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We give a brief introduction to hyperbolic structures on surfaces. Using
the concepts of developing map and holonomy, we sketch a proof that
every surface equipped with a complete hyperbolic metric is isometric
to a quotient of H by a Fuchsian group. We then define Teichmüller
spaces and explain Fenchel-Nielsen coordinates. Finally, we introduce
mapping class groups and show that they act properly discontinuously
on Teichmüller space.

1. Introduction

This paper is intended as a brief introduction to hyperbolic structures on

surfaces, Teichmüller spaces and mapping class groups. It is based on the

first half of the course “Hyperbolic structures on surfaces”, given by C.

Leininger and the author during the programme “Geometry, Topology and

Dynamics of Character Varieties” at the Institute for Mathematical Sci-

ences of Singapore in July 2010. It accompanies the article [23], also in this

volume, which discusses degenerations of hyperbolic structures.

In order to keep the exposition as concise and self-contained as possible,

we have narrowed our attention to three particular strands. First, that a

surface S equipped with a complete hyperbolic structure may be identified

with a quotient of H by a torsion-free Fuchsian group, via the developing

map. Second, that the Teichmüller space T (S), that is, the space of com-

plete hyperbolic structures on S, is homeomorphic to some Rn, where n

depends only on the topology of S. Finally, that the mapping class group

Mod(S) of S, that is, the group of self-homeomorphisms of S up to homo-

topy, acts properly discontinuously on T (S).

1
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The plan of the paper is as follows. In Section 2 we recall some basic

facts about plane hyperbolic geometry. In Section 3 we introduce the notion

of a hyperbolic structure on a surface, and explain why every complete

hyperbolic surface is isometric to H/Γ, where Γ is a torsion-free Fuchsian

group. In Section 4 we define Teichmüller spaces and describe Fenchel-

Nielsen coordinates. Finally, in Section 5 we introduce the mapping class

group and prove that it acts properly discontinuously on Teichmüller space.
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2. Plane hyperbolic geometry

We refer the reader to [2, 4, 5, 8, 19, 20, 24, 26] for a detailed discussion of

the topics presented in this section.

2.1. Möbius transformations

Let C̄ = C ∪ {∞} be the Riemann sphere. A Möbius transformation is a

map T : C̄→ C̄ of the form

T (z) =
az + b

cz + d
,

where a, b, c, d ∈ C and ad− bc 6= 0. Here, T (∞) = a
c and T

(−c
d

)
=∞.

Denote by Möb(C̄) the set of all Möbius transformations. Every element

of Möb(C̄) is a bijection; the inverse of T is

T−1(z) =
dz − b
−cz + a

∈ Möb(C̄)

Moreover, the composition of two Möbius transformations is a Möbius

transformation, and thus Möb(C̄) is a group under composition.

To every Möbius transformation

T (z) =
az + b

cz + d
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we may associate a matrix of non-zero determinant, namely(
a b

c d

)
.

Multiplying the matrix by a non-zero complex number does not change

the Möbius transformation it represents, and thus there is a surjective map

SL(2,C) → Möb(C̄). It is easy to verify that this map is in fact a homo-

morphism, with kernel {±I}. Therefore,

Möb(C̄) ∼= PSL(2,C).

We will make use of the following important properties of Möbius maps;

for a proof, see for instance ([19], Thm. 2.4.1 and 2.11.3).

Proposition 2.1: (1) Every element of Möb(C̄) is conformal.

(2) Let L be either a Euclidean circle or a Euclidean line in C, and let

T ∈ Möb(C̄). Then T (L) is either a Euclidean circle or a Euclidean line in

C. �

2.1.1. Classification in terms of trace and fixed points

The trace of the Möbius transformation T (z) = az+b
cz+d is tr(T ) := a + d.

Observe that tr(T ) is only defined up to sign; however, tr2(T ) = (a +

d)2 is well-defined and thus yields a function tr2 : PSL(2,C) → C that

is continuous with respect to the natural topology on PSL(2,C), and is

constant on each conjugacy class.

If T ∈ Möb(C̄) is not the identity, then its fixed points are given by

z =
(a− d)±

√
tr2(T )− 4

2c
.

Therefore, T has exactly one fixed point if and only if tr2(T ) = 4; otherwise

it has two.

If T has exactly one fixed point, then it is called parabolic. A parabolic

transformation is conjugate in Möb(C̄) to z → z + 1.

If T has two fixed points then, up to conjugation in Möb(C̄), T (z) = λz

for some λ ∈ C \ {0, 1}. The number λ is called the multiplier of T ; note

that the multiplier is also a conjugacy invariant, for

tr2(T ) = λ+ λ−1 + 2. (2.1)

If |λ| = 1 then T is called elliptic; observe that T is elliptic if and only if

tr2(T ) ∈ [0, 4). Otherwise, T is called loxodromic. In the special case that

λ ∈ R, T is called hyperbolic; observe that T is hyperbolic if and only if

tr2(T ) > 4.
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2.2. Models for hyperbolic geometry.

We will consider two (equivalent) models for plane hyperbolic geometry.

The first is the upper half-plane

H = {x+ iy ∈ C | y > 0},

equipped with the Riemannian metric

ds2
H =

dx2 + dy2

y2
.

The second is the Poincaré disc, namely the open unit disc

D = {x+ iy ∈ C | x2 + y2 < 1}

in the complex plane, equipped with the Riemannian metric

ds2
D =

4(dx2 + dy2)

(1− (x2 + y2))2
.

2.2.1. Hyperbolic distance

Let γ : [a, b] → H be a piecewise differentiable path. The hyperbolic length

of γ is defined as

lH(γ) =

∫
γ

dsH.

Given z, w ∈ H, define the hyperbolic distance between z and w by

dH(z, w) = inf{lH(γ) | γ is a piecewise differentiable path from z to w}

Hyperbolic distance in dD in D is defined in an analogous way. It is an easy

exercise to verify that (H, dH) and (D, dD) are metric spaces.

2.2.2. Möbius transformations act by isometries

Let Möb(H) (resp. Möb(D)) be the subgroup of Möb(C̄) consiting of all

Möbius transformations that preserve H (resp. D). As one may easily verify,

Möb(H) ∼= PSL(2,R) and Möb(D) ∼= PSU(2,C).

Lemma 2.2: Every element of Möb(H) (resp. Möb(D)) is an isometry of

H (resp. D).
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Proof: We prove the result for H, as the one for D is obtained in an

analogous way. Let γ : I → H be a piecewise differentiable path, and let

T (z) =
az + b

cz + d
∈ Möb(H).

Write w = T (z), and observe that

Im(w) =
Im(z)

|cz + d|2
,

where Im(z) denotes the imaginary part of z. Then:

lH(T (γ)) =

∫
T (γ)

|dw|
Im(w)

=

∫
γ

|cz + d|2

Im(z)
· |dz|
|cz + d|2

= lH(γ),

as desired.

2.2.3. The Cayley transformation

The Cayley transformation is the Möbius map

C(z) =
z − i
z + i

∈ Möb(C̄).

