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Abstract. We prove that every non-constant holomorphic mapMg,p →
Mg′,p′ between moduli spaces of Riemann surfaces is a forgetful map,
provided that g ≥ 6 and g′ ≤ 2g − 2.
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Let Mg,p be the moduli space of Riemann surfaces of genus g with p
labelled marked points. Moduli space has a natural structure as a complex
orbifold. In this paper we study holomorphic maps, in the category of
orbifolds, between distinct moduli spaces. Examples of such maps are the
so-called forgetful maps [7, 10]: given (i1, . . . , ip′) with ij ∈ {1, . . . , p} and
ij 6= ik for j 6= k, set

(1.1) Mg,p →Mg,p′ , (X,x1, . . . , xp) 7→ (X,xi1 , . . . , xip′ ).

We prove that under suitable genus bounds, there are no other non-constant
holomorphic maps:

Theorem 1.1. Suppose that g ≥ 6 and g′ ≤ 2g − 2. Every non-constant
holomorphic map Mg,p →Mg′,p′ is a forgetful map.

As a direct consequence of Theorem 1.1 we obtain:

Corollary 1.2. Suppose that g ≥ 6 and g′ ≤ 2g − 2. If there is a non-
constant holomorphic map Mg,p →Mg′,p′, then g = g′ and p ≥ p′. �

Theorem 1.1 remains true under slightly more generous conditions - com-
pare with the discussion at the end of section 6. On the other hand, some
genus bounds are necessary for Theorem 1.1 to hold. For instance, it follows
from [2] that for all g ≥ 2 there are g′ > g and a holomorphic embedding
Mg,0 ↪→Mg′,0.

Moduli space is not compact, but a natural compactification M̄g,p, a pro-
jective variety, was constructed in [9] by Deligne and Mumford. Morphisms
between Deligne-Mumford compactifications have been studied by several
authors (see for example [8, 14]). Notice that in Theorem 1.1 we assume nei-
ther that the holomorphic maps in question extend to the Deligne-Mumford
compactification, nor that they are surjective or have connected fibers.

Juan Souto has been partially supported by NSERC Discovery and Accelerator Sup-
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We sketch briefly the proof of Theorem 1.1. Since we are working in the
category of orbifolds, every continuous map f : Mg,p → Mg′,p′ induces a
homomorphism f∗ : Mapg,p → Mapg′,p′ between the associated mapping
class groups. In [3] we classified all homomorphisms between mapping class
groups under the genus bounds in Theorem 1.1; it follows easily from this
classification that f is either homotopically trivial or homotopic to a forgetful
map h. The following result, the main technical observation of this note,
yields immediately that, if f is holomorphic, then f = h unless f is constant.

Proposition 1.3. Let M → Mg,p and N → Mg′,p′ be finite covers and
suppose that f1, f2 : M → N are homotopic holomorphic maps. If f1 is not
constant, then f1 = f2.

To prove Proposition 1.3 we proceed as follows. Endowing the target N
with the Weil-Petersson metric and the domain M with McMullen’s Kähler
hyperbolic metric [19], we derive from a result of Royden [21] that the maps
f1, f2 have finite energy. Let (ft)t∈[1,2] be the straight homotopy between f1
and f2, and note that the energy function t 7→ E(ft) is convex because the
Weil-Petersson metric is negatively curved. Proposition 1.3 follows easily
once we prove that E(ft) attains its minimum at t ∈ {1, 2}. To see that
this is the case, we adapt an argument due to Eells-Sampson [12], who
derived from a version of Wirtinger’s inequality and Stokes’ theorem that
holomorphic maps between Kähler manifolds are harmonic, meaning that
they minimize energy for every deformation with compact support. A priori,
the straight homotopy (ft) does not have compact support and so we have
to control the boundary terms that appear when applying Stoke’s theorem
- this is what we do.

The content of this paper was originally included in our paper [3]. Fol-
lowing the suggestion of the journal and the referee, we decided to rewrite
it and present Theorem 1.1 independently.

