First, it follows from Fact 1 and the work of Birman-Hilden [4] (see Theorem 2.8 of [2] for
an explicit statement) that the centralizer of a non-trivial finite order element of Map(S) does not
contain abelian groups of maximal rank. Therefore ∩Ai is torsion free, and hence cyclic.
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Let G be a finite index subgroup of the centralizer of ∩Ai. Maximality of the rank of Ai implies
that Z(G) ∩Ai has finite index in Z(G) for all i. In particular, also Z(G) ∩ (∩Ai) has finite index
in Z(G); this proves that Z(G) has rank 1. By Fact 2, ∩Ai is generated by a root of a power of a
Dehn twist, as claimed. �

A remark on roots. We remark that if f is a half-twist along a curve that bounds a twice-
punctured disk or a once-punctured torus in S, then f is indeed contained in a maximal rank
abelian subgroup of Map(S). In fact, it is not difficult, albeit not so interesting and slightly
cumbersome, to prove that these are the only roots which can appear in Lemma 3 as long as
(g, n) 6= (2, 0). It follows that Theorem 1 can be marginally improved to assert that a(γ) ∈ {1, 2}.

3. Proofs

Before proving the results announced in the introduction, we need a preparatory observation:

Lemma 4. Let S be connected, orientable and non-exceptional surface. Suppose that X is a
simplicial complex with dim(X) = dim(C(S)), and whose every simplex is equal to the intersection of
the maximal dimensional simplices of X that contain it. Then every weakly injective homomorphism
ρ : A(X) → Map(S) maps each standard generator of A(X) to a root of a power of a Dehn twist
along a single curve.

Proof. Let γ ∈ X(0) be a vertex, and consider the collection {∆i}i∈I of maximal dimensional
simplices of X that contain γ. Our assumption implies that the cyclic group 〈γ〉 is equal to
∩iA(∆i). Since ρ is weakly injective, ρ(〈γ〉) is also an infinite cyclic subgroup of Map(S), which
moreover satisfies

ρ(〈γ〉) = ∩iρ(A(∆i)) ⊂ Map(S).

Now, rank(ρ(A(∆i))) = rank(A(∆i)) = dim(X) + 1 = dim(C(S)) + 1. We can hence apply Lemma
3 to {ρ(∆i)}i∈I , thus deducing that ρ(〈γ〉) is generated by a root of a power of a Dehn twist, as we
needed to prove. �

We are now ready to prove Theorem 1:

Proof of Theorem 1. By Lemma 4, ρ(γ) is a root of a power of a Dehn twist along a single curve,

for every γ ∈ X(0). In other words, there are ρ∗(γ) ∈ C(S) and a(γ), b(γ) ∈ Z \ {0} with

ρ(γa(γ)) = δ
b(γ)
ρ∗(γ).

Since the elements of A(X) corresponding to adjacent vertices γ, η ∈ X(0) commute, ρ∗(γ) and
ρ∗(η) do not intersect. Moreover, if γ, η are arbitrary distinct vertices of X, then ρ∗(γ) 6= ρ∗(η)
because ρ is weakly injective. Therefore, we deduce that the map ρ∗ : X → C(S) is an injective
simplicial map. Since X ⊂ C(S) is assumed to be rigid, there is φ ∈ Aut(C(S)) with ρ∗(γ) = φ(γ)
for all γ ∈ X. As S is not exceptional, the aforementioned results of Ivanov [17], Korkmaz [19] and
Luo [20] together imply that there is f ∈ Map∗(S) with φ(γ) = f(γ) for all γ ∈ C(S); moreover, f
is unique unless S is a closed surface of genus 2. Therefore, we obtain

ρ(γa(γ)) = δ
b(γ)
ρ∗(γ) = δ

b(γ)
f(γ) = fδb(γ)

γ f−1

for all γ ∈ X(0), as desired. �

Finally, we prove Corollary 2:
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Proof of Corollary 2. Let σ : Γ → Map(S) be an injective homomorphism, and ρ : A(C(S)) →
Map(S) the homomorphism ρ(γ) = δ

n(γ)
γ , noting that its image is contained in Γ. Hence, we can

also consider the homomorphism

ρ′ = σ ◦ ρ : A(C(S))→ Map(S).

As S is assumed to be non-exceptional, C(S) is rigid [22] and thus Theorem 1 implies that there

are f ∈ Map∗(S) and functions a, b : C(S)→ Z \ {0} with ρ′(γa(γ)) = fδ
b(γ)
γ f−1 for every γ ∈ C(S).

Moreover, f is unique since S is not the closed surface of genus 2. Conjugating σ by f−1, we may
in fact assume that

ρ′(γa(γ)) = δb(γ)
γ

for every vertex γ ∈ C(S). After this normalization, σ maps roots of powers of Dehn twists along
a curve to roots of powers of Dehn twists along the same curve. We claim that σ(h) = h for every
h ∈ Γ. Indeed, note that for every h ∈ Γ and γ ∈ C(S) there are a, b, c ∈ Z such that

δah(γ) = σ(δbh(γ)) = σ(hδbγh
−1) = σ(h)σ(δbγ)σ(h)−1 = σ(h)δcγσ(h)−1 = δcσ(h)(γ)

This proves, in particular, that h(γ) = σ(h)(γ). Since γ ∈ C(S) was arbitrary and S is not the
closed surface of genus 2, it follows that σ(h) = h, as we needed to prove. �
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