It is easy to check that C(H) = D. Using a similar calculation to that of

Lemma 2.2, we obtain:

Lemma 2.3: The Cayley transformation C : H→ D is an isometry. �

2.2.4. Hyperbolic geodesics

A piecewise differentiable path in H or D is said to be geodesic if the length

of any of its segments realizes the distance between the endpoints. The

following gives a full description of geodesics in H and D.

Proposition 2.4: (i) The geodesics in H are either vertical Euclidean lines

or Euclidean semicircles perpendicular to R.

(ii) The geodesics in D are either diameters of D or arcs of Euclidean

semicircles perpendicular to S1.

Proof: (i) Let z, w ∈ H. Suppose first that z, w ∈ iR; thus, up to rela-

belling, z = ip and w = iq where p < q. Let γ : [a, b] → H be a piecewise

differentiable path from z to w, where γ(t) = (x(t), y(t)). Then:

lH(γ) =

∫ b

a

1

y(t)

√(
dx

dt

)2

+

(
dy

dt

)2

dt ≥
∫ b

a

1

y(t)

dy

dt
dt =

∫ q

p

dy

y
= log

(
q

p

)
,
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with equality if and only if γ([a, b]) is the vertical segment from ip to iq.

Now consider arbitrary z, w ∈ H, and let L be either the vertical Eu-

clidean line through z, w (if z, w have the same real part) or the Euclidean

semicircle through z, w and with center in R (if z, w have different real

parts). It is an easy exercise to check that there exists T ∈ Möb(H) such

that T (L) = iR. The result now follows from the above paragraph and

Lemma 2.2.

(ii) The proof for D is a direct consequence of (i), Lemma 2.3 and Propo-

sition 2.1.

2.2.5. The boundary at infinity

Let p < 1. Note that Proposition 2.4 gives that dH(i, pi) = − log(p). In

particular, dH(i, pi) → ∞ as p → 0. For this reason, the set R̄ = R ∪ {∞}
is called the boundary at infinity of H. Similarly, S1 is called the boundary

at infinity of D.

2.2.6. The full isometry group

Denote by Isom+(H) (resp. Isom+(D)) the group of orientation-preserving

isometries of H (resp. D). We have:

Proposition 2.5: Isom+(H) ∼= PSL(2,R) and Isom+(D) ∼= PSU(2,C).

Proof: Again, we prove the result only for H. In view of Lemma 2.2, we

must show that every element of Isom+(H) is a Möbius transformation. Let

F ∈ Isom+(H). Composing with an element of PSL(2,R) if necessary, we

may assume that F fixes two distinct points z1, z2 ∈ iR. Choose a point

w /∈ iR, noting that T (w) lies on the hyperbolic circle Ci of centre zi and

radius dH(zi, w), for i = 1, 2.

Now, it is not difficult to verify (see [24], Ch. 2) that every hyperbolic

circle is also a Euclidean circle. Therefore, C1 and C2 intersect at two

points: one of them is w, and the other one is on the other side of iR from

w. Since F is orientation-preserving, we get that F (w) = w. Therefore, F

is an isometry fixing three points, and hence the identity.

2.2.7. Dynamics of elements of Isom+(H)

Recall the classification of Möbius transformations into elliptic, parabolic

and loxodromic. Since Isom+(H) ∼= PSL(2,R), loxodromic isometries of H
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are all hyperbolic. We now make a few comments on the dynamics of the

different types of isometries:

(i) If T ∈ Isom+(H) is parabolic, then it has exactly one fixed point on R̄.

Thus, up to conjugation in Isom+(H), T (z) = z+a for some a ∈ R; observe

that T leaves invariant every Euclidean line of the form y = constant.

(ii) If T ∈ Isom+(H) is hyperbolic, then it has two fixed points on R̄; the

geodesic between them is called the axis of T . Up to conjugation, T (z) = λz

for some λ ∈ R. The map T acts on its axis as a hyperbolic translation,

with translation distance l = log λ; observe that (2.1) gives that tr2(T ) =

4 cosh2(l/2).

(iii) Finally, if T ∈ Isom+(H) is elliptic, then it has exactly one fixed point

in H. Up to conjugation, T (z) = cos(t)z+sin(t)
sin(t)z+cos(t) , for some t ∈ R.

We refer the interested reader to ([24], Chapter 3) for pictures showing

the dynamics of the different types of elements of Isom+(H).

2.3. Fuchsian groups and fundamental domains

2.3.1. Fuchsian groups

Let Γ be a group acting by homeomorphisms on a metric space X. We say

that Γ acts properly discontinously on X if, for all compact subsets K ⊂ X,

the set

{γ ∈ Γ | γ(K) ∩K 6= ∅}

is finite. We say that Γ acts freely on X if every non-identity element of Γ

acts without fixed points.

We will be interested mainly in the case where X = H and Γ is subgroup

of PSL(2,R) that is discrete with respect to the natural topology inherited

from PSL(2,R). Discrete subgroups of PSL(2,R) are called Fuchsian groups.

We will need the following well-known result; for a proof see ([5], Prop.

B.1.6), for instance.

Proposition 2.6: Let Γ be a subgroup of PSL(2,R). The following condi-

tions are equivalent:

(1) Γ acts freely and properly discontinuously on H.

(2) X/Γ is Hausdorff and the projection X→ X/Γ is a covering map.

(3) Γ is a torsion-free Fuchsian group. �
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2.3.2. Fundamental domains

We now introduce the concept of fundamental domain for the action of a

group on a metric space.

Definition 2.7: (Fundamental domain) Let Γ be a group acting properly

discontinously by homeomorphisms on a metric space X. A fundamental

domain for the action of Γ on X is a closed subset C ⊂ X such that:

(1) The interior int(C) of C is not empty.

(2) If T 6= id then T (int(C)) ∩ int(C) = ∅.
(3) The Γ-translates of C tessellate X; that is,

⋃
T∈Γ

T (C) = X.

As it turns out, every Fuchsian group admits a particularly nice type

of fundamental domain, known as the Dirichlet domain, which we now

describe.

Definition 2.8: (Dirichlet domain) Let Γ be a group acting properly dis-

continously by isometries on a metric space X, and let z0 ∈ X be a point not

fixed by any non-trivial element of Γ. The Dirichlet domain of Γ centered

at z0 is

DΓ(z0) = {x ∈ X | d(x, z0) ≤ d(x, T (z0)),∀T ∈ Γ}.

Proposition 2.9: Let Γ be a Fuchsian group, and let z0 be a point not

fixed by any non-trivial element of Γ. Then DΓ(z0) is a convex fundamental

domain for the action of Γ on H.

Proof: First, DΓ(z0) is closed and convex since it is the intersection of

closed half-planes of H. Moreover, z0 ∈ int(DΓ(z0)) since Γ is discrete.

We now claim that the Γ-translates of DΓ(z0) tessellate H. Let z ∈ H.

Since Γ is discrete, there exists T ∈ Γ such that

d(z, T (z0)) = min
S∈Γ
{d(z, S(z0))}.

Thus T−1(z) ∈ DΓ(z0), and therefore z ∈ T (DΓ(z0)), as desired.