Acknowledgements. This paper was written during the program “Auto-
morphisms of Free Groups: Algorithms, Geometry and Dynamics” at the
CRM, Barcelona. We would like to thank the organizers of the program, as
well as to express our gratitude to the CRM for its hospitality.
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Throughout this paper we make use of standard facts about Teichmüller
spaces and mapping class groups. We refer to [13, 15, 16, 20] for an extensive
treatment of these subjects, and to [6] for a nice survey.

Let Sg,p be the closed surface of genus g with p distinct labeled marked
points. The mapping class group Mapg,p is the group of isotopy classes
of orientation preserving self-homeomorphisms of Sg,p fixing each marked
point. It acts discretely on Teichmüller space and this action preserves the
standard complex structure on Tg,p (see [1]). Moduli space is the complex
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orbifold

Mg,p = Tg,p/Mapg,p

We stress that we consider Mg,p always as an orbifold - in a language that
we are not going to use, Mg,p is the moduli stack of algebraic curves of
genus g with p points labelled. In particular, maps and covers are taken in
the category of orbifolds. For instance, for every continuous map

f :Mg,p →Mg′,p′

there are a homomorphism

f∗ : Mapg,p → Mapg′,p′

and a continuous f∗-equivariant map

f̃ : Tg,p → Tg′,p′

such that the following diagram commutes:

Tg,p

��

f̃ // Tg′,p′

��
Mg,p

f //Mg′,p′

The homomorphism f∗ and the lift f̃ are unique up to simultaneous conju-
gation by a mapping class.

Example 1. For the forgetful map f : Mg,p → Mg,p′ defined in (1.1), the

lift f̃ : Tg,p → Tg,p′ is given by the same formula, and the homomorphism
f∗ : Mapg,p → Mapg,p′ is the one given by forgetting the marked points

{x1, . . . , xp} \ {xi1 , . . . , xip′} [3, 13]. In fact, both f and f̃ are holomorphic

fiber bundles, and the long exact sequence of homotopy groups correspond-
ing to the fiber bundle f yields the Birman exact sequence for f∗.

The above discussion amounts to saying that Teichmüller space is the
(orbifold) universal cover of moduli space. In fact, more is true: Teichmüller
space is a classifying space for proper actions E(Mapg,p) of the mapping class
group. In particular, the homotopy class of f is determined by f∗. We give
a simple proof of this fact. Suppose that

f, h :Mg,p →Mg′,p′

have lifts f̃ , h̃ : Tg,p → Tg′,p′ that are equivariant under the same homomor-
phism ρ : Mapg,p → Mapg′,p′ . For each X ∈ Tg,p let γX : [0, 1] → Tg′,p′
be the unique Weil-Petersson (or Teichmüller) geodesic with γX(0) = f̃(X)

and γX(1) = h̃(X). The uniqueness of γX implies that the map

(2.1) F : [0, 1]× Tg,p → Tg′,p′ , F (X, t) = γX(t)

is continuous and ρ-equivariant, and thus descends to a homotopy between
f and h.
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A key ingredient in the proof of Proposition 1.3 is the existence of a com-
pact exhaustion ofM(X) that behaves well with respect to the Teichmüller
metric dT; see [15, 16] for a discussion of this metric.

Proposition 3.1. There are c > 0 and a collection {Kn}n∈N of compact
subsets of Mg,p with the following properties:

(1) Mg,p =
⋃

n∈NKn, and Kn ⊂ Kn+1 for all n,
(2) volT(∂Kn) ≤ ce−n for all n, and
(3) Kn is contained within dT-distance c+ n of K0 for all n.

In the statement of Proposition 3.1, volT(·) denotes the co-dimension one
dT-volume.

The key tool of the proof of Proposition 3.1 is a result due to Royden [21]
asserting that the Teichmüller metric dT agrees with the Kobayashi metric of
Tg,p. Recall that if M is a complex manifold, the Kobayashi pseudometric
[18] is the largest pseudometric on M such that every holomorphic map
D → M is 1-Lipschitz; here D is the unit disk in C endowed with the
Poincaré metric.

