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Abstract. Consider a connected orientable surface S of infinite topo-
logical type, i.e. with infinitely-generated fundamental group. We de-
scribe the large-scale geometry of arbitrary connected subgraphs of A(S)
and C(S), provided they are invariant under a sufficiently big subgroup
of the mapping class group Mod(S). We obtain a number of conse-
quences; in particular we recover the main results of J. Bavard [2] and
Aramayona-Fossas-Parlier [1].

1. Introduction

There has been a recent surge of activity around mapping class groups of
infinite-type surfaces, i.e. with infinitely-generated fundamental group. The
motivation for studying these groups stems from several places, as we now
briefly describe.

First, infinite-type surfaces appear as inverse limits of surfaces of finite
type. In particular, infinite-type mapping class groups are useful in the study
asymptotic and/or stable properties of their finite-type counterparts. This is
the approach taken by Funar-Kapoudjian [7], where the authors identify the
homology of an infinite-type mapping class group with the stable homology
of the mapping class groups of its finite-type subsurfaces.

In a related direction, a number of well-known groups appear as subgroups
of the mapping class group of infinite-type surfaces. For instance, Funar-
Kapoudjian [8] realized Thompson’s group T as a topologically-defined sub-
group of the mapping class group of a certain infinitely-punctured sphere.

A third piece of motivation for studying mapping class groups of infinite-
type surfaces comes from dynamics, as explained by Calegari in [3]. More
concretely, let S be a closed surface, P ⊂ S a finite subset, and consider the
group Homeo(S, P ) of those homeomorphisms of S that preserve P setwise.
Let G < Homeo(S, P ) be a subgroup that acts freely on S − P . Then G
admits a natural homeomorphism to Mod(S − K,P ), where K is either a
finite set or a Cantor set. See [3] for more details.
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1.1. Combinatorial models. An extremely successful tool for understand-
ing finite-type mapping class groups is the use of the various complexes built
from arcs and/or curves on the surface. Notable examples of these are the
curve graph C(S) and the arc graph A(S); see Section 3 for definitions. When
S has finite type, a useful feature of these complexes is that, with respect to
their standard path-metric, they are hyperbolic spaces of infinite diameter;
see [14] and [12], respectively.

In sharp contrast, in the case of an infinite-type surface these complexes
normally have finite diameter; see Section 3. In the case when S is a sphere
minus the union of the north pole and a Cantor set, J. Bavard [2] proved that
a certain subgraph of A(S) is hyperbolic and has infinite diameter, and used
this to construct non-trivial quasi-morphisms from Mod(S). Subsequently,
Aramayona-Fossas-Parlier [1] have produced similar graphs for arbitrary
surfaces, subject to certain conditions on the set of punctures of S. However,
the definition of these subgraphs is surprisingly subtle, and small variations
in the definition may produce graphs that have finite diameter or are not
hyperbolic.

Our first goal is to describe the geometry of arbitrary subgraphs of A(S),
subject to some general conditions on them. First, we say that a con-
nected subgraph G(S) ⊂ A(S) is sufficiently invariant if it is invariant by
Mod(S, P ), for some (possibly empty) finite set P of punctures. In addition,
we will assume that every such graph satisfies the projection property. This
property is needed only for technical reasons, and thus we refer the reader to
Section 4 for details. However, we stress that this restriction is easy to check,
and often automatically satisfied, once one is given an explicit subgraph of
A(S), see Remark 4.6 below.

Before we state our result, recall from [16] that a witness 1 of G(S) is an
essential subsurface of S such that every vertex of G(S) intersects Y . We
will prove:

Theorem 1.1. Let S be a connected orientable surface of infinite type, and
G(S) a connected, sufficiently invariant subgraph of A(S) with the projection
property. Assume that every two witnesses of G(S) intersect.

(1) If every witness of G(S) has infinitely many punctures, then G(S)
has finite diameter.

(2) Otherwise, diam(G(S)) = ∞. Moreover, G(S) is hyperbolic if and
only if G(Y ) is uniformly hyperbolic, for every finite-type witness Y .

We stress that, once one is given an explicit subgraph G(S) of A(S), it
is trivial to decide what the witnesses of G(S) are and, in particular, where
G(S) falls in the description offered by Theorem 1.1.

1This definition is due to Schleimer [16], who referred to witnesses as holes. The word
“witness” has been suggested to us by S. Schleimer.
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Remark 1.2. As we will see in Section 4, the assumptions that G(S) is
sufficiently invariant and has the projection property will not be used in the
proof of part (1) of Theorem 1.1.

The main reason why in the theorem above we demand that every two
witnesses intersect is the following manifestation of Schleimer’s Disjoint Wit-
nesses Principle [16, 14]:

Proposition 1.3. Let S be a connected orientable surface of infinite type,
and G(S) a connected, sufficiently invariant subgraph of A(S) with the pro-
jection property. If G(S) has two disjoint witnesses of finite type, then it
contains a quasi-isometrically embedded copy of Z2. In particular, G(S) is
not hyperbolic.