Finally, suppose for contradiction that there exists z ∈ int(DΓ(z0)) and

T 6= Id such that T (z) ∈ int(DΓ(z0)). In particular,

d(z, z0) < d(z, T−1(z0)) = d(T (z), z0)

and

d(T (z), z0) < d(T (z), T (z0)) = d(z, z0),
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which is impossible.

Observe that the fact that Γ acts properly discontinously on H implies

that DΓ(z0) is locally finite, that is, for every compact set K ⊂ H, there are

only finitely many Γ-translates of DΓ(z0) that intersect K; see ([20], Thm.

3.5.1) for details.

Example 2.10: (a) Let T ∈ Möb(H) be a parabolic isometry so, up to

conjugation, T (z) = z + a for some a ∈ R \ {0}. Let Γ = 〈T 〉 and z0 ∈ H.

Then DΓ(z0) = {z ∈ C | Re(z0)− a
2 ≤ Re(z) ≤ Re(z0) + a

2}.

(b) Let Γ = SL(2,Z) and let z0 = 2i, which is not fixed by any element of

Γ. Then DΓ(2i) = {z ∈ H | −1/2 ≤ Re(z) ≤ 1/2, |z| ≥ 1}.

(b) Consider the Euclidean isometries A : (x, y) → (x + 1, y) and B :

(x, y) → (x, y + b), where b > 0. Let G ∼= Z2 be the group generated by A

and B. Then the Dirichlet domain for the action of Γ on Euclidean plane

E2 is generically a hexagon; in the special case when b = 1, it is a square.

2.3.3. The action of a group on a Dirichlet domain

Let Γ be a discrete group acting properly discontinuously by isometries on

X = H or E, and let D be a Dirichlet domain for the action of Γ. We will

assume, for simplicity, that Γ acts freely on X, so that X/Γ is a smooth

surface, and that D is compact, so that D is a finite sided polygon. In

the case when Γ is a Fuchsian group, then the fact that D is compact

implies that Γ has no parabolic elements; see ([20], Thm. 4.2.1). The group

Γ identifies the sides of D in pairs and, in fact, Γ is generated by the (finite)

collection of all side pairings; see ([20], Thm. 3.5.4). Each Γ-orbit of vertices

of D is called a cycle, and the sum of the internal angles at the vertices of

a cycle is always equal to 2π; see ([20], Thm. 3.5.3).

A converse to this situation is described in Poincaré’s Polygon Theorem,

which we now state; for a proof, see ([24], Ch. 7). Again, X = H or E.

Theorem 2.11: (Poincaré) Let P ⊂ X be a compact polygon whose sides

are identified in pairs by isometries of X, and let Γ be the group generated

by those isometries. Suppose that, for each Γ-orbit of vertices of P , the

internal angles at the vertices in that orbit add up to 2π. Then Γ is a

discrete group acting freely and properly discontinously on X; moreover, D

is a fundamental domain for the action.
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3. Hyperbolic structures on surfaces

We refer the reader to the texts [5, 10, 11, 24, 26] for a more detailed discus-

sion on the material presented in this section.

3.1. Definition and examples

Let X denote the hyperbolic plane H, the Euclidean plane E or the unit

sphere S2 in R3.

Definition 3.1: (Geometric structure) Let S be a topological surface. A

geometric structure on S consists of an open cover {Ui}i∈I of S and a

collection {φi}i∈I of maps, with φi : Ui → X, such that

(1) φi is a homeomorphism onto its image, for each i ∈ I, and

(2) if Ui ∩ Uj 6= ∅, the restriction of the transition map

φi ◦ φ−1
j : φj(Ui ∩ Uj)→ φi(Ui ∩ Uj)

to each connected component of φj(Ui∩Uj) is an orientation-preserving

isometry of X.

In the case where X = H (resp. X = E or X = S2), we say that the sur-

face S is equipped with a hyperbolic structure (resp. Euclidean or spherical

structure). In the definition above, each pair (Ui, φi) is called a chart. The

set of all charts is called an atlas of S; note that every atlas is contained

in a unique maximal atlas. Finally, observe that a surface equipped with a

geometric structure supports a natural path-metric, obtained by deeming

each chart map to be an isometry.

Remark 3.2: (Geometric structure on a covering space) Suppose that S

is equipped with a geometric structure {(Ui, φi)}i∈I and let π : S̃ → S

be a covering map; without loss of generality, we assume that Ui is evenly

covered for all i ∈ I. Then S̃ comes equipped with a natural geometric

structure, where the open sets are the preimages of the Ui under π and the

chart maps are the restrictions of φi ◦ π to each of these sets.

A geometric structure on a covering space also induces a geometric

structure on the quotient space; see Examples 3.4 and 3.5 below. From now

on, we will focus our attention mainly on the case X = H.

Remark 3.3: (Hyperbolic structure on a surface with boundary) If S has

boundary, we define a hyperbolic structure with geodesic boundary on S by
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requiring that each of the sets Ui in Definition 3.1 be an open set of a closed

half-plane in H.

Example 3.4: (Hyperbolic structure on a surface of genus g ≥ 2). Let

g ≥ 2 and P be a regular hyperbolic 4g-gon in D with internal angles π/2g.

To see that such polygon exists, consider 4g equispaced geodesic rays in

D emanating from the origin O, as in Figure 1. Consider the hyperbolic

polygon Pt whose vertices are the points of intersection between these rays

and the hyperbolic circle of center O and hyperbolic radius t > 0. As

t increases, the internal angle of Pt decreases from the Euclidean value

(4g − 2)π, down to 0. By continuity, there is a value of t for which the

internal angle is equal to π/2g.

Suppose that the sides of P are identified in pairs by elements of

PSL(2,R) according to the labelling outlined in Figure 1. We see that the

hypotheses of Poincaré’s Polygon Theorem are satisfied, and thus the group

Γ generated by the side pairings is a Fuchsian group acting freely on H; ob-

serve there is only one Γ-orbit of vertices. The quotient space P̄ = H/Γ
is homeomorphic to a closed surface of genus g. We define a hyperbolic

structure on P̄ by a specifying a chart around each point in P̄ ; such charts

are schematically shown in Figure 1 for g = 2, depending on whether a lift

of the point is in the interior of P , on one of the sides of P , or is a vertex

of P . Observe that, since the angle around any vertex of P is π/2g, then

the angle around the corresponding point in P̄ is 2π and thus the chart is

well-defined. Finally, note the natural path-metric on P̄ is complete.

In fact, the previous example is a special case of a more general situation,

as we now explain.

Example 3.5: (Quotient of H by a Fuchsian group) Let Γ be a Fuchsian

group acting freely on H. Let S = H/Γ and let π : H → S be the natural

covering map. We endow S = H/Γ with a hyperbolic structure by specifying

a chart around each point p ∈ S, as follows. Let Up be an evenly covered

open neighbourhood of p, and let fp be a homeomorphism identifying Up
with any of the open sets in H covering Up. The collection {(Up, fp)}p∈S
gives a hyperbolic structure on S; again, the natural path-metric on the

surface is complete.

