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Abstract. We show that an injective continuous map between planar regions which distorts vertices
of equilateral triangles by a small amount is quasiconformal.
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Quasiconformal maps have become an important class of homeomorphisms, for they arise in many
fields of mathematics, such as pde’s, Teichmüller theory, hyperbolic geometry, complex dynamics
etc. Their involvement may be explained from the numerous characterisations of quasiconformality
involving different flavours, which generally amount to loosening characterisations of conformal maps.

Let Ω ⊂ C be a domain in the plane, and let us first define δΩ(z) = dist(z,C \Ω). Let f : Ω→ C
be an injective continuous map. For z ∈ Ω and r ∈ (0, δΩ(z)), one may consider

Lf (z, r) = sup{|f(z)− f(w)|, |z − w| = r} , and
`f (z, r) = inf{|f(z)− f(w)|, |z − w| = r} .

Let us set Hf (z, r) = Lf (z, r)/`f (z, r) and

Hf (z) = lim sup
r→0

Hf (z, r) ∈ [1,∞] .

The metric definition of F.W. Gehring asserts that f is K-quasiconformal if Hf is finite everywhere,
and if Hf ≤ K a.e. [3].

In his monograph [5], J.H. Hubbard proposes a new formulation of plane quasiconformal maps
in terms of distortion of triangles (Definition 4.5.1 therein). If T is a Euclidean triangle in C with
vertices V (T ) = {z1, z2, z3}, i.e., the convex hull of V (T ), one defines the skew of T as

skew(T ) = skew(V (T )) = inf{L ∈ [1,∞], |zi − zj | ≤ L|zi − zk|, {i, j, k} = {1, 2, 3}} .
He proves that if f : Ω→ f(Ω) is a homeomorphism for which there is an increasing homeomorphism
h : R+ → R+ such that

skew(f(T )) = skew(f(V (T ))) ≤ h(skew(T ))
for any T ⊂ Ω, then f is quasiconformal. He then mentions that it suffices to control the distortion
of triangles with skew bounded above by

√
7/3 in order to establish the result, and he poses the

question of whether it is enough to have control only on equilateral triangles (see the remark following
Exercise 4.5.12 in [5]).

In this note, we prove

Theorem. — There is a constant ε0 > 0 such that, if ε ∈ [0, ε0) and if f : Ω → f(Ω) is a
homeomorphism such that

skew(f(T )) ≤ 1 + ε

for any equilateral triangle T ⊂ Ω, then f is K-quasiconformal for some K = K(ε).

This statement is essentially local. We were unable to prove or disprove the quasiconformality for
arbitrary ε > 0. At first glance, imposing a uniform upper bound on the distortion of equilateral
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triangles looks like a slight variation of standard metric characterisations of quasiconformal maps.
However, it turns out to be a much weaker condition: for example, knowing the distance between
the images of 0 and 1 only gives control on the images of the 6th roots of unity, saying nothing
about the images of points closer to the origin. In fact, it is not at all clear that a map which
distorts equilateral triangles by a uniform amount should even be continuous if this is not required
a priori. This highlights some of the difficulties one would have to overcome in order to prove
quasiconformality in general, which does not seem obvious even for ε = 1. The construction of
potential counterexamples is also a delicate issue.

Outline of the paper. We first establish a local criterion of quasiconformality (Corollary 1.2).
We then prove the theorem under an additional property, but for any ε > 0 (Proposition 2.1). We
prove this property is satisfied if ε is small enough (Proposition 2.2), completing the proof of our
main result. In the appendix, we will provide a short proof of the following fact, which improves the
bound of

√
7/3 given in [5]: Let µ > 0 and λ <∞. If f : Ω→ f(Ω) is a homeomorphism such that

skew(f(T )) ≤ λ

for any triangle T ⊂ Ω with skew(T ) ≤ 1 + µ, then f is K-quasiconformal for some K = K(λ, µ).

Classic references on quasiconformal maps include the monographs [1, 6, 7].
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problem. We are also grateful to the referee for her or his thorough work. We thank E. Maderna for
providing a portion of the argument in the proof of Lemma 2.7. Finally, the first author thanks the
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1. A criterion of quasiconformality

Let Aut(C) denote the group of conformal automorphisms of the plane, i.e., affine maps z 7→ az+b,
where a ∈ C∗ = C \ {0} and b ∈ C. Note the derivative of an affine map is constant. Given z ∈ C
and r > 0, we denote by D(z, r) the open Euclidean disc centred at z of radius r.

