HOLOMORPHIC MAPS BETWEEN MODULI SPACES
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ABSTRACT. We prove that every non-constant holomorphic map Mg, —
Mg between moduli spaces of Riemann surfaces is a forgetful map,
provided that g > 6 and ¢’ < 2g — 2.

1

Let Mg, be the moduli space of Riemann surfaces of genus g with p
labelled marked points. Moduli space has a natural structure as a complex
orbifold. In this paper we study holomorphic maps, in the category of
orbifolds, between distinct moduli spaces. Examples of such maps are the
so-called forgetful maps [7, 10]: given (i1,...,4y) with ¢; € {1,...,p} and
ij # i, for j # k, set
(1.1) Mgp = Mgy, (X,z1,...,2p) = (X, 24, ... ,xip,).

We prove that under suitable genus bounds, there are no other non-constant
holomorphic maps:

Theorem 1.1. Suppose that g > 6 and ¢ < 29 — 2. Fvery non-constant
holomorphic map Mg, — My 4y is a forgetful map.

As a direct consequence of Theorem 1.1 we obtain:

Corollary 1.2. Suppose that g > 6 and ¢ < 2g — 2. If there is a non-
constant holomorphic map Mgy, — Mgy ., then g =g andp > p'. O

Theorem 1.1 remains true under slightly more generous conditions - com-
pare with the discussion at the end of section 6. On the other hand, some
genus bounds are necessary for Theorem 1.1 to hold. For instance, it follows
from [2] that for all g > 2 there are ¢’ > g and a holomorphic embedding
./\/lg’o — Mglyg.

Moduli space is not compact, but a natural compactification /\71971,, a pro-
jective variety, was constructed in [9] by Deligne and Mumford. Morphisms
between Deligne-Mumford compactifications have been studied by several
authors (see for example [8, 14]). Notice that in Theorem 1.1 we assume nei-
ther that the holomorphic maps in question extend to the Deligne-Mumford
compactification, nor that they are surjective or have connected fibers.

Juan Souto has been partially supported by NSERC Discovery and Accelerator Sup-
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We sketch briefly the proof of Theorem 1.1. Since we are working in the
category of orbifolds, every continuous map f : Mg, — Mgy v induces a
homomorphism f, : Map,, — Map, ,, between the associated mapping
class groups. In [3] we classified all homomorphisms between mapping class
groups under the genus bounds in Theorem 1.1; it follows easily from this
classification that f is either homotopically trivial or homotopic to a forgetful
map h. The following result, the main technical observation of this note,
yields immediately that, if f is holomorphic, then f = h unless f is constant.

Proposition 1.3. Let M — My, and N — Mgy be finite covers and
suppose that fi, fo : M — N are homotopic holomorphic maps. If f1 is not
constant, then f1 = fo.

To prove Proposition 1.3 we proceed as follows. Endowing the target N
with the Weil-Petersson metric and the domain M with McMullen’s Kahler
hyperbolic metric [19], we derive from a result of Royden [21] that the maps
f1, fo have finite energy. Let (fi)ie[1,2) be the straight homotopy between f1
and fy, and note that the energy function ¢t — E(f;) is convex because the
Weil-Petersson metric is negatively curved. Proposition 1.3 follows easily
once we prove that E(f;) attains its minimum at ¢ € {1,2}. To see that
this is the case, we adapt an argument due to Eells-Sampson [12], who
derived from a version of Wirtinger’s inequality and Stokes’ theorem that
holomorphic maps between Ké&hler manifolds are harmonic, meaning that
they minimize energy for every deformation with compact support. A priori,
the straight homotopy (f;) does not have compact support and so we have
to control the boundary terms that appear when applying Stoke’s theorem
- this is what we do.

The content of this paper was originally included in our paper [3]. Fol-
lowing the suggestion of the journal and the referee, we decided to rewrite
it and present Theorem 1.1 independently.

Acknowledgements. This paper was written during the program “Auto-
morphisms of Free Groups: Algorithms, Geometry and Dynamics” at the
CRM, Barcelona. We would like to thank the organizers of the program, as
well as to express our gratitude to the CRM for its hospitality.
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Throughout this paper we make use of standard facts about Teichmiiller
spaces and mapping class groups. We refer to [13, 15, 16, 20] for an extensive
treatment of these subjects, and to [6] for a nice survey.