It is easy to see that the hyperbolic structures on H/Γ given in Examples

3.4 and 3.5 are in fact equivalent.
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Fig. 1. The left figure shows a regular hyperbolic octagon; for exactly one value of the
radius of the shaded circle, the internal angles will be π/4. The sides are identified by

isometries a, b, c, d ∈ PSL(2,R) according to the labelling shown. The quotient surface

H/Γ, where Γ = 〈a, b, c, d〉, is homeomorphic to a closed surface of genus 2, and is
equipped with a complete hyperbolic structure. The schematics of the charts around a

point p are shown in the right figure, depending on whether a lift of p lies in the interior
of the polygon, or in the interior of a side, or is a vertex.

Remark 3.6: (Euclidean structure on a torus) By applying the same rea-

soning as above, we obtain a Euclidean structure on a surface of genus g = 1

by identifying opposite sides of a rectangle in the Euclidean plane E. More

generally, the quotient of E by a discrete group of Euclidean isometries is

naturally equipped with a Euclidean structure.

Remark 3.7: (Geometric structures on closed surfaces) Observe that a

surface equipped with a geometric structure has constant Gaussian curva-

ture. Therefore, a closed surface of genus g ≥ 1 admits a hyperbolic (resp.

Euclidean) structure if and only if g ≥ 2 (resp. g = 1), as follows from

Example 3.4, Remark 3.6 and the Gauss-Bonnet theorem.

3.2. The Cartan-Hadamard Theorem. Developing map and

holonomy

The next result, a special case of the celebrated Cartan-Hadamard Theorem,

asserts that Example 3.5 is the only way of obtaining a surface equipped

with a hyperbolic structure, provided we restrict our attention to complete

structures. We refer the reader to [3, 9, 12] for more general versions of

the Cartan-Hadamard Theorem, and to ([8], Ch. 6) for a discussion on

incomplete hyperbolic structures on surfaces.

Theorem 3.8: (Cartan-Hadamard) Let X be a connected surface equipped

with a hyperbolic structure, and suppose that the natural path-metric on
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X is complete. Then X is isometric to H/Γ, where Γ is a Fuchsian group

acting freely on H.

The rest of this section is devoted to give a sketch of the proof of The-

orem 3.8. The strategy is as follows. First, we will construct an isometry

Dev : X̃→ H,

called the developing map; here X̃ denotes the universal cover of X. The

map Dev will induce an isomorphism

Hol : π1(X)→ Γ,

where Γ is a torsion-free Fuchsian group; the map Hol is called the holonomy

representation of π1(X). Once all this has been established, it will easily

follow that X is isometric to H/Γ.

Next, we explain some of the details, and refer the reader to [5, 11, 24]

for a more thorough discussion; we remark that one obtains a Cartan-

Hadamard Theorem for Euclidean surfaces using the same ideas as below,

with the obvious modifications.

3.2.1. The developing map

Let {(Ui, φi)}i∈I be an atlas defining the hyperbolic structure on X. Fix,

once and for all, a basepoint p ∈ U0. Let X̃ be the universal cover of X,

namely the set of homotopy classes of paths in X that start at p; recall that

X̃ has a natural hyperbolic structure coming from that of X, by Remark

3.2.

Let [γ] ∈ X̃ and choose a representative γ : [0, 1]→ X of [γ]. We cover

γ([0, 1]) with a finite collection {(Ui, φi)}ni=0 of charts as shown in Figure 2;

in particular Ui ∩ Ui+1 is connected. We define the map Dev successively,

as follows. First, set

Dev|(U0∩γ) = φ0|(U0∩γ).

Since U0 ∩ U1, is connected, the definition of hyperbolic structure yields

that φ0 ◦ φ−1
1 |(U0∩U1) = T1 ∈ PSL(2,R). Set

Dev|(U1∩γ) = T1 ◦ φ1|(U1∩γ),

and note Dev is now defined on (U0 ∪ U1) ∩ γ. Repeating this process, we

obtain maps T2, . . . , Tn ∈ PSL(2,R), and define

Dev|(Un∩γ) = T1 ◦ T2 ◦ . . . ◦ Tn ◦ φn|(Un∩γ), (3.1)
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Fig. 2.

noting that Dev is now well-defined on (U0 ∪ . . .∪Un)∩ γ, and thus on the

whole of γ. We set

Dev(γ) = Dev(γ(1)) ∈ H.

At this point, it is straightforward, although not terribly amusing, to show

that Dev(γ) depends only on the initial chart φ0 : U0 → H and the homo-

topy class of γ; this is carefully explained in ([5], Prop. B.1.3), for instance.

Thus we have obtained a well-defined map

Dev : X̃→ H,

which is a local isometry with respect to the natural hyperbolic structure

on X̃ (as we will see, if X is complete then Dev will be a global isometry).

As a consequence, we obtain that any two choices of initial chart produce

developing maps which differ by an element of PSL(2,R).

3.2.2. Two technical lemmas

Having introduced the developing map, we continue towards a proof of

Theorem 3.8. Following the strategy of [5, 24], the proof is based on the two

results we now present.

Lemma 3.9: Suppose X is equipped with a complete hyperbolic structure.

Then its universal cover X̃ is also complete.

Proof: Let (z̃n)n ⊂ X̃ be a Cauchy sequence. As the covering map π :

X̃ → X does not increase distances, then (π(z̃n))n is a Cauchy sequence

and thus converges to a point z ∈ X, since X is complete. Let U be an

evenly covered open neighbourhood of z. Since (z̃n)n is Cauchy, all but
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finitely many elements of (z̃n) belong to exactly one of the preimages Ũ of

U and thus converge to the preimage of z contained in Ũ .

Lemma 3.10: Let X be a surface equipped with a complete hyperbolic

structure. Then, the developing map Dev : X̃ → H is a surjective cover-

ing map.

Proof: Since Dev is a local homeomorphism by construction, it suffices

to prove that Dev satisfies the path-lifting property. This is, we want to

establish that, for all z0 ∈ Dev(X̃), all z̃0 ∈ Dev−1(z0), and all piecewise

differentiable paths γ : [0, 1] → H with γ(0) = z0, there exists a path

γ̃ : [0, 1]→ X̃ such that γ̃(0) = z̃0 and Dev ◦ γ̃ = γ.

Let z0 ∈ Dev(X̃), z̃0 ∈ Dev−1(z0), and γ : [0, 1] → H a piecewise

differentiable path with γ(0) = z0. Consider

t0 = sup
{
t ∈ [0, 1] | ∃γ̃ : [0, t]→ X̃ with γ̃(0) = z̃0 and Dev ◦ γ̃ = γ|[0,t]

}
.

We want to show that t0 = 1. First, note that, since Dev is a local isometry,

then t0 > 0. Consider, for all t < t0, the lift γ̃ : [0, t]→ X̃ of γ : [0, t]→ H
and observe that γ̃ is unique, again because Dev is a local isometry. Let

tn be an increasing sequence converging to t0. Then (γ̃(tn))n is a Cauchy

sequence in X̃; otherwise γ̃([0, t0)) would have infinite length, which is

impossible; see ([5], Prop. B.1.3) for details. Therefore (γ̃(tn))n converges,

by Lemma 3.9, and thus we define γ̃(t0) to be this limit. Finally, since Dev is

an isometry in a neighbourhood of γ̃(t0), it follows that t0 = 1, as claimed.

