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Abstract. We observe that automorphism groups of right-angled Artin
groups contain nilpotent non-abelian subgroups, namely the three-dimensional
integer Heisenberg group, provided they admit a certain type of element,
called an adjacent transvection. This represents a (minor) extension of
a result of Charney-Vogtmann [6].

1. Introduction

Automorphism groups of right-angled Artin groups (RAAGs) are nor-
mally studied through their comparison with linear groups and automor-
phism groups of free groups (and thus, by extension, with mapping class
groups). One fact that distinguishes the linear group GL(n,Z) from the au-
tomorphism group Aut(Fn) of the free group Fn, and from the mapping class
group Mod(S), is that every solvable subgroup of the latter two is virtually
abelian; see [2, 1] and [3], respectively. In sharp contrast, arbitrary automor-
phism groups of RAAGs may contain a copy of GL(n,Z) with n ≥ 3. Even
when this is not the case, Charney-Vogtmann [6] proved that (outer) auto-
morphism groups of RAAGs contain torsion-free nilpotent and non-abelian
subgroups, whenever they contain at least two adjacent transvections; see
below for a definition. Further examples may be found in [7].

The purpose of this short note is to observe that the presence of a single
adjacent transvection suffices for the (full) automorphism group of a center-
less RAAG to contain a nilpotent non-abelian subgroup. We remark that
Charney-Vogtmann showed that if there are no adjacent transvections, every
solvable subgroup of Out(AΓ) is virtually abelian [6] .

Before we state our result, denote by ≤ the usual partial order in the
vertex set V (Γ) of Γ; see section 2. Also, let H3(Z) be the three-dimensional
integer Heisenberg group, that is the group of upper-triangular 3×3 matrices
with integer entries, which has presentation

H3(Z) = 〈A,B,C | [A,C] = [B,C] = 1, [A,B] = C〉.

With this notation, we will observe:

Theorem 1.1. Let Γ be a simplicial graph. If there are adjacent vertices
a, b ∈ V (Γ) with a ≤ b, and which are not adjacent to all the vertices of Γ,
then H3(Z) is a subgroup of Aut(AΓ).

As a consequence, for such Γ the group Aut(AΓ) does not embed in
Mod(S) or Aut(Fn). A further immediate application is that no finite-index
subgroup of such Aut(AΓ) may act nicely on non-positively curved space:
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Corollary 1.2. If Γ is as in Theorem 1.1 , then no finite-index subgroup of
Aut(AΓ) can act properly by semi-simple isometries on a CAT(0) space.

For completeness we prove Corollary 1.2 in Section 4, although it is surely
well-known to experts, and essentially appears as Corollary 5.1 of [10]. In
sharp contrast, we note that Aut(AΓ) and Out(AΓ) are sometimes commen-
surable to a right-angled Artin group [5, 7], and therefore they act nicely on
CAT(0) spaces.

2. Definitions

In order to make this note as concise and self-contained as possible, we
only introduce the objects that we will need in the proof of our results.
We refer the reader to the various papers in the bibliography below for a
thorough introduction to automorphism groups of RAAGs.

Let Γ be a simplicial graph, and denote by V (Γ) (resp. E(Γ)) its set of
vertices (resp. edges). The RAAG AΓ defined by Γ is the group given by
the presentation

AΓ = Γ = 〈v ∈ V (Γ) | [v, w] = 1 ⇐⇒ vw ∈ E(Γ)〉 .
Given a RAAG AΓ, we consider its automorphism group Aut(AΓ). This

is a finitely presented group with an explicit generating set [11, 12] and an
explicit (although in slightly different terms) presentation [9].

Here, we will need a specific type of element of Aut(AΓ) and Out(AΓ),
called a tranvection. Given vertices v, w ∈ V (Γ), the transvection tvw is the
self-map of AΓ defined by

tvw : v 7→ vw

and tvw(u) = u for every u 6= v. An easy observation is that tvw ∈ Aut(AΓ)
if and only if lk(v) ⊂ st(w); here, lk(·) denotes the link of a vertex in Γ,
while st(·) denotes its star, namely the link union the vertex. As usual in
the literature, we will write v ≤ w to mean lk(v) ⊂ st(w), noting that the
relation ≤ is in fact a partial order. Finally, we say that tvw is an adjacent
transvection if v and w are adjacent in Γ.

3. A homomorphic image of the Heisenberg group

We now prove Theorem 1.1:

Proof of Theorem 1.1. Let a, b be adjacent vertices of Γ, with a ≤ b and
which are not adjacent to every vertex of Γ. We write ca and cb for the
automorphisms of AΓ given by conjugation by a and b, respectively. Finally,
let t = tab the transvection that sends a to ab and fixes the rest of the
generators of AΓ.