Let S, be the closed surface of genus g with p distinct labeled marked
points. The mapping class group Map,, is the group of isotopy classes
of orientation preserving self-homeomorphisms of S, , fixing each marked
point. It acts discretely on Teichmiiller space and this action preserves the
standard complex structure on 7y, (see [1]). Moduli space is the complex



orbifold

Mgap = ’Tg,p/ Mapg,p
We stress that we consider M, , always as an orbifold - in a language that
we are not going to use, Mg, is the moduli stack of algebraic curves of
genus g with p points labelled. In particular, maps and covers are taken in
the category of orbifolds. For instance, for every continuous map

f : Mg7p — Mg’,p’
there are a homomorphism
f* : Mapgm — Mapg/p/
and a continuous f,-equivariant map
fTgp = Ty p

such that the following diagram commutes:

f
7.717;0 - E’,p’

L,

Mgp—— Mg

The homomorphism f, and the lift f are unique up to simultaneous conju-
gation by a mapping class.

Example 1. For the forgetful map f : Mg, — Mg,y defined in (1.1), the
lift f : Tgp — Tgp is given by the same formula, and the homomorphism
[« : Map, , — Map,,, is the one given by forgetting the marked points
{z1,.. @t \A{@i, .. @i } (3, 13]. In fact, both f and f are holomorphic
fiber bundles, and the long exact sequence of homotopy groups correspond-
ing to the fiber bundle f yields the Birman exact sequence for f,.

The above discussion amounts to saying that Teichmiiller space is the
(orbifold) universal cover of moduli space. In fact, more is true: Teichmiiller
space is a classifying space for proper actions £ (Mapg,p) of the mapping class
group. In particular, the homotopy class of f is determined by f.. We give
a simple proof of this fact. Suppose that

fih: Mgp = My
have lifts f , h: Tgp — Tg p that are equivariant under the same homomor-
phism p : Map,,, — Map, . For each X € Ty, let vx : [0,1] = Ty
be the unique Weil-Petersson (or Teichmiiller) geodesic with vx(0) = f(X)
and vx (1) = h(X). The uniqueness of vy implies that the map
(2.1) F0,1] X Tgp = Ty, F(X 1) = 7x(1)

is continuous and p-equivariant, and thus descends to a homotopy between
f and h.
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A key ingredient in the proof of Proposition 1.3 is the existence of a com-
pact exhaustion of M(X) that behaves well with respect to the Teichmiiller
metric dr; see [15, 16] for a discussion of this metric.

Proposition 3.1. There are ¢ > 0 and a collection {K,}nen of compact
subsets of Mg, with the following properties:

(1) Myp=U,en Kn, and K,, C Ky, 11 for all n,
(2) volr(0K,,) < ce™™ for all n, and
(3) K, is contained within dr-distance ¢ +n of Kq for all n.

In the statement of Proposition 3.1, volr(-) denotes the co-dimension one
dp-volume.

The key tool of the proof of Proposition 3.1 is a result due to Royden [21]
asserting that the Teichmiiller metric dr agrees with the Kobayashi metric of
Tgp- Recall that if M is a complex manifold, the Kobayashi pseudometric
[18] is the largest pseudometric on M such that every holomorphic map
D — M is 1-Lipschitz; here D is the unit disk in C endowed with the
Poincaré metric.

Remark. In general, holomorphic maps between complex manifolds endowed
with the Kobayashi pseudometric are 1-Lipschitz. Thus it follows from Roy-
den’s theorem that holomorphic maps between Teichmiiller spaces equipped
with the Teichmiiller metric are 1-Lipschitz.

Proof. 'To simplify notation, we write M = Mg, and let M be its Deligne-
Mumford compactification. Let also D* and D be, respectively, the punc-
tured and unpunctured open unit disks in C endowed with their complete
hyperbolic metrics.