Proposition 1.1. Let Ω ⊂ C be a domain, and F a family of injective continuous maps f : Ω→ C
which satisfies the following property. For any sequence (fn) of F , and for any αn ∈ Aut(C) such
that αn(0) ∈ Ω and |α′n(0)| ≤ (1/3)δΩ(αn(0)), there are a subsequence (nk)k and a sequence (βk)k of
elements of Aut(C) such that the sequence (βk ◦ fnk ◦ αnk)k converges uniformly on the disk D(0, 2)
to an injective continuous map g : D(0, 2)→ C.

Then there is some K = K(F) such that each element of F is K-quasiconformal.

This proposition is similar to criteria given for global homeomorphisms in § 2.2–2.5 in [2] and [4,
Th. 18 and Cor. 8].

Proof. Suppose, for contradiction, that the result were not true. Then one can find a sequence
of maps (fn)n and a sequence of points (zn)n in Ω such that Hfn(zn) ≥ 2n. Let us consider rn ∈
(0, δΩ(zn)/3) such that Hfn(zn, rn) ≥ n.

Let us consider αn(z) = zn + rnz. It follows that rn = |α′n(0)| ≤ (1/3)δΩ(αn(0)). Therefore,
extracting a subsequence if necessary, one may assume that there is a sequence (βn)n of affine maps
such that the maps gn = βn ◦ fn ◦ αn form a sequence which converges uniformly on D(0, 2) to an
injective continuous map g : D(0, 2)→ C. It follows from the uniform convergence and the injectivity
of g that

limHgn(0, 1) = Hg(0, 1) <∞ .

But Hgn(0, 1) = Hfn(zn, rn) ≥ n, a contradiction.
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We derive a corollary as follows. Let P be a property which can be satisfied by a continuous
complex-valued function defined on a planar region. We say that P is a conformal property if the
following propositions hold:

(1) If f satisfies P, then either f is locally injective or constant.
(2) The property P is closed under uniform convergence.
(3) The property P is preserved under pre- and post-composition by affine maps.

We will denote by P(Ω) the set of continuous complex-valued functions defined on Ω which satisfy
the property P. We also define its Schwarz class SP as the subset of injective functions of P(D(0, 3))
normalised by f(0) = 0 and f(1) = 1.

Corollary 1.2. Let P be a conformal property. Suppose that SP is equicontinuous at 0. Then SP is
compact with respect to the topology of uniform convergence of compact subsets of D(0, 3) and there
is some finite constant K such that any non-constant map f on any domain Ω which satisfies P is
locally K-quasiconformal.

Given P, Ω, w,w′ ∈ Ω such that |w − w′| ≤ δΩ(w)/3, we define using (3) the operator Tw,w′ :
P(Ω)→ P(D(0, 3)) by

Tw,w′f(z) =
f(w + (w′ − w)z)− f(w)

f(w′)− f(w)
.

Proof. We will first establish the corollary for SP . Thus we take Ω = D(0, 3). We define, for
z ∈ D(0, 3),

Mz = sup{|f(z)|, f ∈ SP} ∈ [0,∞] .
We will prove that Mz is finite for all z. Let B be the set of points z ∈ D(0, 3) such that Mz is finite,
and B′ those points of B such that there is another point w′ ∈ B such that |w − w′| ≤ δD(0,3)(w)/3.

By assumption, for any ε > 0, there is some ηε ∈ (0, 1) such that Mz ≤ ε whenever z ∈ D(0, ηε).
We let η = η1.

It follows that if w ∈ B′ and w′ ∈ B are as above, then |Tw,w′f(z)| ≤ ε when |z| ≤ ηε for any
f ∈ SP . Therefore, if z ∈ D(w, |w − w′|ηε), then, for any f ∈ SP ,

|f(z)− f(w)| ≤ |f(w)− f(w′)|ε ≤ (Mw +Mw′)ε .

Thus SP is equicontinuous at every point of B′ and B′ is an open set (it contains D(w, |w − w′|η)).

Let us now prove that B′ is closed in D(0, 3). Let (wn)n be a sequence in B′ which converges to
w ∈ D(0, 3). If n is large enough, then δD(0,3)(wn) ≥ δD(0,3)(w)/2 and w ∈ D(wn, ηδD(0,3)(wn)/3).
Hence w ∈ B. Taking n even larger implies that wn ∈ D(w, δD(0,3)(w)/3) so that w ∈ B′ (we may
take such a wn as second point).