Remark. In general, holomorphic maps between complex manifolds endowed
with the Kobayashi pseudometric are 1-Lipschitz. Thus it follows from Roy-
den’s theorem that holomorphic maps between Teichmüller spaces equipped
with the Teichmüller metric are 1-Lipschitz.

Proof. To simplify notation, we writeM =Mg,p and let M̄ be its Deligne-
Mumford compactification. Let also D∗ and D be, respectively, the punc-
tured and unpunctured open unit disks in C endowed with their complete
hyperbolic metrics.

By a result of Wolpert [23], every point in M̄ \M has a neighborhood Ū
in M̄ whose intersection U = Ū ∩M with moduli space is bi-holomorphic
to

U ' ((D∗)k × Dd−k)/G

where k ≥ 1, d = dimCM = 3g − 3 + p, and G is a finite group. Let dH be
the distance on U induced by the product of hyperbolic metrics.

Let D0 ⊂ D and D∗0 ⊂ D∗ be, respectively, the disk and punctured disk of
Euclidean radius 1

2 , and denote by D∗n ⊂ D∗0 the punctured disk such that
the hyperbolic distance between ∂D∗0 and ∂D∗n is equal to n. We set

W k
n = (D∗n ×D∗0 × · · · ×D∗0)∪ k. . . ∪(D∗0 × · · · ×D∗0 ×D∗n) ⊂ (D∗0)k

and

Un = (W k
n ×Dd−k

0 )/G ⊂ U
By construction ∂Un is at dH-distance n from ∂U0 and its co-dimension one
volume decreases exponentially: volH(∂Un) ' e−n.
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Since M̄ \M is compact, we can pick finitely many sets U1, . . . , U r such
that M\∪iU i

0 is compact. For n ∈ N we set

Kn =M\∪iU i
n

By construction, Kn is compact, M = ∪nKn, and Kn ⊂ Kn+1 for all n. In
other words, {Kn}n∈N satisfies (1).

To prove (2), note that Royden’s theorem [21] implies that the inclusion

(U i, dH) ↪→ (M, dT)

is 1-Lipschitz for all i. In particular we have

volT(∂Kn) ≤
r∑

i=1

volT(∂U i
n) ≤

r∑
i=1

volH(∂U i
n)

As mentioned, each summand on the right side decreases exponentially in n
and thus there is a constant c with

volT(∂Kn) ≤ ce−n for all n,

as claimed in (2). It remains to prove that (3) is satisfied.
Since Kn ⊂ K0∪i (U i

0 \U i
n) and ∂U i

0 is compact for each i, we can enlarge
c so that

dT(X,K0) ≤ c+ max
i

max
Y ∈U i

0\U i
n

dT(Y, ∂U i
0)

for every X ∈ Kn. Applying once again Royden’s theorem, we get

max
Y ∈U i

0\U i
n

dT(Y, ∂U i
0) ≤ max

Y ∈U i
0\U i

n

dH(Y, ∂U i
0) = n,

from where we obtain

dT(X,K0) ≤ c+ n for all X ∈ Kn,

as we needed to prove. �

4

In this section we discuss some geometric facts about holomorphic maps
M → N between finite (orbifold) covers of moduli spaces:

M →Mg,p, N →Mg′,p′ .

We will endow the domain M with McMullen’s Kähler hyperbolic metric
and the target N with the Weil-Petersson metric.

The Weil-Petersson distance dWP is induced by a negatively curved, al-
though unfortunately incomplete, Riemannian metric. However, dWP is
geodesically convex, meaning that any two points in Teichmüller space Tg,p
are connected by a unique dWP-geodesic segment. Moreover, the identity
map

(4.1) Id : (Tg,p, dT)→ (Tg,p, dWP)
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is Lipschitz [19, Proposition 2.4]. McMullen’s Kähler hyperbolic metric dKH

on Tg,p is again induced by a Riemannian metric, and the identity map

(4.2) Id : (Tg,p, dKH)→ (Tg,p, dT)

is bi-Lipschitz [19, Theorem 1.1]. Hence, (Mg,p, dKH) is complete and has
finite volume. See [15, 16] for background on the Weil-Petersson metric dWP,
and [19] for the definition and properties of dKH.