By a result of Wolpert [23], every point in M \ M has a neighborhood U
in M whose intersection U = U N M with moduli space is bi-holomorphic
to

U~ (D" x DRy /G

where k£ > 1, d = dim¢ M = 3g — 3 + p, and G is a finite group. Let dy be
the distance on U induced by the product of hyperbolic metrics.

Let Dy C D and Dg C D* be, respectively, the disk and punctured disk of
Euclidean radius %, and denote by D; C Dy the punctured disk such that
the hyperbolic distance between dDj and 0D, is equal to n. We set

Wk = (D} x D x --- x DU 5. U(Dg§ x --- x D§ x D) C (Dg)*
and
U, =WFx DI */Gcu

By construction dU,, is at dy-distance n from 0Ujy and its co-dimension one

volume decreases exponentially: voly (0U,,) ~ e ".
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Since M \/\/l is compact, we can pick finitely many sets U',...,U" such
that M\ U;Uj is compact. For n € N we set
K,=M \ UZ‘U;L

By construction, K, is compact, M = U,K,, and K,, C K,,4; for all n. In
other words, { K, }nen satisfies (1).
To prove (2), note that Royden’s theorem [21] implies that the inclusion

(U",dy) = (M, dr)

is 1-Lipschitz for all 7. In particular we have

volp(0K,) < volp(9UL) < voly(9U},)

i=1 i=1
As mentioned, each summand on the right side decreases exponentially in n
and thus there is a constant ¢ with

volr(0K,,) < ce™™ for all n,

as claimed in (2). It remains to prove that (3) is satisfied.
Since K,, C KoU; (Uj\U},) and 90U is compact for each i, we can enlarge
c so that

dr(X, Ko) < c+max max dr(Y,0U))
i YeUL\UE

for every X € K,,. Applying once again Royden’s theorem, we get

max dr(Y, E)Ué) < max dy(Y, GUé) =n,
Y eUi\U} Y eUi\U;

n

from where we obtain
dr(X,Kp) <c+n forall X € K,,,

as we needed to prove. O

4

In this section we discuss some geometric facts about holomorphic maps
M — N between finite (orbifold) covers of moduli spaces:

M — Mgp, N = Mg y.

We will endow the domain M with McMullen’s Kahler hyperbolic metric
and the target N with the Weil-Petersson metric.

The Weil-Petersson distance dwp is induced by a negatively curved, al-
though unfortunately incomplete, Riemannian metric. However, dwp is
geodesically convex, meaning that any two points in Teichmiiller space 7y,
are connected by a unique dwp-geodesic segment. Moreover, the identity
map

(4.1) Id s (Tg.ps dv) = (Tgp, dwe)
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is Lipschitz [19, Proposition 2.4]. McMullen’s K&hler hyperbolic metric dxg
on 7,4, is again induced by a Riemannian metric, and the identity map

(4.2) Id : (Tgp, dxn) = (Tgp, dr)

is bi-Lipschitz [19, Theorem 1.1]. Hence, (Mg, dkn) is complete and has
finite volume. See [15, 16] for background on the Weil-Petersson metric dywp,
and [19] for the definition and properties of dky.

As remarked earlier, Royden’s theorem [21] implies that holomorphic
maps between Teichmiiller spaces endowed with the Teichmiiller metric are
1-Lipschitz. In particular, (4.1) and (4.2) imply that there is L > 0 such
that every holomorphic map f : (M, dxn) — (N, dwp) is L-Lipschitz.

Suppose from now on that

fl,fg : (M, dKH) — (N, dwp)

are homotopic holomorphic maps, and let

F:[1,2] x M = N
be a homotopy between them. Since the Weil-Petersson metric is nega-
tively curved and geodesically convex, we can replace F' with the straight
homotopy

(4.3) F:[1,2]x M = N, F(t,X)=f,(X)

determined by the fact that ¢ — f;(X) is the dwp-geodesic segment joining
f1(X) and f(X) in the homotopy class of F/([1,2] x {X}).

Note that f; is L-Lipschitz for all ¢ because f; and fo are. Indeed, for
v € Tx M the vector field ¢ — d(fi)xv is a Jacobi field along t — fi(X).
Since the Weil-Peterson metric is negatively curved, the length of Jacobi
fields is a convex function, and hence attains its maximum at ¢ € {1,2}.