For completeness, we will give a proof of Proposition 1.3 in Section 4.
As an immediate consequence of Theorem 1.1 we recover the main results

of [2] and [1]; see Section 4 for the precise statements. Another corollary of
Theorem 1.1 is that there are no geometrically interesting, Mod(S)-invariant
subgraphs of A(S) for many surfaces with infinitely many punctures:

Corollary 1.4. Let S be a connected orientable surface with punctures, such
that the Mod(S)-orbit of every puncture of S is infinite. If G(S) is a con-
nected Mod(S)-invariant subgraph of A(S), then G(S) has finite diameter.

In sharp contrast, if S has finitely many punctures, then A(S) is a hy-
perbolic graph of infinite diameter by Theorem 1.1. Even if S has infinitely
many punctures, the requirement that the orbit of every puncture be infinite
is still necessary; compare with Remark 4.8 below.

As a special case of the corollary above, we obtain:

Corollary 1.5. Let S closed orientable surface of genus g ≥ 0 minus a
Cantor set. If G(S) is a connected, Mod(S)-invariant subgraph of A(S),
then G(S) has finite diameter.

In other words, there are no geometrically interesting Mod(S)-invariant
subgraphs of A(S) if S has infinitely many punctures and none of them
are isolated (in the set of punctures). In particular, for such surfaces no
subgraph of A(S) will be useful for understanding groups acting freely by
homeomorphisms on S; compare with the discussion before subsection 1.1
above.

For this reason, we are going to study Mod(S)-invariant subgraphs of the
curve graph C(S) instead. As we will see below, the situation will depend
heavily on whether the number of punctures (resp. the genus) of S is finite
or infinite. Before we state our result, we denote by NonSep(S) the non-
separating curve graph of S, namely the subgraph of C(S) spanned by all
nonseparating curves on S. Similarly, denote by Outer(S) the subgraph of
C(S) spanned by all the outer curves on S, namely those which cut off a
disk with punctures. See Section 3 for further definitions.



4 JAVIER ARAMAYONA & FERRÁN VALDEZ

We start with the case when the genus of S is finite:

Theorem 1.6. Let S be a connected orientable punctured surface of finite
genus g ≥ 0, such that the Mod(S)-orbit of every puncture is infinite. Then,
a Mod(S)-invariant subgraph G(S) ⊂ C(S) has infinite diameter if and only
if G(S) ∩Outer(S) = ∅. Moreover, in this case:

(1) If G(S) ∩NonSep(S) = ∅ then G(S) is not hyperbolic.
(2) If G(S)∩NonSep(S) 6= ∅ then G(S) is quasi-isometric to NonSep(S).

Since every curve on a surface of genus 0 is separating, we have:

Corollary 1.7. Let S be a sphere with punctures, such that the Mod(S)-
orbit of every puncture is infinite. Then any connected, Mod(S)-invariant
subgraph of C(S) has finite diameter.

In particular, the corollary above applies when S is a sphere minus a
Cantor set; compare with Corollary 1.5 above.

Remark 1.8. In sharp contrast to Corollary 1.7, if S is a punctured sphere
with a finite number of isolated punctures, Durham-Fanoni-Vlamis [4] have
recently identified a hyperbolic, infinite-diameter subgraph of C(S). More
concretely, they consider a certain subgraph Outer(S), which they show is
uniformly quasi-isometric to the relative arc graphs of [2] and [1].

In light of Theorem 1.6, a natural problem is to decide whether NonSep(S)
is hyperbolic for S a surface of genus g and with infinitely many punctures.
As we will see in Proposition 5.1 below, the answer is positive if and only if
NonSep(Sg,n) is hyperbolic uniformly in n; compare with part (3) of Theo-
rem 1.1 above. We remark that NonSep(Sg,n) is known to be hyperbolic by
the work of Masur-Schleimer [14] and Hamensdädt [10].

We now deal with the case when the number of punctures of S is finite;
however, we remind the reader than in this case A(S) is itself a hyperbolic
Mod(S)-invariant graph of infinite diameter; see the comment after Corol-
lary 1.5. We will prove:

Theorem 1.9. Let S be a connected orientable surface of infinite genus
and with finitely many punctures, and G(S) a Mod(S)-invariant subgraph of
C(S). If diam(G(S)) =∞ then G(S) ⊂ Outer(S).

As Outer(S) = ∅ if S has exactly one puncture, we deduce:

Corollary 1.10. Suppose S is a connected orientable surface of infinite
genus with exactly one puncture2. Then any Mod(S)-invariant subgraph of
C(S) has finite diameter.

In light of Theorem 1.9, an interesting problem is to decide whether
Outer(S) is hyperbolic, for a surface of infinite genus and a finite number
n of punctures. Here, the answer will be positive if and only if Outer(Sg,n)

2This surface is sometimes referred to in the literature as the Loch Ness Monster.
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is hyperbolic uniformly in g. See Proposition 5.3 below and the discussion
around it for more details and known partial results about Outer(S) and
some related graphs.