As remarked earlier, Royden’s theorem [21] implies that holomorphic
maps between Teichmüller spaces endowed with the Teichmüller metric are
1-Lipschitz. In particular, (4.1) and (4.2) imply that there is L > 0 such
that every holomorphic map f : (M,dKH)→ (N, dWP) is L-Lipschitz.

Suppose from now on that

f1, f2 : (M,dKH)→ (N, dWP)

are homotopic holomorphic maps, and let

F̂ : [1, 2]×M → N

be a homotopy between them. Since the Weil-Petersson metric is nega-
tively curved and geodesically convex, we can replace F̂ with the straight
homotopy

(4.3) F : [1, 2]×M → N, F (t,X) = ft(X)

determined by the fact that t 7→ ft(X) is the dWP-geodesic segment joining

f1(X) and f2(X) in the homotopy class of F̂ ([1, 2]× {X}).
Note that ft is L-Lipschitz for all t because f1 and f2 are. Indeed, for

v ∈ TXM the vector field t 7→ d(ft)Xv is a Jacobi field along t 7→ ft(X).
Since the Weil-Peterson metric is negatively curved, the length of Jacobi
fields is a convex function, and hence attains its maximum at t ∈ {1, 2}.

A priori, the map F itself need not be Lipschitz: the norm of dF(t,X)
∂
∂t is

equal to the length of the geodesic arc t 7→ F (t,X), and there is no reason
for this to be bounded, as M is not compact. However, fixing X0 ∈M there
is a constant k, independent of X, such that the segment t 7→ F (t,X) has
length at most k + 2LdKH(X,X0) because f1, f2 are L-Lipschitz. It follows
that there are constants A,B with

‖dF(t,X)‖2 ≤ A · dKH(X0, X)2 +B

for all (t,X) ∈ [1, 2]×M . Here, ‖dF(t,X)‖ is the operator norm of dF(t,X).
The convexity of Jacobi fields also implies the convexity of the energy

density

t 7→ EX(ft)
def
=

1

2

dimR M∑
i=1

‖d(ft)Xvi‖2WP

where v1, . . . , vdimR M is an arbitrary orthonormal basis of TXM with respect
to the Kähler hyperbolic metric. This function is strictly convex if one of
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d(f1)X or d(f2)X has rank at least 2. In particular, if the holomorphic maps
f1, f2 are distinct and one of them is non-constant, then the energy

t 7→ E(ft)
def
=

∫
M
EX(f)νKH

is strictly convex. Here νKH is the Riemannian volume form of (M,dKH),
and E(ft) <∞ because ft is L-Lipschitz and M has finite dKH-volume.

We summarize this discussion in the following lemma:

Lemma 4.1. Let M →Mg,p and N →Mg′,p′ be finite covers and

f1, f2 : (M,dKH)→ (N, dWP)

homotopic holomorphic maps. Consider the straight homotopy

F : [1, 2]×M → N, F (t,X) = ft(X)

between them. Then:

(1) There is L > 0 such that ft : M → N is L-Lipschitz and has finite
energy E(ft) <∞ for all t.

(2) For X0 ∈M , there are A,B > 0 with

‖dF(t,X)‖2 ≤ A · dKH(X0, X)2 +B

for all (t,X) ∈ [1, 2]×M .
(3) The energy function t 7→ E(ft) is convex. Moreover, it is strictly

convex unless either f1 = f2 or both are constant. �

So far, we have only used Royden’s theorem, the comparison between the
different metrics, and the curvature properties of dWP. We will also make
key use of the fact that both the Weil-Petersson metric and McMullen’s
metric are Kähler. This means that the Kähler form, i.e. the 2-form ω =
〈·, J ·〉, is closed, where 〈·, ·〉 is the relevant Riemannian metric and J is the
endomorphism of the tangent bundle given by complex multiplication. See
[5, 22] for facts on Kähler manifolds.