Therefore, Dev is a covering map.

The fact that we can lift paths from H to X̃ quickly implies that Dev

is surjective. Indeed, let z ∈ H, and choose z0 ∈ Dev(X̃) and a path γ :

[0, 1] → H with γ(0) = z0. Denote by γ̃ : [0, 1] → X̃ the lift of γ. Then

Dev(γ̃(1)) = z, as desired.

Since Dev is a surjective covering map and H is simply-connected, we

deduce that X̃ is homeomorphic to H. This, together with the fact that

Dev is a local isometry, implies:

Corollary 3.11: Let X be a surface equipped with a complete hyperbolic

structure. Then, then universal cover X̃ of X is isometric to H. �

3.2.3. Holonomy

Let X be a surface equipped with a hyperbolic structure, and choose a

basepoint p on X. If we consider closed paths based at p in the construction
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(3.1) of the developing map above, we obtain a map

Hol : π1(X,p)→ PSL(2,R),

defined by Hol([γ]) = T1 ◦ T2 ◦ . . . ◦ Tn ∈ PSL(2,R). By definition, the

map Hol is a homomorphism, and is commonly referred to as the holonomy

representation of π(X, p). Again, Hol only depends on the choice of initial

chart φ0 : U0 → H, and any two choices produce conjugate homomorphisms.

Moreover, we have:

Lemma 3.12: Hol : π1(X,p)→ PSL(2,R) is injective.

Proof: Let [γ] ∈ π1(X, p) and suppose that Hol([γ]) = Id ∈ PSL(2,R).

Then, the developing image of γ is a loop based at p. Since H is simply-

connected, we can find a homotopy between this loop and the trivial loop.

Finally, since Dev is a covering map, we may lift such homotopy to a ho-

motopy between γ and the trivial loop, as desired.

Therefore, the holonomy representation gives an identification of

π1(X, p) with a Fuchsian group Γ = Hol(π1(X,p)). Since π1(X, p) acts

on X̃ freely and properly discontinously, the same holds for the action of

Γ on H, by Proposition 2.6. Therefore, Γ is a torsion-free Fuchsian group,

again by Proposition 2.6.

Proof of Theorem 3.8. Let X be a surface equipped with a complete

hyperbolic structure. By Corollary 3.11, its universal cover X̃ is isometric

to H via the developing map. Moreover, the holonomy map gives an identi-

fication π1(X, p) with a torsion-free Fuchsian group Γ, and thus the result

follows. �

4. Teichmüller space

In this section we introduce the Teichmüller space T (S) of an orientable

surface S of genus g ≥ 1, the space of distinct geometric structures on S. In

order to keep the exposition as simple as possible, we restrict our attention

to closed surfaces only. In this case, Remark 3.7 gives that S carries a

hyperbolic (resp. Euclidean) structure if and only if g ≥ 2 (resp. g = 1).

In addition, we will focus solely on topological aspects of Teichmüller

space, with the ultimate goal of proving, in Section 5, that the natural action

of the mapping class group on Teichmüller space is properly discontinuous.

In particular, we will not make reference to the various different metrics

on Teichmüller space. We refer the reader to [1, 5, 13, 14, 16, 17], and the

references therein, for a detailed exposition of Teichmüller spaces.
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4.1. Two definitions

We now give two equivalent definitions of the Teichmüller space of a surface

S of genus g ≥ 2, one as the set of distinct hyperbolic structures on S and

the other as the set of conjugacy classes of discrete faithful representations

of π1(S) into PSL(2,R).

Definition 4.1: (Teichmüller space of a hyperbolic surface, I) Let S be a

closed topological surface of genus g ≥ 2. The Teichmüller space T (S) of S

is

T (S) = {(X, f)}/ ∼,

where

• X is S equipped with a hyperbolic structure,

• f : S → X is a homeomorphism, called the marking, and

• (X, f) ∼ (Y, g) if and only if there is an isometry ι : X → Y such that

ι ◦ f is homotopic to g.

In order to reduce notation, we will denote points [(X, f)] ∈ T (S) simply

by X whenever we do not need to make explicit reference to the marking.

We now present an equivalent definition of Teichmüller space which, in

particular, will allow us to define a natural topology on T (S).

Definition 4.2: (Teichmüller space of a hyperbolic surface, II) Let S be a

closed surface of genus g ≥ 2. The Teichmüller space of S is

T (S) = DF(π1(S),PSL(2,R))/PSL(2,R),

the set of discrete, faithful representations of π1(S) into PSL(2,R), up to

conjugation.

The set DF(π1(S),PSL(2,R))/PSL(2,R) is called the PSL(2,R)-

character variety of π1(S). The equivalence of Definitions 4.1 and 4.2 is

essentially contained in the statement of Theorem 3.8. Indeed, a point

[(X, f)] ∈ T (S) determines a conjugacy class of faithful representations

of π1(X) ∼= π1(S) into PSL(2,R) via the holonomy map. Conversely, given

ρ ∈ DF(π1(S),PSL(2,R)), then X = H/ρ(π1(S)) comes equipped with

a natural hyperbolic structure, by Example 3.5. Now, ρ induces a homo-

topy equivalence h : S → X which is then homotopic to a homeomorphism

f : S → X, the desired marking. Finally, any two conjugate representations

produce isometric surfaces.
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Remark 4.3: (Topology on T (S)) Observe that, in light of Definition 4.2,

T (S) carries a natural topology as a quotient of PSL(2,R)2g, since

DF(π1(S),PSL(2,R)) ⊂ Hom(π1(S),PSL(2,R)) = PSL(2,R)2g.

Example 4.4: (Teichmüller space of the torus) If S has genus 1, we de-

fine T (S) as the set of distinct Euclidean structures of unit area on S,

by performing the obvious changes in Definition 4.1. By the same rea-

soning as above, we may identify T (S) with the set of marked torsion-

free Euclidean lattices, modulo Euclidean isometries and scalings; the term

“marked” means that every lattice has a specified ordered pair of genera-

tors. Up to isometry and scaling, we can arrange for one of the generators

of the lattice to be 1, and the other one to lie above the x-axis. In this

way have identified T (S) with the upper-half plane H. For our purposes,

this is just an identification as topological spaces; that said, Teichmüller

spaces carry a natural metric, the so-called Teichmüller metric, for which

the Teichmüller space of the torus, equipped with this metric, is isometric

to the hyperbolic plane (H, dH).

4.2. Fenchel-Nielsen coordinates.

For a general surface S, the definition of Teichmüller space does not give

a very clear insight on the structure of T (S). This will change once we

introduce the so-called Fenchel-Nielsen coordinates for Teichmüller space.

In terms of these coordinates, a point X ∈ T (S) will correspond to 6g − 6

real numbers; half of these correspond to the lengths, measured in X, of the

curves in a fixed pants decomposition, and the other half correspond to the

twist with which different pants have been glued to obtain the structure X.

Before we define these coordinates, we need to introduce a few notions.

4.2.1. Length functions.

Again, S denotes a closed surface of genus g ≥ 2. Let γ be a homotopically

non-trivial simple closed curve on S, and thus a non-trivial element of π1(S).