Finally, we deal with surfaces with infinite genus and infinitely many
punctures:

Theorem 1.11. Let S be a connected orientable punctured surface of infinite
genus, such that the Mod(S)-orbit of every puncture is infinite. If G(S) is
a Mod(S)-invariant subgraph of C(S), then diam(G(S)) = 2.

Remark 1.12. Again, the assumption that the Mod(S)-orbit of every punc-
ture be infinite is most definitely necessary; see Remark 1.8 above.

The plan of the paper is as follows. Section 2 provides the necessary
background on δ-hyperbolic spaces and quasi-isometries. In Section 3 we
briefly introduce mapping class groups and various combinatorial complexes
one can associate to a surface. In Section 4 we prove Theorem 1.1 and
discuss some of its consequences. Finally, Section 5 contains the proofs of
Theorems 1.6, 1.9, and 1.11, as well as some concrete applications and open
questions.

Acknowledgements. This project stemmed out of discussions with Juli-
ette Bavard, and the authors are indebted to her for sharing her ideas and
enthusiasm. We want to thank LAISLA and CONACYT’s Red temática
Matemáticas y Desarrollo for its support. This work started with a visit of
the first named author to the UNAM (Morelia). He would like to thank the
Centro de Ciencias Matemáticas for its warm hospitality. He also thanks
Brian Bowditch, Saul Schleimer for conversations. Finally, the authors are
grateful to Federica Fanoni and Nick Vlamis for discussions and for pointing
out some inaccuracies in an earlier version of this draft.

2. Metric spaces

We briefly recall some notions on large-scale geometry that will be used
in the sequel. For a thorough discussion, see [9].

Definition 2.1 (Hyperbolic space). Let X be a geodesic metric space. We
say that X is δ-hyperbolic if there exists δ ≥ 0 such that every triangle
T ⊂ X is δ-thin: there exists a point c ∈ X at distance at most δ from every
side of T .

We will simply say that a geodesic metric space is hyperbolic if it is δ-
hyperbolic for some δ ≥ 0.

Definition 2.2 (Quasi-isometry). Let (X, dX), (Y, dY ) be two geodesic met-
ric spaces. We say that a map f : (X, dX) → (Y, dY ) is a quasi-isometric
embedding if there exist λ ≥ 1 and C ≥ 0 such that

(1)
1

λ
dX(x, x′)− C ≤ dY (f(x), f(x′)) ≤ λdX(x, x′) + C,
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for all x, x′ ∈ X. We say that f is a quasi-isometry if, in addition to (1),
there exists D ≥ 0 such that Y is contained in the D-neighbourhood of f(X).
More concretely, for all y ∈ Y there exists x ∈ X with dY (y, f(x)) ≤ D.

We say that two spaces are quasi-isometric if there exists a quasi-isometry
between them. The following is well-known:

Proposition 2.3. Suppose that two geodesic metric spaces X,Y are quasi-
isometric to each other. Then X is hyperbolic if and only if Y is hyperbolic.

3. Arcs, curves, and witnesses

In this section we will introduce the necessary definitions about surfaces,
arcs, and curves that appear in our results. Throughout, let S be a con-
nected, orientable surface of infinite topological type. Let Π be a (possibly
empty) set of marked points on S, which we feel free to regard as marked
points, punctures, or topological ends of S. We recall that, up to homeo-
morphism, S is completely determined by its genus and its space of ends;
see [15].

3.1. Mapping class group. The mapping class group Mod(S) is the group
of self-homeomorphisms of S that preserve Π setwise, up to isotopy preserv-
ing Π setwise. Given a (possibly empty) finite subset P of Π, we define
Mod(S, P ) to be the subgroup of Mod(S) whose every element preserves P
setwise. Observe that Mod(S, ∅) = Mod(S).

3.2. Arcs and curves. By a curve on S we mean the isotopy class of a
simple closed curve on S that does not bound a disk with at most one
puncture. An arc on S is the isotopy class of a simple arc on S with both
endpoints in Π.

The arc and curve graph AC(S) of S is the simplicial graph whose vertices
are all arcs and curves on S, and where two vertices are adjacent in AC(S) if
they have disjoint representatives on S. As is often the case, we turn AC(S)
into a geodesic metric space by declaring the length of each edge to be 1.

Observe that Mod(S) acts on AC(S) by isometries. As mentioned in the
introduction, we will be interested in subgraphs of A(S) that are invariant
under big subgroups of Mod(S). More concretely, we have the following
definition:

Definition 3.1 (Sufficient invariance). We say that a subgraph G(S) of
AC(S) is sufficiently invariant if there exists a (possibly empty) subset P of
Π such that Mod(S, P ) acts on G(S).

We will be interested in various standard Mod(S)-invariant subgraphs of
AC(S), whose definition we now recall.