A priori, the map F itself need not be Lipschitz: the norm of dF(uX)% is
equal to the length of the geodesic arc t — F(t, X), and there is no reason
for this to be bounded, as M is not compact. However, fixing X € M there
is a constant k, independent of X, such that the segment ¢ — F(t, X) has
length at most k + 2Ldgu (X, Xo) because f1, fo are L-Lipschitz. It follows
that there are constants A, B with

|dF ., x)lI” < A-dgn(Xo, X)* + B

for all (¢, X) € [1,2] x M. Here, ||[dF; x| is the operator norm of dF|; x).
The convexity of Jacobi fields also implies the convexity of the energy
density
dimg M
def 1

t— Ex(fy) = B Z ||d(ft)XUi”%vp
i=1

where v1, ..., Udimg M is an arbitrary orthonormal basis of T'x M with respect
to the Kéahler hyperbolic metric. This function is strictly convex if one of
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d(f1)x or d(f2)x has rank at least 2. In particular, if the holomorphic maps
f1, fo are distinct and one of them is non-constant, then the energy

t— E(ft) def /M Ex(f)vku

is strictly convex. Here vky is the Riemannian volume form of (M, dkyu),
and E(f;) < oo because f; is L-Lipschitz and M has finite dkg-volume.
We summarize this discussion in the following lemma:

Lemma 4.1. Let M — My, and N — My v be finite covers and
fi, fa: (M, dKH) — (N, dWP)
homotopic holomorphic maps. Consider the straight homotopy
F:[1,2] xM — N, F(t,X)= fi(X)

between them. Then:

(1) There is L > 0 such that f; : M — N is L-Lipschitz and has finite
energy E(fi) < oo for allt.
(2) For Xo € M, there are A, B > 0 with

[dFx)1* < A - dxu(Xo, X)* + B

for all (t,X) € [1,2] x M.
(3) The energy function t — E(f:) is conver. Moreover, it is strictly
convex unless either fi = fo or both are constant. ([l

So far, we have only used Royden’s theorem, the comparison between the
different metrics, and the curvature properties of dyp. We will also make
key use of the fact that both the Weil-Petersson metric and McMullen’s
metric are Kahler. This means that the Kahler form, i.e. the 2-form w =
(-, J-), is closed, where (-,-) is the relevant Riemannian metric and J is the
endomorphism of the tangent bundle given by complex multiplication. See
[5, 22] for facts on K&hler manifolds.

We need an observation due to Eells-Sampson [12]. Suppose that

F+Tgp = Ty

is a smooth map, and write wywp and wky for the Kahler forms of the Weil-
Petersson metric and of McMullen’s metric respectively. The Riemannian
volume form induced by dxy may be expressed as

1 1
VKH = Ewyd(H = K A= N WkH,

where d = dim¢ 74,. Pulling back the Kéhler form wwp via f we can also
consider the top-dimensional form (f*wwp) A wiy' on T;,. An infinitesi-

mal computation due to Eells and Sampson [12] - valid for maps between
arbitrary Kahler manifolds - proves that:
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Proposition 4.2 (Eells-Sampson). Let f : (Typ, dxu) = (Tg p s dwp) be a
smooth map. For every X € Ty, we have

(4.4) Ex(f)vkn > %(f*wwp) A W%ﬁl

where d = dimc Tgp,. Moreover, equality holds in (4.4) if and only if f is
holomorphic at X .

Proposition 4.2 is basically an incarnation of the classical Wirtinger in-
equality. In other words, it is a purely linear algebra fact which follows from
the observation that, whenever A : C — C" is R-linear, then

Eo(A)we > det(A)we > A" (wen)

where we = dz A dy and wen = >, dx; A dy; are the standard Kéhler
forms.

5
We are now ready to prove Proposition 1.3:

Proposition 1.3. Let M — Mg, and N — Mgy, be finite covers and
suppose that f1, fo : M — N are homotopic holomorphic maps. If f1 is not
constant, then fi = fo.