We claim that, given X ∈ T (S), there exists a unique simple closed

geodesic in X that is homotopic to γ. To see this, we first regard π1(X) ∼=
π1(S) as a subgroup of PSL(2,R), using the holonomy map. Under this

identification, γ corresponds to a hyperbolic isometry γ̄; otherwise it would

be elliptic, which is impossible since X is a surface; or parabolic, which is

also impossible since parabolic isometries have zero translation distance and

X is compact. Now, γ is homotopic to the simple closed geodesic contained
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γ

γ

Fig. 3. Two different points in the Teichmüller space of a surface of genus 2

in projection of the axis of γ̄. The uniqueness of the simple closed geodesic

is obtained along similar lines; see Prop. 1.3 of [13].

Let C(S) be the set of homotopy classes of simple closed curves on S. For

simplicity, we will refer to the elements of C(S) simply as curves, and we will

often blur the distinction between a curve and any of its representatives.

Given γ ∈ C(S), the length function of γ is the function

l·(γ) : T (S)→ R+

given by

l[(X,f)](γ) = lengthX(f(γ)),

where lengthX(f(γ)) denotes the length of the unique geodesic representa-

tive of f(γ) in X. For simplicity, we will denote l[(X,f)](γ) simply by lX(γ).

Example 4.5: If X,Y ∈ T (S) are such that {lX(γ)}γ∈C(S) 6=
{lY (γ)}γ∈C(S), then X 6= Y . In particular, the two surfaces in Figure 3

represent different different points in the Teichmüller space of the closed

surface of genus 2.

As we will see, length functions are central to the definition of Fenchel-

Nielsen coordinates; in addition, they are used to define the so-called

Thurston’s compactification of T (S), see the article [23] in this volume.

Let X ∈ T (S) and γ ∈ C(S). Let ρ : π1(X) → PSL(2,R) be the

holonomy representation of π1(X), noting that ρ(γ) is a hyperbolic element

of PSL(2,R). Recall from (2.1) that the trace and translation distance of

ρ(γ) are related by tr2(ρ(γ)) = 4 cosh2( l(ρ(γ))
2 ). Also, note that l(ρ(γ)) =

lX(γ), and so we deduce that length functions are continuous:

Lemma 4.6: (Length functions are continuous) For every γ ∈ C(S), the

function l·(γ) : T (S)→ R+ is continuous. �
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4.2.2. Multicurves and pants decompositions.

Given two curves γ, γ′ ⊂ S, the intersection number of γ and γ′, denoted

by i(γ, γ′), is the minimal cardinality of γ ∩ γ′ among all representatives

of γ and γ′. If i(γ, γ′) = 0, we say that γ and γ′ are disjoint. We say that

two curves γ, γ′ fill the surface if S \ (γ ∪ γ′) is a union of topological disks;

equivalently, if any non-trivial curve on S intersects at least one of γ or γ′.

A multicurve on S is a collection of pairwise distinct, pairwise disjoint

curves; such a collection is necessarily finite, and consists of at most 3g− 3

curves. A multicurve µ that is maximal with respect to inclusion is called

a pants decomposition of S; note that S \µ has exactly 2g− 2 components,

and that the closure of each of them is homeomorphic to a sphere with

three boundary components, or pair of pants.

4.2.3. The Teichmüller space of a pair of pants.

We start by stating a well-known result in hyperbolic geometry, namely

that a right-angled hyperbolic hexagon is determined by the lengths of

any three non-consecutive sides. By a marked hyperbolic hexagon H we

mean a hexagon in H, together with a distinguished vertex, and a labelling

s1, . . . , s6 of the sides of H, in such way that the sides occur in that or-

der when travelling counterclockwise along H from the distinguised vertex.

Denote by li the hyperbolic length of the side si. We have:

Lemma 4.7: Let a, b, c > 0. There exists a marked right-angled hyperbolic

hexagon H ⊂ H such that l1 = a, l3 = b, and l5 = c. Moreover, any two

such marked hexagons are isometric via an element of PSL(2,R) sending

one distinguished vertex to the other.

The proof of Lemma 4.7 is an exercise in hyperbolic geometry; see ([13],

Prop. 10.4) for details. Armed with Lemma 4.7, we are now in a posi-

tion to understand the Teichmüller space T (P) of a pair of pants P; the

definition of T (P ) is analogous to Definition 4.1, now considering hyper-

bolic structures with geodesic boundary, and requiring the isometry and

the homotopies to fix the boundary pointwise. Denoting the three bound-

ary components of P by γ1, γ2, γ3, we have:

Lemma 4.8: The map

F : T (P)→ R3
+,

given by F (X) = (lX(γ1), lX(γ2), lX(γ3)), is a homeomorphism.
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Proof: (Sketch) (i) F is onto: Let (a, b, c) ∈ R3
+. By Lemma 4.7, up to the

action of PSL(2,R) there exists a unique marked right-angled hyperbolic

hexagonH such that s1, s3 and s5 have length a/2, b/2 and c/2, respectively.

Now, glue two copies of H along s2, s4, s6, obtaining a hyperbolic structure

with geodesic boundary on P, such that the lengths of the three boundary

components are equal to a, b, c, respectively.

(ii) F is injective: Consider X ∈ T (P) and let F (X) = (a, b, c) ∈
R3

+. For each i 6= j there exists a unique geodesic arc Aij from γi to γj ,

perpendicular to both γi and γj . Then X \ (A12 ∪ A23 ∪ A13) has two

connected components, and the closure of each is a right-angled hyperbolic

hexagon. Since a, b, c are fixed, we know the lengths of three non-consecutive

sides of each hexagon. Then, by Lemma 4.7, each hexagon is determined

up to isometry and, therefore, so is the hyperbolic structure on X.

(iii) F is continuous. Finally, to see that F is continuous one first needs

to modify Definition 4.2 to accommodate for surfaces with boundary. Once

this is done, the continuity of F follows immediately from the definition;

see ([13], Prop. 10.4) for details.

4.2.4. The coordinates

Let S be a closed orientable surface of genus g ≥ 2. We want to define a

homeomorphism

F : T (S)→ R3g−3
+ × R3g−3.

Fix a pants decomposition γ1, . . . , γ3g−3 on S, and fix an orientation for each

of the curves. Let X ∈ T (S). The first 3g−3 coordinates of F (X), known as

the length parameters of X, are simply the lengths lX(γ1), . . . , lX(γ3g−3) in

X of the curves γi. The other 3g−3 coordinates τ1(X), . . . , τ3g−3(X), known

as the twist parameters of X, are slightly more complicated. There are many

(equivalent) ways of defining them; see, for instance, [5, 6, 16, 17, 26]. One

way to do it is as follows:

Each of the curves γi is contained in a unique component Si of

X \ (
⋃
j 6=i γj) whose closure is homeomorphic to either a torus with one

boundary component, or a sphere with four boundary components. Choose

a curve βi that is contained in Si and intersects γi minimally; see Figure 4.