The arc graph A(S) is the subgraph of AC(S) spanned by all vertices
of AC(S) that correspond to arcs on S; note that A(S) = ∅ if and only if
Π = ∅. Observe that if S has infinitely many punctures then A(S) has finite
diameter.
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Similarly, the curve graph C(S) is the subgraph spanned by those vertices
that correspond to curves on S. Note that C(S) has diameter 2 for every
surface of infinite type.

A further subgraph is the nonseparating curve graph NonSep(S), whose
vertices are curves on S whose complement is connected. This graph has
diameter 2 if S has infinite genus.

Finally, the outer curve graph Outer(S) is the subgraph of C(S) spanned
by those curves that bound a disk with punctures on S. Observe that
Outer(S) = ∅ if S is closed or has exactly one puncture, and that Outer(S)
has finite diameter if S has infinitely many punctures.

As the reader may suspect at this point, these observations constitute the
main source of inspiration behind the statements of Theorems 1.6, 1.9, and
1.11

3.3. Witnesses. Let S be a connected orientable surface of infinite type,
and G(S) a connected subgraph of AC(S). As mentioned in the introduction,
we will use the following notion, originally due to Schleimer [16]:

Definition 3.2 (Witness). A witness of G(S) is an essential subsurface
Y ⊂ S such that every vertex of G(S) intersects Y essentially.

Remark 3.3. Observe that if Y is a witness of G(S) and Z is a subsurface
of S such that Y ⊂ Z, then Z is also a witness.

Example 3.4. For the sake of concreteness, let S be a connected orientable
surface of finite genus g, possibly with infinitely many punctures.

(1) If G(S) = A(S), then Y ⊂ S is a witness if and only if Y contains
every puncture of S.

(2) If G(S) = C(S), then Y ⊂ S is a witness if and only if Y = S.
(3) If G(S) = NonSep(S), then Y ⊂ S is a witness if and only if Y has

genus g.

On the other hand, if S has a finite number n of punctures, then Y is a
witness of Outer(S) if and only if Y contains at least n− 1 punctures.

4. Subgraphs of the arc complex

In this section we give a proof of Theorem 1.1. As hinted to in the intro-
duction, the main tool is the following variant of Masur-Minsky’s subsurface
projections [13]:

Subsurface projections. Let Y be a witness of G(S). There is a natural
projection

πY : G(S)→ A(Y )

defined by setting πY (v) to be any connected component of v ∩ Y . In par-
ticular, πY (v) = v for every v ⊂ Y ; in other words, the restriction of πY
to G(Y ) is the identity. Observe that the definition of πY involves a choice,
but any two such choices are disjoint and therefore at distance 1 in A(Y ).
The same argument gives:
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Lemma 4.1. Let S be a surface and Y an essential subsurface. If u, v
are disjoint arcs which intersect Y essentially, then πY (u) and πY (v) are
disjoint.

For technical reasons, which will become apparent in the proof of Lemma
4.3 below, we will be interested in subgraphs of A(S) for which the subsur-
face projections defined above satisfy the following property:

Definition 4.2 (Projection property). We say that a subgraph G(S) ⊂
A(S) has the projection property if, for every finite-type witness Y of G(S),
the graphs πY (G(S)) and G(Y ) are uniformly quasi-isometric, via a quasi-
isometry that is the identity on G(Y ).

As mentioned in the introduction, we remark that deciding whether a
given explicit subgraph of A(S) has the projection property is normally
easy to check; see Remark 4.6 below.

The following lemma, which is a small variation of Corollary 4.2 in [1], is
the main ingredient in the proof of Theorem 1.1. We note that this is the
sole instance in which we will make use of the assumption that G(S) has the
projection property.

Lemma 4.3. Let S be a surface of infinite type, and G(S) ⊂ A(S) a con-
nected subgraph with the projection property. Then, for every finite-type
witness Y of G(S), the subgraph G(Y ) is uniformly quasi-isometrically em-
bedded in G(S).

Proof. Let u, v be arbitrary vertices of G(Y ). First, observe that since
G(Y ) ⊂ G(S), we have

dG(S)(u, v) ≤ dG(Y )(u, v).

To show a reverse coarse inequality, we proceed as follows. Consider a
geodesic γ ⊂ G(S) between u and v. The projected path πY (γ) is a path in
πY (G(S)) between u = πY (u) and v = πY (v), and

lengthπY (G(S))(πY (γ)) ≤ lengthG(S)(γ),

by Lemma 4.1. In particular,

dπY (G(S))(u, v) ≤ dG(S)(u, v).