We recall from the introduction that the proof of Proposition 1.3 uses
an argument due to Eells and Sampson [12] based on Proposition 4.2 and
Stokes’ theorem. Here we have to integrate over moduli space, but as we
mentioned above, Mg, is non-compact. We apply Stoke’s theorem to the
compact subsets K,, provided by Proposition 3.1 and show that the arising
boundary terms tend to 0 when n — oo.

Proof. Suppose that f; is not constant and f; # fo, and let
F:[1,2] xM — N, F(t,X)= fi(X)

be the straight homotopy (4.3) between them. From Lemma 4.1 we know
that the function t — E(f;) is strictly convex; we may hence assume that

(5.1) E(fi) < E(f1)

for all t € (1,2). We are going to contradict this assertion.

Let {K,} be the compact exhaustion of M, provided by Proposition 3.1.
Abusing terminology, we denote also by K, the preimage of K,, under the
covering map M — M,,,. By (4.2), the Teichmiiller metric is bi-Lipschitz
to McMullen’s Kahler hyperbolic metric and thus we get from Proposition
3.1 that there are constants ¢ and L such that:

(1) M =, ey Kn, and K,, C Ky for all n,

(2) volgkn(0Ky) < ce™™ for all n, and
(3) K, is contained within dkgy-distance ¢ + L - n of K for all n.
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Write wigy and wwp for the Kéahler forms of McMullen’s metric and the
Weil-Petersson metric respectively, and set d = dim¢ M = 3g — 3 + p. Since
Kahler forms are closed, we deduce from Stokes theorem that

0 :/ d ((F*OJWP) AN wf‘iﬁl>
[1t]x Kp
:/ (F*(JJWP) A wKHl
A[1,¢]x Kn)

:/ (F*UJWP) A w{‘éﬁl — / (F*(JJWP) A wKHl
{t}XKn {1}><Kn

+ / (F*U.)WP) A wKHl
[1,t]x0K,

— [ (rowe) natit = [ (o) Aoty

n K n

+ / (F*OL)WP) A wﬁ;l
[1,t]x0Kn

Below we will prove:

(5.2) lim (F*wwp) A wiyt = 0.
=00 JI1,t]x 0K

Assuming (5.2), we obtain from the computation above that

lim </ (ffwwp) /\wﬁﬁl —/ (ffwwp) AW?{?) =0
n—oo Kn n

Taking into account that f; and f; are Lipschitz and that (M, dxy) has finite
volume, we deduce that

/ (ffwwp) A WKHl = / (ffwwp) A WKHl'
M M

From Proposition 4.2 we get

E(fi) > ;, / (ff wwp) /\wKHl

1
dl
where the last equality holds because f1 is holomorphic. This contradicts
(5.1). It remains to prove (5.2).
Fix (t,X) € [0,1] x 0K, and let vy,...,v9q be an orthonormal basis of
Ti,x)([0,1] x 0Ky,). We have

(fl wwp) A WKH = E(f1)

‘(F*WWP)(Ula v2) - Wir(V3,v4) + - 'WKH(UQd—laUQd)’

= <dF(t,X)U1, JdF(t,X)U2>WP (v3, Jug)kn - -+ - (V2d-1, JUZd>KH‘
< |dF.x)1?
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where |[dF{; x)|| is the operator norm of dFy x). Fixing Xo € M we get
from Lemma 4.1 that there are A, B > 0 with

|dF x)|* < A - dgn(Xo, X)? + B
for all (¢, X) € [1,2] x M. We deduce that

/ (F*wwp) Awigt| < (2d)! / ldF e3P Vo4,
[0,t]x0K,, [0,t]xOKn

< (2d! : 2

This last quantity tends to 0 as n — oo by (2) and (3) above. Having proved
(5.2), we are done with the proof of Proposition 1.3. O

6. PROOF OoF THEOREM 1.1

In this section we deduce Theorem 1.1 from Proposition 1.3 and a rigidity
theorem for homomorphisms between mapping class groups proved in [3].
We remind the reader of some terminology from the said paper.