We need an observation due to Eells-Sampson [12]. Suppose that

f : Tg,p → Tg′,p′

is a smooth map, and write ωWP and ωKH for the Kähler forms of the Weil-
Petersson metric and of McMullen’s metric respectively. The Riemannian
volume form induced by dKH may be expressed as

νKH =
1

d!
ωd
KH =

1

d!
ωKH ∧ · · · ∧ ωKH,

where d = dimC Tg,p. Pulling back the Kähler form ωWP via f we can also

consider the top-dimensional form (f∗ωWP) ∧ ωd−1
KH on Tg,p. An infinitesi-

mal computation due to Eells and Sampson [12] - valid for maps between
arbitrary Kähler manifolds - proves that:
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Proposition 4.2 (Eells-Sampson). Let f : (Tg,p, dKH) → (Tg′,p′ , dWP) be a
smooth map. For every X ∈ Tg,p we have

(4.4) EX(f)νKH ≥
1

d!
(f∗ωWP) ∧ ωd−1

KH

where d = dimC Tg,p. Moreover, equality holds in (4.4) if and only if f is
holomorphic at X.

Proposition 4.2 is basically an incarnation of the classical Wirtinger in-
equality. In other words, it is a purely linear algebra fact which follows from
the observation that, whenever Λ : C→ Cn is R-linear, then

E0(Λ)ωC ≥ det(Λ)ωC ≥ Λ∗(ωCn)

where ωC = dx ∧ dy and ωCn =
∑n

i=1 dxi ∧ dyi are the standard Kähler
forms.

5

We are now ready to prove Proposition 1.3:

Proposition 1.3. Let M → Mg,p and N → Mg′,p′ be finite covers and
suppose that f1, f2 : M → N are homotopic holomorphic maps. If f1 is not
constant, then f1 = f2.

We recall from the introduction that the proof of Proposition 1.3 uses
an argument due to Eells and Sampson [12] based on Proposition 4.2 and
Stokes’ theorem. Here we have to integrate over moduli space, but as we
mentioned above, Mg,p is non-compact. We apply Stoke’s theorem to the
compact subsets Kn provided by Proposition 3.1 and show that the arising
boundary terms tend to 0 when n→∞.

Proof. Suppose that f1 is not constant and f1 6= f2, and let

F : [1, 2]×M → N, F (t,X) = ft(X)

be the straight homotopy (4.3) between them. From Lemma 4.1 we know
that the function t 7→ E(ft) is strictly convex; we may hence assume that

(5.1) E(ft) < E(f1)

for all t ∈ (1, 2). We are going to contradict this assertion.
Let {Kn} be the compact exhaustion ofMg,p provided by Proposition 3.1.

Abusing terminology, we denote also by Kn the preimage of Kn under the
covering map M → Mg,p. By (4.2), the Teichmüller metric is bi-Lipschitz
to McMullen’s Kähler hyperbolic metric and thus we get from Proposition
3.1 that there are constants c and L such that:

(1) M =
⋃

n∈NKn, and Kn ⊂ Kn+1 for all n,
(2) volKH(∂Kn) ≤ ce−n for all n, and
(3) Kn is contained within dKH-distance c+ L · n of K0 for all n.
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Write ωKH and ωWP for the Kähler forms of McMullen’s metric and the
Weil-Petersson metric respectively, and set d = dimCM = 3g− 3 + p. Since
Kähler forms are closed, we deduce from Stokes theorem that

0 =

∫
[1,t]×Kn

d
(

(F ∗ωWP) ∧ ωd−1
KH

)
=

∫
∂([1,t]×Kn)