In addition, in each pair of pants of Si \ γi we consider the unique geodesic

arc that is entirely contained in that pair of pants, has endpoints on γi
and is perpendicular to γi. Denote by (Aij)j the collection of arcs obtained

in this way, observing that (Aij)j has exactly one element if Si is home-
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Fig. 4. Left and centre: A curve βi ⊂ Si intersecting γi minimally, depending on the

two possibilities for Si. Right: The arc Ai when Si is homeomorphic to a torus with one

boundary component.

omorphic to a torus with one boundary component, and that it has two

otherwise; see Figure 4 for an example of the former case.

Choose a basepoint p ∈ γi ∩Ai1, and observe that π1(Si, p) is generated

by elements that have representatives which are entirely contained in γi ∪
(∪jAij). Therefore, we may homotope βi onto a curve β′i contained in γi ∪
(∪jAij); moreover, by tightening β′i if necessary, we may assume that β′i
does not backtrack along γi. Then define τi(X) as the signed length of the

segment of β′i that runs along γi and contains p; the sign is positive if β′i
runs along γi in the sense given by the fixed orientation on γi, and negative

otherwise.

Once we have defined Fenchel-Nielsen coordinates, we may state our

promised theorem:

Theorem 4.9: The map

F : T (S)→ R3g−3
+ × R3g−3,

given by

F (X) = (lX(γ1), . . . , lX(γ3g−3), τ1(X), . . . , τ3g−3(X)) ,

is a homeomorphism.

Proof: The map F is continous since it is defined in terms of length func-

tions, which are continuous by Lemma 4.6. Also, F is bijective because it

admits an inverse, which may intuitively be described as follows: given a

tuple

(l1, . . . , l3g−3, τ1, . . . , τ3g−3) ∈ R3g−3
+ × R3g−3,
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one first constructs 2g − 2 hyperbolic pairs of pants whose bounday com-

ponents have length prescribed by the li, and then one glues the pairs of

pants along the boundaries according to the twist parameters τi; see ([13],

Thm. 10.6) for details.

5. Mapping class groups

In this section we introduce the mapping class group of a surface and discuss

some of its elements. We then describe how the mapping class group acts

on Teichmüller space, and prove that this action is properly discontinuous.

We refer the reader to [13, 14, 18] for a thorough discussion on mapping

class groups.

5.1. Definition and examples

Let S be an orientable surface of genus g ≥ 1. Again, for simplicity, we

restrict our attention to the case where S is closed.

Definition 5.1: The mapping class group Mod(S) of S is the group of

homotopy classes of orientation-preserving homeomorphisms of S; in other

words,

Mod(S) = Homeo+(S)/Homeo0(S),

where Homeo0(S) denotes the connected component of Homeo+(S) con-

taining the identity. Elements of Mod(S) are called mapping classes. We

will also need to consider the extended mapping class group Mod±(S), that

is, the group of all homeomorphisms of S up to homotopy.

Example 5.2: (Mapping class group of the torus.) If S is a torus, then

Mod±(S) ∼= GL(2,Z). Indeed, given a homeomorphism g : S → S, let g∗ ∈
GL(2,Z) be the induced automorphism of π1(S) ∼= Z2. Now, homotopic

homeomorphisms induce conjugate automorphisms, and thus we have a

homomorphism G : Mod±(S) → GL(2,Z) given by G([g]) = [g∗]. The

homomorphism G is clearly surjective; also, if [g∗] is the identity, then g

is homotopic to the identity and so G is also injective. Using the same

reasoning, plus the fact that orientation-preserving homeomorphism must

preserve algebraic intersection number, we obtain that Mod(S) ∼= SL(2,Z).

The example above is a particular instance of a general result, known as

the Dehn-Nielsen-Baer Theorem. This result, which we state next, asserts

that, if S is closed, the outer automorphism group Out(π1(S)) of π1(S)
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is isomorphic to the extended mapping class group Mod±(S). The proof

follows an argument similar to the one for the torus, but a substantial

amount of extra work is required; see ([13], Thm. 8.1).

Theorem 5.3: (Dehn-Nielsen-Baer) Let S be a closed surface of genus

g ≥ 1. Then Mod±(S) ∼= Out(π1(S)). �

5.1.1. Examples of mapping classes

We now give some examples of mapping classes:

Example 5.4: (Finite order.) If ψ : S → S is a finite order homeomor-

phism, then its homotopy class [ψ] is a finite order mapping class. Con-

versely, it is not difficult to see that every finite order mapping class is

represented by a finite order homeomorphism; essentially, since Teichmüller

space is contractible, every mapping class of finite order must have a fixed

point, see ([13], Thm. 7.1) for details. More generally, a celebrated result of

Kerkchoff [22] states that every finite subgroup of Mod(S) is realized by a

finite group of surface homeomorphisms.

Example 5.5: (Dehn twist.) Consider the annulus A = ([0, n]× [0, 1])/ ∼,

where (0, y) ∼ (n, y). Let T : A → A be the affine homeomorphism of A

that takes the vector (0, 1) to the vector (n, 1), so

T =

(
1 n

0 1

)
.

Let γ ∈ C(S) and let Nγ be a regular neighbourhood of γ. Choose an

orientation-preserving homeomorphism h : A → Nγ . The right Dehn twist

tγ about γ is defined as

tγ(x) =

{
hTh−1(x), x ∈ Nγ

x, x /∈ Nγ

Observe that tγ is only well-defined as a mapping class.

One of the many reasons why Dehn twists constitute an important type

of mapping class is because they generate the mapping class group. In fact,

one has more:

Theorem 5.6: (Dehn-Lickorish.) Mod(S) is generated by finitely many

Dehn twists.
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We refer the reader to ([13], Ch. 4) for a proof of Theorem 5.6, and for

explicit examples of Dehn twists that generate Mod(S).

We now introduce another important type of mapping classes, namely

pseudo-Anosov mapping classes, by means of an example due to Thurston

[25].

Example 5.7: (Pseudo-Anosov.) Let α and β be two curves that fill S,

and choose representatives of α and β that realize i(α, β). Since α and β fill

S, every connected component of S \ (α∪ β) is a topological disk. We thus

obtain a cell decomposition of S whose vertices are precisely the i(α, β)

points of intersection between α and β, and whose 1-cells are contained in

α ∪ β.

Now consider the dual cell complex D of this cell decomposition. The

complex D is also a cell decomposition of S, whose 2-cells correspond pre-

cisely to the i(α, β) points of intersection of α and β. By deeming each 2-cell

of D to be a Euclidean square, we obtain a singular Euclidean structure on

S: away from the vertices of D the metric is locally Euclidean, and at the

vertices of D there are cone singularities, each with cone angle kπ for some

k ≥ 2: this is explained in more detail in Leininger’s article [23].

We choose geodesic representatives of α and β in this singular Euclidean

structure, so that α and β bisect each square through the midpoints of

parallel edges, and intersect each other at the centre of each square. See

Figure 5 for a example on a closed surface of genus 2.

Now, the Dehn twists tα and tβ act as affine transformations of this

singular Euclidean structure, namely by the matrices

tα =

(
1 n

0 1

)
and tβ =

(
1 0

−n 1

)
,

where n = i(α, β). Therefore

tαt
−1
β =

(
1 + n2 n

n 1

)
.