Since G(S) has the projection property, there exist constants L ≥ 1 and
C ≥ 0 (which depend only on S) such that

dG(Y )(u, v) ≤ L · dπY (G(S))(u, v) + C,

and thus the result follows by combining the above two inequalities. �

Remark 4.4. Observe that if Y has finite type and Mod(Y ) is infinite, then
any of the (finitely many) Mod(Y )-invariant subgraphs of A(Y ) has infinite
diameter; a proof of this is essentially contained Corollary 2.25 of [16], for
instance. The proof of the first claim part (2) of Theorem 1.1 boils down to
this fact.
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We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let S be a connected, orientable surface of infinite
type, and denote by Π the set of marked points of S. Let G(S) be a con-
nected subgraph of A(S) with the projection property, and invariant under
Mod(S, P ) for some P ⊂ Π finite (possibly empty). Further, suppose that
every two witnesses of G(S) intersect.

We first prove part (1); in fact, we will show that the diameter of G(S)
is at most 4. Let u, v be two arbitrary distinct vertices of G(S). Since
G(S) is connected, there exists w ∈ G(S) that intersects both u and v a
finite number of times. We now claim that there is a vertex z ∈ G(S) that
is disjoint from v and w. Indeed, consider the surface F (v, w) filled by v
and w, which has finite type since v and w intersect finitely many times.
Since every witness of G(S) has infinitely many punctures, by assumption,
we deduce that F (v, w) is not a witness, and therefore there exists a vertex
z ∈ G(S) that does not intersect F (v, w). Using the same reasoning, there
exists a vertex z′ ∈ G(S) that is disjoint from u and w. Thus,

u→ z′ → w → z → v

is a path of length at most 4 in G(S) between u and v, as desired.

We now proceed to prove part (2), arguing along similar lines to [1]. By
assumption, there exists a witness Y of G(S) with finitely many punctures.
After modifying Y if necessary, we may assume that Y has finite type and
Mod(Y ) is infinite. In particular G(Y ) has infinite (intrinsic) diameter; see
Remark 4.4 above. Since G(Y ) is quasi-isometrically embedded in G(S), by
Lemma 4.3, it follows that

diam(G(S)) =∞,

and thus the first part of the claim follows.
It remains to prove the second part of the claim. To this end, suppose

first that there exists δ = δ(S) such that G(Y ) is δ-hyperbolic, for every
finite-type witness Y . We will prove that G(S) is δ-hyperbolic. Indeed,
consider a geodesic triangle T ⊂ G(S). Since T has finitely many vertices,
there exists a finite-type witness Z = Z(T ) of G(S) such that every vertex
of T is contained in Z; we remark that by enlargening the vertex set of T if
necessary, we may assume that Z is connected. We may thus regard T as
a geodesic triangle in G(Z). Since G(Z) is δ-hyperbolic, by assumption, T
has a δ-center c ∈ G(Z). Now, since G(Z) ⊂ G(S), the G(S)-distance from
c to each of the three sides of T is at most δ; in other words, c also serves
as a δ-center for T when the latter is viewed as a geodesic triangle in G(S).
Since T is arbitrary and δ is uniform, we obtain that G(S) is δ-hyperbolic,
as claimed.

Finally, using a very similar argument to the one just given, we also
deduce that the hyperbolicity of G(S) implies that of G(Y ), for every finite-
type witness Y of G(S). This finishes the proof of Theorem 1.1. �
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Remark 4.5. Observe that in the proof of part (1) of Theorem 1.1 we
have not used that G(S) is sufficiently invariant or that it has the projection
property, only that it is connected and every witness has infinitely many
punctures. Thus this part of Theorem 1.1 holds in more generality.

As mentioned in the introduction, Proposition 1.3 asserts that the as-
sumption that every two witnesses of G(S) intersect is necessary. While
this proposition is merely a manifestation of Schleimer’s Disjoint Witness
Principle [16], we include a proof for completeness:

Proof of Proposition 1.3. We first prove part (1). Assume that G(S) has two
disjoint witnesses Y, Z ⊂ S, each of finite type. After enlarging Y and/or Z
if necessary, we may assume in addition that both Mod(Y ) and Mod(Z) are
infinite; note that these groups act on G(Y ) and G(Z), respectively, which in
turn gives that G(Y ) and G(Z) have infinite (intrinsic) diameter; see again
Remark 4.4 above.

Since Y and Z are witnesses, the projection maps πY and πZ are well-
defined. Therefore there is a projection map

π : G(S)→ A(Y )×A(Z)

which is simply the map πY ×πZ . Using this projection and the same argu-
ments as in the proof of Lemma 4.3, the fact that G(S) has the projection
property implies that G(S) contains a quasi-isometrically embedded copy
of G(Y ) × G(Z). By choosing a bi-infinite quasi-geodesic in G(Y ) and in
G(Z), we obtain G(S) contains a quasi-isometrically embedded copy of Z2,
as claimed. �

4.1. Consequences. We now discuss a number of applications of Theo-
rem 1.1 to more concrete situations. To start with, we have the following
corollaries, mentioned in the introduction:

Corollary 1.4. Let S be a connected orientable surface with punctures,
such that the Mod(S)-orbit of every puncture of S is infinite. If G(S) is a
connected Mod(S)-invariant subgraph of A(S), then G(S) has finite diame-
ter.