(F ∗ωWP) ∧ ωd−1
KH

=

∫
{t}×Kn

(F ∗ωWP) ∧ ωd−1
KH −

∫
{1}×Kn

(F ∗ωWP) ∧ ωd−1
KH

+

∫
[1,t]×∂Kn

(F ∗ωWP) ∧ ωd−1
KH

=

∫
Kn

(f∗t ωWP) ∧ ωd−1
KH −

∫
Kn

(f∗1ωWP) ∧ ωd−1
KH

+

∫
[1,t]×∂Kn

(F ∗ωWP) ∧ ωd−1
KH

Below we will prove:

(5.2) lim
n→∞

∫
[1,t]×∂Kn

(F ∗ωWP) ∧ ωd−1
KH = 0.

Assuming (5.2), we obtain from the computation above that

lim
n→∞

(∫
Kn

(f∗t ωWP) ∧ ωd−1
KH −

∫
Kn

(f∗1ωWP) ∧ ωd−1
KH

)
= 0

Taking into account that ft and f1 are Lipschitz and that (M,dKH) has finite
volume, we deduce that∫

M
(f∗t ωWP) ∧ ωd−1

KH =

∫
M

(f∗1ωWP) ∧ ωd−1
KH .

From Proposition 4.2 we get

E(ft) ≥
1

d!

∫
M

(f∗t ωWP) ∧ ωd−1
KH

=
1

d!

∫
M

(f∗1ωWP) ∧ ωd−1
KH = E(f1)

where the last equality holds because f1 is holomorphic. This contradicts
(5.1). It remains to prove (5.2).

Fix (t,X) ∈ [0, 1] × ∂Kn and let v1, . . . , v2d be an orthonormal basis of
T(t,X)([0, 1]× ∂Kn). We have∣∣(F ∗ωWP)(v1, v2) · ωKH(v3, v4) · . . . · ωKH(v2d−1, v2d)

∣∣
=
∣∣〈dF(t,X)v1, JdF(t,X)v2〉WP · 〈v3, Jv4〉KH · . . . · 〈v2d−1, Jv2d〉KH

∣∣
≤ ‖dF(t,X)‖2
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where ‖dF(t,X)‖ is the operator norm of dF(t,X). Fixing X0 ∈ M we get
from Lemma 4.1 that there are A,B > 0 with

‖dF(t,X)‖2 ≤ A · dKH(X0, X)2 +B

for all (t,X) ∈ [1, 2]×M . We deduce that∣∣∣∣∣
∫
[0,t]×∂Kn

(F ∗ωWP) ∧ ωd−1
KH

∣∣∣∣∣ ≤ (2d)!

∫
[0,t]×∂Kn

‖dF(t,X)‖2ν[0,t]×∂Kn

≤ (2d!)

(
A · max

X∈∂Kn

dKH(X,X0)
2 +B

)
volKH(∂Kn)

This last quantity tends to 0 as n→∞ by (2) and (3) above. Having proved
(5.2), we are done with the proof of Proposition 1.3. �

6. Proof of Theorem 1.1

In this section we deduce Theorem 1.1 from Proposition 1.3 and a rigidity
theorem for homomorphisms between mapping class groups proved in [3].
We remind the reader of some terminology from the said paper.

Let S and S′ be compact surfaces, possibly with boundary, and P and
P ′ finite sets of marked points in the interior of S and S′ respectively.
By an embedding ι : (S, P ) → (S′, P ′) we understand a continuous in-
jective map ιtop : S → S′ with the property that ι−1top(P

′) ⊂ P . Ev-

ery embedding ι : (S, P ) → (S′, P ′) induces a (continuous) homomor-
phism Homeo(S, P ) → Homeo(S, P ) between the corresponding groups of
self-homeomorphisms fixing pointwise the boundary and the set of marked
points. In particular, ι induces a homomorphism

ι# : Map(S, P )→ Map(S′, P ′)

between the associated mapping class groups. The main result proved in [3]
asserts that, subject to suitable genus bounds, every non-trivial homomor-
phism between mapping class groups is in fact induced by an embedding.