The matrix of tαt
−1
β has two real eigenvalues λ, λ−1 6= 1. The correspond-

ing eigenvectors are orthogonal, and thus determine a pair of orthogonal

singular foliations of the surface, with singularities at the vertices of D;

again, see Leininger’s article [23] for a thorough explanation of this. Now,

tαt
−1
β preserves these foliations, and expands along one by a factor of λ and

contracts along the other by a factor of λ−1.
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Fig. 5. Top: Two curves α and β that fill a genus 2 surface S; here i(α, β) = 6. Bottom:

The dual cell decomposition of S determined by α and β. We obtain S by gluing the top

and bottom of the rectangle, and then the vertical sides according to the labelling given.

As mentioned before, the mapping class tαt
−1
β is an example of a pseudo-

Anosov mapping class. In general, a pseudo-Anosov mapping class comes

equipped with a pair of orthogonal singular foliations of the surface (see

Leininger’s article [23] for a detailed exposition of foliations on surfaces),

and expands along one by a fixed factor λ and contracts along the other by

a factor of λ−1. It is not difficult to see that, as a consequence, a pseudo-

Anosov mapping class does not fix any non-trivial simple closed curves on

S.

Nielsen-Thurston’s classification of mapping classes. A mapping

class φ may fix a non-trivial multicurve on the surface (e.g. a Dehn twist)

or it may not (e.g. a pseudo-Anosov mapping class). In the former case, φ

is said to be reducible; in the latter case, φ is called irreducible. Observe

that a finite order mapping class may be reducible or irreducible; see ([13],

Ch. 13.2.2) for specific examples. The celebrated Nielsen-Thurston classi-

fication of elements of Mod(S) asserts that every irreducible mapping class

of infinite order is pseudo-Anosov. Namely:

Theorem 5.8: (Nielsen-Thurston classification) Let φ ∈ Mod(S). Then φ

is either periodic, reducible or pseudo-Anosov.
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We point the reader to [13, 14] and the references therein for a detailed

exposition on the Nielsen-Thurston classification of mapping classes.

Using the Nielsen-Thurston classification, one may give a complete de-

scription of the structure of a general mapping class, as we now briefly ex-

plain; see ([13], Ch. 13) for more details. A reduction system for φ ∈ Mod(S)

is a multicurve µ ⊂ S such that φ(µ) = µ. Now, φ fixes a canonically defined

multicurve µφ on S, namely the intersection of all maximal (with respect to

inclusion) reduction systems for φ; following [7], the multicurve µφ is called

the canonical reduction system of φ. The mapping class φ may permute the

elements of µφ, as well as the connected components of S \ µφ. However,

there exists n ∈ N such that φn does not permute the components of µφ or

S \ µφ; observe that n is uniformly bounded above in terms of the genus

of S. Then, φn acts as a power of a Dehn twist about each component of

µφ , and the restriction of φn to each connected component S′ of S \ µφ is

either the identity or a pseudo-Anosov mapping class of Mod(S′).

5.2. The action of Mod(S) on T (S)

The mapping class group acts naturally on Teichmüller space, namely if

ψ ∈ Mod(S) and [(X, f)] ∈ T (S) then ψ ([(X, f)]) = [(X, f ◦ g−1)],

where g denotes any representative of ψ. In terms the character variety

DF (π1(S),PSL(2,R)), the action of Mod(S) on T (S) is given by Theo-

rem 5.3. As mentioned above, the main goal of this section is to prove the

following result:

Theorem 5.9: Mod(S) acts on T (S) properly discontinuously.

Proof: Suppose, for contradiction, that there exist a compact set K ⊂
T (S) and a sequence (ψn)n of distinct elements of Mod(S) such that

ψn(K) ∩K 6= ∅, for all n ∈ N.

Thus, there exists a sequence (Xn)n of elements of K such that ψn(Xn) ∈ K
for all n ∈ N. Let α and β be two curves that fill S. On the one hand, Lemma

4.6 implies that there exists R = R(K) > 0 such that lα(X) + lβ(X) ≤ R

for all X ∈ K. On the other hand, we will show that, up to relabelling α

and β,

lim
n→∞

lψ−1
n (α)(Xn) =∞.

Having showed this, we will obtain the desired contradiction since, by def-

inition, lψ−1
n (α)(Xn) = lα(ψn(Xn)).
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Claim 1. At least one of (ψ−1
n (α))n and (ψ−1

n (β))n has a non-constant

subsequence.

Proof of Claim 1. Indeed, suppose this were not the case. Then, up to

taking a subsequence, there are simple closed curves α′ and β′ on S such

that ψ−1
n (α) = α′ and ψ−1

n (β) = β′ for all n. Therefore, up to the action of

Mod(S), we may assume that ψ−1
n (α) = α and ψ−1

n (β) = β for all n. Now,

α and β fill S, and so each component of S \ (α ∪ β) is a topological disk.

Since ψn fixes both α and β, its action on S is determined by the induced

permutation on the set of disks of S \ (α ∪ β). As S is compact, there are

only finitely many such disks, and we have a contradiction to the ψn being

pairwise distinct. Thus our claim follows.

Hence, up to relabelling and extracting a subsequence, we may assume

that (ψ−1
n (α))n is a sequence of distinct curves on S; in order to simplify

notation, we will write αn = ψ−1
n (α). Next, we claim:

Claim 2. There exists a pants decomposition P of S such that i(αn, γ)→∞
for some γ ∈ P .

Proof of Claim 2. Choose any pants decomposition Q and suppose that, for

all γ ∈ Q, i(αn, γ) is uniformly bounded. Therefore the number of arcs of αn
in the complement of Q is bounded independently of n. As a consequence,

the curves αn differ only up to Dehn twisting about some component of Q;

more formally, again up to extracting a subsequence, there exists a simple

closed curve α′ on S such that αn = Tn(α′), for some Tn ∈ TQ, the subgroup

of Mod(S) generated by the Dehn twists on the components of Q. As the αn
are pairwise distinct, then Tn 6= Tm for n 6= m; moreover, up to extracting

a subsequence, there exists a curve γ′ ∈ Q such that every Tn is supported

on a submulticurve of Q containing γ′. Let γ be a curve in S − (Q − γ′)
such that either i(γ, γ′) = 1 if S − (Q − γ′) contains a one-holed torus,

or i(γ, γ′) = 2 if S − (Q − γ′) contains a four-holed sphere; compare with

Figure 4, where βi and γi play the role of γ and γ′ respectively. Setting

P = (Q− γ′) ∪ γ, we obtain the desired result.

Continuing with the proof of the main result, we may choose a curve γ

on S such that i(αn, γ)→∞, by Claim 2. Now, there exists ε = ε(K) > 0

such that, for all X ∈ K, the ε-neighborhood of γ in X is an embedded

annulus in X; this may be seen explicitly by considering the construction

of a hyperbolic pair of pants from hyperbolic hexagons and using that K

is compact, and is also an easy consequence of the Collar Lemma of Keen
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[21] and Halpern [15]. Since Xn ∈ K for all n, we have

lψ−1
n (α)(Xn) ≥ ε · i(ψ−1

n (α), γ)→∞,

which gives the desired contradiction. This finishes the proof of Theorem

5.9.
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