First, observe that ca and cb commute since a and b are adjacent. Next,
we claim that [cb, t] = 1 also. Indeed, if v 6= a,

tcbt
−1(v) = tcb(v) = t(bvb−1) = bvb−1 = cb(v),

and
tcbt

−1(a) = tcb(ab
−1) = t(bab−2) = babb−2 = cb(a).

Finally, we claim that tcat
−1 = cbca. Indeed, if v 6= a then

tcat
−1(v) = tca(v) = t(ava−1) = abvb−1a−1 = cacb(v) = cbca(v),
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while

tcat
−1(a) = tca(ab−1) = t(a2b−1a−1) = ababb−1b−1a−1cbca(a),

as desired.
In light of the above, and using notation for the presentation of H3(Z)

given in the introduction, the map H3(Z) → Aut(AΓ) given by A 7→ ca,
B 7→ t, and C 7→ cb is a homomorphism. We now want to prove that it is
also injective.

From the presentation of H3(Z), we see that any of its elements can be
written as AmBnCp for some m,n, p ∈ Z. Furthermore, AmBnCp = 1 if
and only if m = n = p = 0. Indeed, we first deduce from the equality
AmBnCp = 1 that m = n = 0 by looking at the image of AmBnCp into
the abelianization of H3(Z); therefore, our equality reduces to Cp = 1, and
finally p = 0 follows from the torsion-freeness of H3(Z). Thus, in order to
prove that our homomorphism H3(Z)→ Aut(AΓ) is injective, we only have
to verify that, for every m,n, p ∈ Z, cma tncpb = 1 implies m = n = p = 0.

So let m,n, p ∈ Z and suppose that cma tncpb = 1. Noting that

cma tncpb(a) = cma tn(bpab−p) = cma tn(a) = cma (abn) = amabna−m = abn,

we first deduce that n = 0. Therefore, cma cpb = 1. This precisely means
that ambp belongs to the center of AΓ. On the other hand, the center of
AΓ corresponds exactly to the subgroup generated by the vertices which are
adjacent to every vertex of Γ. Because we supposed that neither a nor b is
adjacent to every vertex of Γ, it follows that ambp = 1. Therefore, we deduce
that am = bp = 1, and finally that m = p = 0 since AΓ is torsion-free. �

4. Actions on CAT(0) spaces

We prove Corollary 1.2:

Proof. Let Γ as in Theorem 1.1, so there exist adjacent vertices a, b ∈ V (Γ)
with a ≤ b and which are not adjacent to all the vertices of Γ. As above,
write ca and cb for the conjugations on a and b, respectively, and t for
the transvection tab. Note that ca and cb are infinite-order automorphisms
because a and b do not belong to the center of AΓ.

Consider a finite-index subgroup G < Aut(AΓ); as such, there exists some
m ≥ 1 such that cma , cmb , tm ∈ G. It is immediate to check that, for all n ∈ N,

(1) tncma t−n = cma cmn
b .

Suppose now that G acts properly by semi-simple isometries on some CAT(0)
space X. As cma and cmb commute, the Flat Torus Theorem [4] implies that
X contains an isometrically embedded copy of a Euclidean plane, on which
cma and cmb act by translations with quotient a 2-torus. It follows that, as
a transformation of this plane, the translation length of cma cmn

b must tend
to infinity as n grows; on the other hand, equation (1) implies that this
translation length must be equal to that of cma . This is a contradiction, and
the result follows. �

A possible interpretation of the previous proof is the following. As The-
orem 1.1 proves, Aut(AΓ) contains a copy of the three-dimensional integer
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Heisenberg group

H3(Z) = 〈A,B,C | [A,C] = [B,C] = 1, [A,B] = C〉.
It is not difficult to notice that, for any k ≥ 1, the subgroup 〈Ak, Bk, Ck〉 ≤
H3(Z) is naturally isomorphic to H3(Z) itself, so that any finite-index sub-
group of Aut(AΓ) has to contain a copy of H3(Z). Therefore, Corollary 1.2
follows from the fact that H3(Z) does not act properly by simple-isometries
on a CAT(0) space. This essentially what we have shown in the previous
proof. An alternative argument can be found in [10, Corollary 5.1], where
it is furthermore proved that, for any proper action of H3(Z) on a CAT(0)
space, C is necessarily parabolic. It is worth noticing that H3(Z) has a
proper parabolic action on the complex hyperbolic plance H2

C, which is a
proper finite-dimensional CAT(−1) space [10, Corollary 5.1].
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