Proof. Let G(S) be such a connected Mod(S)-invariant subgraph of A(S).
Since Mod(S) acts on G(S) and the Mod(S)-orbit of every puncture is in-
finite, we get that any witness of G(S) must contain an infinite number of
punctures. Thus part (1) of Theorem 1.1 applies (compare with Remark
4.5), and the result follows. �

Next, we show how Theorem 1.1 implies the main results of [2] and
Aramayona-Fossas-Parlier [1]. Before doing so, we need some definitions
from [1]. Throughout, we will assume that the set Π of marked points of S
is not empty. We say that a marked point p ∈ Π is isolated if it is isolated
in Π, where the latter is equipped with the subspace topology (here we are
viewing Π as a set of marked points on S). Let P ⊂ Π be a non-empty
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finite subset of marked points on S. Define A(S, P ) as the subgraph of
A(S) spanned by those arcs that have at least one endpoint in P . Note that
Mod(S, P ) acts on A(S, P ), and hence A(S, P ) is sufficiently invariant.

Remark 4.6. The graphs A(S, P ) have the projection property: if Y is an
essential subsurface of S then πY (A(S, P )) is uniformly quasi-isometric to
A(Y, P ∩Y ), which is G(Y ) for G(S) = A(S, P ). The proof that both graphs
are quasi-isometric boils down to the fact that, for v ∈ A(S, P ), there is at
least one component of v ∩ Y that has an endpoint in P , which we can use
to define a subsurface projection map with nice properties.

Observe that Y ⊂ S is a witness of A(S, P ) if and only if it contains every
element of P . First, we have:

Corollary 4.7 ([1], Theorem 1.1). If P ⊂ Π is a finite set of isolated
punctures, then A(S, P ) is hyperbolic and has infinite diameter.

Proof. Since P is finite and every puncture is isolated, there exists a witness
containing only finitely many punctures (any finite-type surface containing
P will do). Now, part (2) of Theorem 1.1 applies with G(S) = A(S, P ), and
thus A(S, P ) has infinite diameter. Moreover, if Y is a finite-type witness
of A(S, P ) then G(Y ) = A(Y, P ∩ Y ), which is 7-hyperbolic by [11]. �

We stress that, in the particular case when S is a sphere minus the union
of the north pole and a Cantor set, the above result is originally due to
Bavard [2].

Remark 4.8. Observe that Mod(S) preserves the set of isolated punctures
of S. Therefore, if the set P of isolated punctures of S is finite, then A(S, P )
is a connected, Mod(S)-invariant which is hyperbolic and has infinite diam-
eter. Therefore we see that, in Corollary 1.4, the requirement about the
Mod(S)-orbits of punctures of S being infinite is necessary.

On the other hand, if P contains punctures that are not isolated, then the
situation is drastically different. More concretely, we recover the following
observation due to Bavard (stated as Proposition 3.5 of [1])

Corollary 4.9. Suppose P ⊂ Π contains a puncture that is not isolated.
Then A(S, P ) has finite diameter.

Proof. In this setting, every witness of Y contains infinitely many punctures.
Now part (1) of Theorem 1.1 applies. �

Finally, one could define, for disjoint finite subsets P,Q of isolated punc-
tures, let A(S, P,Q) be the subgraph of A(S) spanned by those arcs that
have one endpoint in P and the other in Q. In this situation we have the
following result, also due to Bavard (unpublished):

Corollary 4.10. The graph A(S, P,Q) is not hyperbolic.

Proof. Observe that Y is a witness of A(S, P,Q) if and only if it contains
P or Q. In particular, there are two disjoint witnesses of finite type, and
Proposition 1.3 applies. �
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5. Subgraphs of the curve graph

In this section we deal with connected subgraphs of the curve graph,
proving Theorems 1.6, 1.9, and 1.11. As mentioned in the introduction,
we restrict our attention to the case when Mod(S) acts on the relevant
subgraph.

We first prove Theorem 1.6. The arguments we will use are similar in
spirit to those used in the previous section, but adapted to this particular
setting.

Proof of Theorem 1.6. Let S be a surface as in the statement, and G(S) a
connected, Mod(S)-invariant subgraph of C(S).

Suppose first that G(S) ∩ Outer(S) 6= ∅. We want to conclude that
diam(G(S)) = 2. To this end, let α and β be arbitrary vertices of G(S).
If α and β are disjoint, there is nothing to prove, so assume that i(α, β) 6= 0.
Let F (α, β) be the subsurface of S filled by α and β, which has finite topo-
logical type since α and β are compact. Therefore, there exists a con-
nected component Y of S−F (α, β) that has infinitely many punctures. Let
γ ∈ G(S) ∩Outer(S). Since Mod(S) acts on G(S) and the Mod(S)-orbit of
every puncture is infinite, there exists h ∈ Mod(S) such that h(γ) ⊂ Y . In
particular, h(γ) is disjoint from both α and β and hence dG(S)(α, β) = 2.