Finally, we note that D(0, η) ⊂ B′ so that B′ = D(0, 3) since it is a non-empty open and closed set.
It follows that SP is equicontinuous at every point, so uniformly equicontinuous on every compact
subset of D(0, 3).

Ascoli’s theorem implies that SP is a normal family. Moreover, from (1) and (2), any limit satisfies
P and is not constant. Since it is a limit of injective functions, the limit is also injective, so it belongs
to SP , and SP is compact.

Let us now consider sequences (fn)n of SP and (αn)n of Aut(C) such that αn(0) ∈ D(0, 3) and
|α′n(0)| ≤ δD(0,3)(αn(0))/3. By compactness of SP , the sequence (T0,1(fn ◦ αn)) has a convergent
subsequence with an injective limit. It follows that SP satisfies the assumptions of Proposition 1.1.
Therefore there is some K such that every element of SP is K-quasiconformal.

Let us fix a domain Ω, and let f ∈ P(Ω). If D is a disc on which f is injective, then one can find
α ∈ Aut(C) such that α(D(0, 3)) = D. It follows that T0,1(f ◦α) ∈ SP and f |D is K-quasiconformal.
Thus, maps in P(Ω) are locally K-quasiconformal.
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2. Skewed maps

Definition 1 (ε-skewed and (ε, ρ)-skewed map). Let ε > 0 and ρ ∈ [1/2, 1). We say that a map f :
Ω→ C is ε-skewed if f is continuous and skew(f(T )) ≤ 1+ε for every equilateral triangle T ⊂ Ω. We
say that f is (ε, ρ)-skewed if furthermore, for any z, w ∈ Ω with |w − z| ≤ (1/3) min{δΩ(z), δΩ(w)},∣∣∣∣f (z + w

2

)
− f(z)

∣∣∣∣ ≤ ρ|f(z)− f(w)| .

The proof of the theorem will follow from the next three propositions.

Proposition 2.1. Let ε > 0 and ρ ∈ [1/2, 1). The family of (ε, ρ)-skewed maps on D(0, 3) which fix
0 and 1 is equicontinuous at the origin.

Proposition 2.2. There are ε0 > 0 and a function ρ : [0, ε0) →
[

1
2 , 1
)

such that if 0 < ε < ε0 then
any injective ε-skewed map is (ε, ρ(ε))-skewed.

Proposition 2.3. Both skewedness properties are conformal properties.

Using the three propositions above, we are able to prove our main theorem.

Proof of the theorem. First, both skewedness properties are conformal properties by Proposition
2.3. Therefore, it follows from Corollary 1.2 that it is enough to prove the equicontinuity at the origin.
By Proposition 2.2, an ε-skewed map is (ε, ρ)-skewed for some ρ ∈ [1/2, 1), so Proposition 2.1 implies
the equicontinuity at the origin, and hence, by Corollary 1.2, the quasiconformality of injective ε-
skewed maps.

The proof of the propositions will follow after we establish several lemmas. Let us begin by giving
a definition which will be convenient for our purposes.

Definition 2 (n-connectivity). Let z1, z2, w1, w2 ∈ C such that z1 6= z2, w1 6= w2 and |z1 − z2| =
|w1 − w2|. We say that the segments [z1, z2] and [w1, w2] are n-connected if there exist n equilateral
triangles T1, . . . , Tn of sidelength |z1 − z2| such that [z1, z2] ⊂ T1, [w1, w2] ⊂ Tn, and Tj and Tj+1

have exactly one edge in common, for all j = 1, . . . , n− 1.

We state the following observation as a separate lemma, since we will make use of it later.

Lemma 2.4. Let ε > 0 and let f : C→ C be an ε-skewed map. If two segments [z1, z2] and [w1, w2]
are n-connected, for some n ∈ N, then

1
(1 + ε)n

|f(z1)− f(z2)| ≤ |f(w1)− f(w2)| ≤ (1 + ε)n|f(z1)− f(z2)| .

We start with Proposition 2.3.

Proof of Proposition 2.3. The fact that a non-constant ε-skewed or (ε, ρ)-skewed map is locally
injective is the only non-trivial property to establish.

We let Ω be a domain, and we consider two distinct points z, w ∈ Ω. Let Λz,w be the set of points
z′ ∈ Ω for which there is w′ ∈ Ω such that the segments [z, w] and [z′, w′] are connected, in the sense
of Definition 2, by a chain of triangles whose vertices all lie in Ω.