Let S and S’ be compact surfaces, possibly with boundary, and P and
P’ finite sets of marked points in the interior of S and S’ respectively.
By an embedding ¢ : (S,P) — (S',P’) we understand a continuous in-
jective map typ @ S — S’ with the property that L;)}D(P’) Cc P. Ev-
ery embedding ¢ : (S,P) — (5, P’) induces a (continuous) homomor-
phism Homeo(S, P) — Homeo(S, P) between the corresponding groups of
self-homeomorphisms fixing pointwise the boundary and the set of marked
points. In particular, ¢ induces a homomorphism

Ly : Map(S, P) — Map(S’, P')

between the associated mapping class groups. The main result proved in [3]
asserts that, subject to suitable genus bounds, every non-trivial homomor-
phism between mapping class groups is in fact induced by an embedding.

Theorem 6.1 (Aramayona-Souto). Suppose that S and S’ are compact sur-
faces, possibly with boundary, and that P and P’ are finite sets of marked
points in the interior of S and S’ respectively. If S has genus g > 6 and S’
has genus g’ < 2g — 2, then every nontrivial homomorphism

Map(S, P) — Map(S’, P’)
is induced by an embedding (S, P) — (S, P’).

Recall that 7, is a classifying space for proper actions E(Mapgm). In
particular, as we discussed at the end of section 2, the homotopy type of
a map My, — My is determined by the associated homomorphism be-
tween the corresponding mapping class groups. Armed with Theorem 6.1
we prove:
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Proposition 6.2. If g > 6 and ¢’ < 2g — 2, then every map f : Mg, —
My 4y is either homotopically trivial or homotopic to a forgetful map.

Proof. Let fi : Map,, — Mapy ,, be the homomorphism associated to f
and let f : 7,, — Ty, be an fi-equivariant lift of f. If f. is trivial, then
f is homotopically trivial and we have nothing to prove. Suppose from now
on that this is not the case.

Let (S,P) and (S’, P') be, respectively, closed surfaces of genus g and
g’, with p and p’ marked points. Identifying Map(S, P) = Map,, and
Map(S’, P') = Map,, ,,, we obtain from Theorem 6.1 that the homomor-
phism f, is induced by an embedding

L1 (S, P) — (S, P')

Since S and S’ are closed, the underlying injective map tsp : S — S5 is
a homeomorphism and tt,(P) DO P’. In other words, the embedding ¢ is
obtained by forgetting marked points.

In the same way that we have identified mapping class groups, we also
identify Teichmiiller spaces Ty, = T(S,P) and Ty, = T(S',P’). The

embedding ¢ induces an fy-equivariant map
;L : 7_:]717 — 7;]’,])’

obtained again by forgetting marked points. By construction, h descends to
a forgetful map

h:Mgp— Mgy

Since both f and h are f.-equivariant, (2.1) yields a homotopy between f
and h. O

We are now ready to prove Theorem 1.1:

Theorem 1.1. Suppose that g > 6 and ¢’ < 2g — 2. Every non-constant
holomorphic map Mg, — My 4 is a forgetful map.

Proof. Suppose that f : Mg, — Mg s is holomorphic and not constant.
Proposition 1.3 implies that f is not homotopically trivial and, in particular,
f is homotopic to a forgetful map h : Mgy, — My by Proposition 6.2.
Since both f and h are holomorphic and non-constant we get that f = h
from Proposition 1.3, as we needed to prove. (|

There is a number of rigidity results for homomorphisms between mapping
class groups; see for example [4] for a survey of results in this direction.
Combining any such theorem with Proposition 1.3 one obtains a rigidity
result for holomorphic maps between the corresponding moduli spaces. For
instance, the version of Theorem 6.1 proved in [3] covers a few more cases
than the ones stated here. From this more general version, it follows that
Theorem 1.1 also holds for maps My, — My,s_1,y with p" > 1, and for
maps Mg, — Mg,y as long as g > 4. In particular, we have:
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Corollary 6.3. Suppose that g > 4. Every non-constant holomorphic map

M,

p — My is induced by a permutation of marked points, and is hence a

biholomorphism. O

Note that the isomorphism, for g > 2, between the group of biholomor-
phisms of My, and the symmetric group %, follows also from Royden’s
characterization of the biholomorphism group of Teichmiiller space [21, 11].

(1
2l
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