Hence from now on, we assume that G(S) ∩Outer(S) = ∅. Suppose first
that, in addition, G(S) ∩ NonSep(S) = ∅, and so every element of G(S) is
a curve that separates S into two surfaces of positive genus. As remarked
by Schleimer (see Exercise 2.42 of [16]), G(S) has two disjoint witnesses,
and thus will fail to be hyperbolic. To construct these witnesses, consider
a multicurve M consisting of g + 1 non-separating curves on S such that
S−M is the disjoint union of two spheres W1,W2 with punctures which, by
construction, are witnesses for G(S). Let Pi be the finite subset of punctures
of Wi coming from the elements of M . Using subsurface projections as in
the previous section gives a quasi-isometric embedding

A(W1, P1)×A(W2, P2)→ G(S),

thus obtaining a quasi-isometrically embedded copy of Z2 inside G(S). In
particular, G(S) is not hyperbolic and has infinite diameter.

Suppose now that G(S)∩NonSep(S) 6= ∅, which in particular implies that
NonSep(S) ⊂ G(S), since Mod(S) acts on G(S). Note that, in addition, S
must have positive genus. We first claim:

Claim. The inclusion map NonSep(S) ↪→ G(S) is a quasi-isometry.

Proof of Claim. We begin by showing that the inclusion map is a quasi-
isometric embedding. In fact, more is true: we will prove that, given α, β ∈
NonSep(S) and a geodesic σ in G(S) between them, we can modify σ to a
geodesic σ′ in NonSep(S) of the same length. (We remark that this argument
is contained in the proof that the nonseparating curve complex is connected;
see Theorem 4.4 of [5].) Let γ ∈ σ be a separating curve. Then S−γ = Y ∪Z,
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where Y and Z both have positive genus since γ /∈ Outer(S). Let γL and γR
be the vertices of σ preceding (resp. following) γ. The assumption that σ is
geodesic implies that either γL, γR ⊂ Y or γL, γR ⊂ Z; suppose for the sake
of concreteness that we are in the former case. Since Z has positive genus,
it contains a nonseparating curve γ′ which, by construction, is disjoint from
γL and γR. Replacing γ by γ′ on σ produces a geodesic in G(S) with a
strictly smaller number of separating curves.

At this point, we know that the inclusion map NonSep(S) ↪→ G(S) is a
quasi-isometric embedding. To see that it is a quasi-isometry, observe that
every element of G(S) is at distance at most 1 from an element of NonSep(S).
This finishes the proof of the claim. �

In order to finish the proof of the theorem, it remains to show:

Claim. diam(NonSep(S)) =∞.

Proof of Claim. In a similar fashion to what we did in the previous section,
we are going to prove that, for every finite-type witness Y , the subgraph
NonSep(Y ) is quasi-isometrically embedded in NonSep(S); once this has
been done, the claim will follow since NonSep(Y ) has infinite diameter, a
fact that follows from Corollary 2.25 of [16], for instance.

In this direction, let Y be a finite-type witness of NonSep(S); in other
words, Y is a finite-type subsurface of S of the same genus as S; see Ex-
ample 3.4 above. Let A(Y, ∂Y ) be the subgraph of A(Y ) spanned by those
vertices that have both endpoints on ∂Y . Similarly, let ANonSep(Y ) be the
subgraph of AC(Y ) spanned by the vertices of NonSep(Y )∪A(Y, ∂Y ). The
inclusion map

NonSep(Y ) ↪→ ANonSep(Y )

is a quasi-isometry, where the constants do not depend on Y ; to see this,
one may use the standard argument to show that the embedding of C(Y )
into AC(Y ) is a uniform quasi-isometry (see for instance Exercise 3.15 of
[16]).

Now, as in the previous section there is a subsurface projection

πY : NonSep(S)→ ANonSep(Y )

that associates, to an element of NonSep(S), its intersection with Y . Using
an analogous reasoning to that of Lemma 4.3, we obtain that ANonSep(Y ),
and therefore, NonSep(Y ), is uniformly quasi-isometrically embedded in
NonSep(S), as desired. This finishes the proof of the claim, and thus that
of Theorem 1.6. �

�

The graph NonSep(S) has an intriguing geometric structure. Indeed,
using a small variation of the proof of Theorem 1.1, we obtain:
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Proposition 5.1. Let S be a connected surface of finite genus g and with
infinitely many punctures. Then NonSep(S) is hyperbolic if and only if
NonSep(Sg,n) is hyperbolic uniformly in n.

As remarked by Example 3.4 above, a subsurface Y of S is a witness for
NonSep(S) if and only if Y has genus g. Thus the finite-type witnesses of
NonSep(S) are precisely the subsurfaces of the form Sg,n; compare with part
(3) of Theorem 1.1.