First, if f is ε-skewed and f(z) = f(w) for some distinct points, then f is constant on Λz,w. If f is
not locally injective at a point ζ ∈ Ω, then one can find a sequence (zn, wn)n of distinct points which
converge to ζ such that f(zn) = f(wn). Thus, f is constant on each Λn = Λzn,wn . As n tends to
infinity, Λn tends in the Hausdorff topology to Ω; furthermore, since (zn) tends to ζ, it follows from
the continuity of f that f turns out to be constant equal to f(ζ). Thus, a non-constant ε-skewed or
(ε, ρ)-skewed map is locally injective.
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Actually, if f is (ε, ρ)-skewed in some disc D(0, R) and is not constant, then f is injective on
D(0, R/2).

Lemma 2.5. Let ε > 0 and ρ ∈ [1/2, 1). For every (ε, ρ)-skewed map f : D(0, 3)→ C,

diamf([z, w]) ≤ |f(z)− f(w)|
1− ρ

for all z, w ∈ D(0, 3) with |w − z| ≤ (1/3) min{δD(0,3)(z), δD(0,3)(w)}.

Proof. It is enough to show the result for z = 0 and w = 1. Let f : D(0, 3)→ C be an (ε, ρ)-skewed
map. Consider, for x ∈ [0, 1], the binary expansion of x. Let xn be the truncation of the expansion
of x after the n− th digit. Then, for all n ∈ N,

|f(x)− f(0)| ≤ |f(x)− f(xn)|+
∑

0≤k≤n−1

|f(xk)− f(xk+1)| .

Observe that |f(x)− f(xn)| → 0 as n→∞ and that |f(xk)− f(xk+1)| ≤ ρk|f(0)− f(1)|. Therefore

|f(x)− f(0)| ≤ |f(0)− f(1)|
1− ρ

.

Lemma 2.6. Let ε > 0 and ρ ∈ [1/2, 1). For every (ε, ρ)-skewed map f : D(0, 3)→ C, if T is an equi-
lateral triangle with vertices z1, z2, z3 ∈ D(0, 3) such that |zi− zj | ≤ (1/3) min{δD(0,3)(zi), δD(0,3)(zj)}
whenever i, j ∈ {1, 2, 3} with i 6= j, then

diamf(T ) ≤ 2(1 + ε)
1− ρ

|f(z1)− f(z2)| .

Proof. Let f : D(0, 3)→ C be an (ε, ρ)-skewed map.

We may assume that f is not constant. Since f is a continuous open mapping, the diameter of
f(T ) is given by the diameter of f(∂T ).

Let z, w ∈ ∂T . Perhaps after relabeling the vertices of T we may assume that z ∈ [z1, z2] and
w ∈ [z1, zj ], for some j = 2, 3. Then, by Lemma 2.5,

|f(z)− f(w)| ≤ |f(z1)− f(z)|+ |f(z1)− f(w)| ≤ 1
1− ρ

(|f(z1)− f(z2)|+ |f(z1)− f(zj)|)

≤ 2
1− ρ

max
k∈{2,3}

|f(z1)− f(zk)| ≤
2(1 + ε)

1− ρ
|f(z1)− f(z2)| .

Proof of Proposition 2.1. Let f : D(0, 3) → C be an (ε, ρ)-skewed map, normalised so that
f(0) = 0 and f(1) = 1. Given n ∈ N, let Hn be the regular hexagon centred at 0 and with vertex
1
2n . Divide Hn into six equilateral triangles, each of sidelength 1

2n , so that the vertices of each such
triangle are 0 and two consecutive vertices of Hn. Let Tn be the set of these six triangles so obtained.
We note that each edge of a triangle in Tn is at most 3-connected to [0, 1/2n].

Then, by Lemma 2.6,
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diamf(Hn) ≤ 2 sup
T∈Tn

diamf(T )

≤ 4(1 + ε)4

1− ρ
|f(0)− f(1/2n)|

≤ 4(1 + ε)4

1− ρ
ρn .

This proves the equicontinuity at the origin.

We now turn to the proof of Proposition 2.2. Let us start with the following lemma.

Lemma 2.7. There is some ε1 > 0 which satisfies the following property. For all 0 < ε < ε1 there
exists cε > 0 such that for every ε-skewed map f : Ω→ C,

∣∣∣f (z + (w − z)eiπ/3
)
− f

(
z + (w − z)e−iπ/3

)∣∣∣ ≥ √3(1− cε)|f(w)− f(z)|,

for all z ∈ Ω and w ∈ D(z, δΩ(z)) such that f(z) 6= f(w). Moreover, cε can be chosen so that cε → 0
as ε→ 0.