Theorem 6.1 (Aramayona-Souto). Suppose that S and S′ are compact sur-
faces, possibly with boundary, and that P and P ′ are finite sets of marked
points in the interior of S and S′ respectively. If S has genus g ≥ 6 and S′

has genus g′ ≤ 2g − 2, then every nontrivial homomorphism

Map(S, P )→ Map(S′, P ′)

is induced by an embedding (S, P )→ (S′, P ′).

Recall that Tg,p is a classifying space for proper actions E(Mapg,p). In
particular, as we discussed at the end of section 2, the homotopy type of
a map Mg,p → Mg′,p′ is determined by the associated homomorphism be-
tween the corresponding mapping class groups. Armed with Theorem 6.1
we prove:
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Proposition 6.2. If g ≥ 6 and g′ ≤ 2g − 2, then every map f : Mg,p →
Mg′,p′ is either homotopically trivial or homotopic to a forgetful map.

Proof. Let f∗ : Mapg,p → Mapg′,p′ be the homomorphism associated to f

and let f̃ : Tg,p → Tg′,p′ be an f∗-equivariant lift of f . If f∗ is trivial, then
f is homotopically trivial and we have nothing to prove. Suppose from now
on that this is not the case.

Let (S, P ) and (S′, P ′) be, respectively, closed surfaces of genus g and
g′, with p and p′ marked points. Identifying Map(S, P ) = Mapg,p and
Map(S′, P ′) = Mapg′,p′ , we obtain from Theorem 6.1 that the homomor-
phism f∗ is induced by an embedding

ι : (S, P )→ (S′, P ′)

Since S and S′ are closed, the underlying injective map ιtop : S → S′ is
a homeomorphism and ιtop(P ) ⊃ P ′. In other words, the embedding ι is
obtained by forgetting marked points.

In the same way that we have identified mapping class groups, we also
identify Teichmüller spaces Tg,p = T (S, P ) and Tg′,p′ = T (S′, P ′). The
embedding ι induces an f∗-equivariant map

h̃ : Tg,p → Tg′,p′

obtained again by forgetting marked points. By construction, h̃ descends to
a forgetful map

h :Mg,p →Mg′,p′

Since both f̃ and h̃ are f∗-equivariant, (2.1) yields a homotopy between f
and h. �

We are now ready to prove Theorem 1.1:

Theorem 1.1. Suppose that g ≥ 6 and g′ ≤ 2g − 2. Every non-constant
holomorphic map Mg,p →Mg′,p′ is a forgetful map.

Proof. Suppose that f : Mg,p → Mg′,p′ is holomorphic and not constant.
Proposition 1.3 implies that f is not homotopically trivial and, in particular,
f is homotopic to a forgetful map h : Mg,p → Mg′,p′ by Proposition 6.2.
Since both f and h are holomorphic and non-constant we get that f = h
from Proposition 1.3, as we needed to prove. �

There is a number of rigidity results for homomorphisms between mapping
class groups; see for example [4] for a survey of results in this direction.
Combining any such theorem with Proposition 1.3 one obtains a rigidity
result for holomorphic maps between the corresponding moduli spaces. For
instance, the version of Theorem 6.1 proved in [3] covers a few more cases
than the ones stated here. From this more general version, it follows that
Theorem 1.1 also holds for maps Mg,p → M2g−1,p′ with p′ ≥ 1, and for
maps Mg,p →Mg,p′ as long as g ≥ 4. In particular, we have:
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Corollary 6.3. Suppose that g ≥ 4. Every non-constant holomorphic map
Mg,p →Mg,p is induced by a permutation of marked points, and is hence a
biholomorphism. �

Note that the isomorphism, for g ≥ 2, between the group of biholomor-
phisms of Mg,p and the symmetric group Σp follows also from Royden’s
characterization of the biholomorphism group of Teichmüller space [21, 11].
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