Proof of Proposition 5.1. Let T be a geodesic triangle in NonSep(S). Since
T has finitely many vertices and curves are compact, there exists a finite-
type subsurface Y of S that contains every element of T . Thus we can
view T as a geodesic triangle in NonSep(Y ). If NonSep(Sg,n) is hyperbolic
uniformly in n, there is δ = δ(g) such that T has a δ-center α ∈ NonSep(Y )
(with respect to the distance function in NonSep(Y )). In particular, α is
at distance at most δ from the sides of T , where distance is measured in
NonSep(Y ), and hence is a δ-centre for T in NonSep(S). Thus, NonSep(S)
is δ-hyperbolic.

The other direction is analogous. �

As mentioned in the introduction, it is known that NonSep(Sg,n) is hyper-
bolic [10, 14], but in principle the hyperbolicity constant may well depend
on n. Thus we ask:

Question 5.2. For fixed g, is NonSep(Sg,n) hyperbolic uniformly in n?
More generally, is it hyperbolic uniformly in both g and n?

We now proceed to prove Theorem 1.9:

Proof of Theorem 1.9. Let S be a surface with infinite genus and finitely
many punctures. Let α, β ∈ G(S) and observe that the surface F (α, β) they
fill has finite topological type. Since G(S) is Mod(S)-invariant, if G(S) has
a vertex γ that is not an outer curve, we can find an element h ∈ Mod(S)
such that h(γ) ⊂ S − F (α, β). Therefore, if

G(S) ∩ (C(S)−Outer(S)) 6= ∅
then diam(G(S)) ≤ 2, as desired. �

As mentioned in the introduction, a natural problem after Theorem 1.9
is to decide whether Outer(S) is hyperbolic. Using an obvious modification
of the argument behind Proposition 5.1, we have:

Proposition 5.3. Let S be an infinite-genus surface with a finite number
n of punctures. Then Outer(S) is hyperbolic if and only if Outer(Sg,n) is
hyperbolic uniformly in g.

Thus we ask:

Question 5.4. For a fixed n, is Outer(Sg,n) hyperbolic uniformly in g? Is
it hyperbolic uniformly both g and n?
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Contrary to the situation with the nonseparating curve graph, it is not
even known whether Outer(Sg.n) is hyperbolic if g ≥ 1. However, it is
plausible that this is the case, in light of Masur-Schleimer’s conjectural piece
[14] that the only obstruction to hyperbolicity is having a pair of disjoint
holes; compare with the comment after Example 3.4 above.

On the other hand, we remark that Outer(S) generally contains natu-
ral subgraphs that are not hyperbolic, as we now explain. Given a surface
with a finite number n of punctures, denote by Outer(S, k) the subgraph of
Outer(S) spanned by those vertices that separate S into two components,
where one contains k punctures and the other n− k. We have the following
observation, which again follows from Scheimer’s Disjoint Witnesses Prin-
ciple [16]:

Proposition 5.5. Let S be a connected orientable surface of positive genus,
and with a finite number n ≥ 4 of punctures. Then Outer(S, n − 1) is not
hyperbolic.

Proof. Under the assumptions of the theorem, S contains two disjoint es-
sential subsurfaces S1 and S2 such that Si contains at least [n/2] punctures
of S. Indeed, as in the proof of Theorem 1.6, it suffices to consider a mul-
ticurve M on S consisting of g + 1 nonseparating curves and such that the
result of cutting S open along the elements of M is the disjoint union of two
punctured spheres.

Now, Si is a witness of Outer(S, n−1) and, again using subsurface projec-
tions, we get that Outer(S, n − 1) contains a quasi-isometrically embedded
copy of A(S1) × A(S2). Finally, we may assume that A(Si) has infinite
diameter, using for instance the construction of Si in the paragraph above.
Hence the result follows. �

We stress there are other values of k apart from n−1 that will do, provided
one chooses n large enough; we urge the interested reader to find more such
values.

Finally, we prove Theorem 1.11:

Proof. Let S be a connected orientable punctured surface of infinite genus,
such that the Mod(S)-orbit of every puncture is infinite. Consider a Mod(S)-
invariant subgraph G(S) of C(S). Let α and β be arbitrary vertices of G(S),
noting again that the subsurface F (α, β) filled by them has finite type.
As such, there exist two (possibly equal) connected components Y,Z of
S −F (α, β) such that Y has infinitely many punctures, while Z has infinite
genus.

Let γ ∈ G(S) be an arbitrary curve. If γ is an outer curve, then we can
use the argument of the proof of Theorem 1.9 to find an element h ∈ Mod(S)
such that h(γ) ⊂ Y , thus giving a path of length 2 in G(S) between α and
β. Otherwise, γ is either non-separating or else it separates S into two
subsurfaces of positive genus. In either case, by the reasoning in the proof
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of Theorem 1.6, we can find an element h′ ∈ Mod(S) such that h′(γ) ⊂ Z.
In particular, α and β are at distance 2 in G(S), and we are done. �

References

[1] J. Aramayona, A. Fossas, H. Parlier. Arc and curve graphs for infinite-type surfaces.
Preprint 2015.
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