Proof. Let ε > 0 be given. Without loss of generality, we may assume that D(0, 1) ⊂ Ω, z = 0,
w = 1, f(0) = 0 and f(1) = 1. In this case, z + (w − z)eiπ/3 = eiπ/3 and z + (w − z)e−iπ/3 = e−iπ/3.
Let us denote the complex number eiπ/3 by α.

Since the triangles with vertices (0, 1, α) and (0, 1, α) are both equilateral, we have that skew(0, 1, f(α)) ≤
λ and skew(0, 1, f(α)) ≤ λ. Thus, there exists rε > 0 such that

f(α), f(α) ∈ D(α, rε) ∪D(α, rε)

and rε → 0 as ε→ 0. To conclude the proof, we only need to prove that each image is in a different
disc.

Note that if ε > 0 is small enough then ε-skewed maps transform the vertices of equilateral triangles
into three non-aligned points. Therefore, if {z1(t), z2(t), z3(t)} is a continuous motion of equilateral
triangles in Ω, where t ranges over some interval I, then the vectors [(f(z2(t))−f(z1(t))), (f(z3(t))−
f(z1(t)))], t ∈ I, form a continuous family of bases of C over R with a fixed orientation. Applying
this remark to z1(t) = 0, z2(t) = e−itπ/3 and z3(t) = ei(1−t)π/3 for t ∈ [0, 1], we see that both bases
[1, f(α)] and [f(α), 1] have the same orientation, so the points f(α) and f(α) belong to two opposite
discs.

Let us now state the following elementary lemma, omitting its proof.

Lemma 2.8. Let λ > 1. The region Eλ = {z ∈ C | 1
λ |z| ≤ |z − 1| ≤ λ|z|} is the complement of the

union of two disjoint open discs in C, with centers λ2

λ2−1
and 1

1−λ2 , respectively, and with radii both
equal to λ

λ2−1
.

If w,w′ ∈ C, we define Eλ(w,w′) = φ (Eλ) where φ(z) = (w − w′)z + w′.

Lemma 2.9. There is some ε2 > 0 which satisfies the following property. For all 0 < ε < ε2 there
exists sε > 0 such that for every ε-skewed map f : Ω→ C,

f

(
z + w

2

)
∈ D

(
f(z) + f(w)

2
, sε|f(z)− f(w)|

)
,

for all z, w ∈ Ω such that |w − z| ≤ (1/3) min{δΩ(z), δΩ(w)} and f(z) 6= f(w). Moreover, sε can be
chosen so that sε → 0 as ε→ 0.
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Proof. It suffices to show the result for z = 0 and w = 1. Let ε > 0 and let f : Ω → C be an
ε-skewed map, normalised so that f(0) = 0 and f(1) = 1. Set λ = 1 + ε and α = e

iπ
3 .

First, the segments
[
0, 1

2

]
and

[
1
2 , 1
]

are 3-connected, as is shown by considering the three triangles
with vertices 1

2(0, 1, α), 1
2(1, α, 1 + α) and 1

2(1, 1 + α, 2), respectively. Therefore, f
(

1
2

)
∈ Eλ3(0, 1),

by Lemma 2.4. By a similar argument, the segments
[
α, 1

2

]
and

[
1
2 , α

]
are 3-connected and thus

f
(

1
2

)
∈ Eλ3(f(α), f(α)).

Now observe that the region Eλ is a neighbourhood of {< z = 1/2}, and as ε tends to 0, Eλ tends
to this line on any compact set in the Hausdorff topology. Therefore, for ε small enough, the region
Eλ3(0, 1) ∩ Eλ3(α, α) is the union of two components: one compact, which contains 1/2 and the
diameter of which tends to zero as ε tends to zero, and the second is unbounded, but its diameter in
the spherical metric tends to 0 as well with ε.

Thus, there exist s′ε, R
′
ε > 0 such that

Eλ3(0, 1) ∩ Eλ3(α, α) ⊂ D
(

1
2
, s′ε

)
∪ {z ∈ C, |z| ≥ R′ε}

where s′ε → 0 and R′ε →∞ as ε→ 0.

Lemma 2.7 and its proof imply that we may as well assume, replacing f by f , if necessary, that
f(α) (resp. f(α)) lies in D(α, rε) (resp. in D(α, rε)) where rε tends to 0 with ε. It follows that there
exist sε > 0 and Rε, depending only on s′ε, R

′
ε and rε, and therefore depending only on ε, such that

Eλ3(0, 1) ∩ Eλ3(f(α), f(α)) ⊂ D
(

1
2
, sε

)
∪ {z ∈ C, |z| ≥ Rε}

where sε → 0 and Rε →∞ as ε→ 0.

To conclude, we need to prove that f(1/2) belongs to the bounded component of Eλ3(0, 1) ∩
Eλ3(f(α), f(α)). Let β = (1/2)eiπ/3 and γ = (1/2)(1 + eiπ/3). Note that the triangles {0, 1/2, β} and
{γ, 1/2, β} are both equilateral and have one edge in common. Recalling that f(0) = 0 and f(1) = 1
and applying Lemma 2.7 for z = β and w = 1/2, one gets that that

|f(γ)| ≥
√

3(1− cε)|f(β)− f(1/2)|
and thus

|f(γ)| ≥
√

3(1− cε)
λ2

|1− f(1/2)|

since the segments [β, 1/2] and [1/2, 1] are 2-connected. Also,

|f(γ)| ≤ 1 + |f(γ)− 1| ≤ 1 + λ|1− f(1/2)|
Combining these two inequalities we get that

|1− f(1/2)| ≤ Bε =
λ2

√
3(1− cε)− λ3

which remains bounded as ε→ 0 since this quantity tends to (
√

3− 1)−1 as ε tends to 0.

Therefore, for ε small enough, one has that Bε < Rε and thus f
(

1
2

)
∈ D

(
1
2 , sε

)
, as desired.

Proof of Proposition 2.2. Let ε0 be such that sε0 <
1
4 , where sε0 is the constant given by Lemma

2.9 for ε0. Let ε < ε0 and let f be an injective ε-skewed map defined on a domain Ω. Pick z, w ∈ Ω
such that |w − z| ≤ (1/3) min{δΩ(z), δΩ(w)}.

Using the transformation Tz,wf , we may as well assume that z = 0, w = 1 and that f is normalised
so that f(0) = 0 and f(1) = 1. Note that f

(
1
2

)
∈ D

(
1
2 , sε

)
, by Lemma 2.9. The circle with centre

1
2 and radius sε intersects the segment

[
1
2 , 1
]

at a point uε. Let ρ(ε) = uε, noting that 1
2 < ρ(ε) < 1.

Then
∣∣f(0)− f

(
1
2

)∣∣ ≤ |f(0)− uε| = |uε| = ρ(ε)|f(0)− f(1)|. The proposition follows.
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Appendix A. Control of nearly equilateral triangles

In this appendix, we prove the following.

Proposition A.1. Let µ > 0 and λ <∞. If f : Ω→ f(Ω) is a homeomorphism such that

skew(f(T )) ≤ λ
for any triangle T ⊂ Ω with skew(T ) ≤ 1 + µ, then f is K-quasiconformal for some K = K(λ, µ).

Proof. Fix z0 ∈ Ω and r ∈ (0, δΩ(z0)). We claim that Hf (z0, r) ≤ K for some constant K which
depends only on λ and µ. This will establish the proposition.

Without loss of generality, we may assume that z0 = 0 and r = 1. There is some η > 0 of the form
η = π/(3n), n ≥ 1, such that skew(0, 1, eit) ≤ 1 + µ for all for t ∈ [π/3− η, π/3 + η].

Let us subdivide [0, π/3] into n intervals Ij = [(j − 1)η, jη] of length η, and similarly [π/3, 2π/3]
by n intervals Jj = [π/3 + (j − 1)η, π/3 + jη] for j ∈ {1, . . . , n}. Let us write, for j ∈ {1, . . . , n} and
k ∈ {0, 1},

zkj = ei(kπ/3+(j−1)η) .

It follows that the skew of triangles with vertices 0, z0
j and eit for t ∈ Jj and of triangles with

vertices 0, z1
j+1 and eit for t ∈ Ij is bounded by 1 + µ. Therefore,

λ−2n|f(0)− f(1)| ≤ |f(0)− f(eit)| ≤ λ2n|f(0)− f(1)|
for t ∈ [0, 2π/3].

Finally, any segment of the form [0, eis] is at most 2-connected to a segment of the form [0, eit]
with eit in some Ij or Jj , and thus the claim follows.
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[7] J. Väisälä, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229. Springer-
Verlag, Berlin-New York, 1971.
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