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Abstract. We use Galois theory of difference equations to study the nature of the generating
series of (weighted) walks in the quarter plane with genus zero kernel curve. Using this

approach, we prove that the generating series do not satisfy any nontrivial (possibly nonlinear)

algebraic differential equation with rational coefficients.
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Introduction

The generating series of lattice walks in the quarter plane have garnered much interest in
recent years. In [DHRS18], we introduced a new method that allowed us to study the nature
of the generating series of many lattice walks with small steps (i.e., whose step set is a subset
of {−1, 0, 1}2\{(0, 0)}) in the quarter plane. In particular, the paper [DHRS18] is concerned
with the differential nature of these generating series, the basic question being: which of them
satisfy differential equations? The present paper is a continuation of this research. We will
study weighted models of walks with small steps in the quarter plane Z2

≥0. More precisely, let

(di,j)(i,j)∈{0,±1}2 be a family of elements of Q ∩ [0, 1] such that
∑
i,j di,j = 1. We encode the

eight cardinal directions of the plane by pairs of integers (i, j) with i, j ∈ {0, 1}. We consider a
weighted walk in the quarter plane Z2

≥0 satisfying the following properties:

• it starts at (0, 0);
• it takes steps in a certain subset of the set of cardinal directions, which is called the

model of the walk.

For (i, j) ∈ {0,±1}2\{(0, 0)} (resp. (0, 0)), the element di,j is a weight on the step (i, j) and can
be viewed as the probability for the walk to go in the direction (i, j) (resp. to stay at the same
position). The step set or the model of the walk corresponds the set of directions with nonzero
weights, that is,

{(i, j) ∈ {0,±1}2\{(0, 0)}|di,j 6= 0}.
If d0,0 = 0 and if the nonzero di,j all have the same value, we say that the model is unweighted.

The weight of the walk is defined to be the product of the weights of its component steps. For
any (i, j) ∈ Z2

≥0 and any k ∈ Z≥0, we let qi,j,k be the sum of the weights of all walks reaching

the position (i, j) from the initial position (0, 0) after k steps. We introduce the corresponding
trivariate generating series∗

Q(x, y, t) :=
∑

i,j,k≥0

qi,j,kx
iyjtk.

The typical questions considered in the literature are:

• is Q(x, y, t) algebraic over Q(x, y, t)?
• is Q(x, y, t) x-holonomic (resp. y-holonomic), i.e., is Q(x, y, t), seen as a function of x, a

solution of some nonzero linear differential equation with coefficients in Q(x, y, t)?
• is Q(x, y, t) x-differentially algebraic (resp. y-differentially algebraic), i.e. is Q(x, y, t),

seen as a function of x, a solution of some nonzero (possibly nonlinear) polynomial
differential equation with coefficients in Q(x, y, t)? In case of a negative answer, we say
that Q(x, y, t) is x-differentially transcendental (resp. y-differentially transcendental)†.

Before describing our main result, we will briefly describe the state of the art. In the seminal
paper [BMM10], Bousquet-Mélou and Mishna studied such questions in the unweighted case (see
also [Mis09]). Taking symmetries into consideration and eliminating unweighted models equiv-
alent to models on the half plane (whose generating series is algebraic), Bousquet-Mélou and
Mishna first showed that, amongst the 256 possible unweighted models, it is sufficient to study
the above questions for an explicit list of 79 unweighted models. Following ideas of Fayolle,
Iasnogorodski and Malyshev (see for instance [FIM99, FIM17]), they associated to each un-
weighted model a group of birational automorphisms of C2 and classified the unweighted models
accordingly. They found that 23 of the 79 above-mentioned unweighted models were associated

∗In several papers it is not assumed that
∑

i,j di,j = 1. But after a rescaling of the t variable, we may always

reduce to the case
∑

i,j di,j = 1.
† We changed the terminology we used in [DHRS18], namely hyperalgebraic and hypertranscendent, because

we believe that differentially algebraic and differentially transcendental are more transparent terms.



WALKS IN THE QUARTER PLANE: GENUS ZERO CASE 3

with a finite group and showed that for all but one of these 23 models, the generating series
was x-, y- and t-holonomic; the remaining one was shown to have the same property by Bostan,
van Hoeij and Kauers in [BvHK10]. In [BMM10], Bousquet-Mélou and Mishna conjectured that
the 56 unweighted models whose associated group is infinite are not holonomic. Furthermore,
following Fayolle, Iasnogorodski and Malyshev, the 56 unweighted models may be gathered into
two families according to the genus of an algebraic curve, called the kernel curve, attached to
each model:

• 5 of these unweighted models lead to a curve of genus zero; they will be called the genus
zero unweighted models

• 51 of them lead to a curve of genus one; they will be called the genus one unweighted
models

In [KR12], Kurkova and Raschel showed that the 51 genus one unweighted models with infi-
nite group have nonholonomic generating series (see also [BRS14, Ras12]). Recently, Bernardi,
Bousquet-Mélou and Raschel [BBMR15, BBMR17] have shown that 9 of these 51 unweighted
models have x- and y-differentially algebraic generating series, despite the fact that they are not
x- or y-holonomic.

In [DHRS18], we introduced a new approach to these problems that allowed us to show that,
except for the 9 exceptional unweighted models of [BBMR15, BBMR17], the generating series of
genus one unweighted models with infinite groups are x- and y-differentially transcendental. This
reproves and generalizes the results of [KR12]. Furthermore our results allowed us to show that
the 9 exceptional series are not holonomic but are x- and y-differentially algebraic, recovering
some of the results of [BBMR15, BBMR17]. It is worth mentioning that there are several results
in the literature about the behavior of Q(x, y, t) with respect to the variable t. For instance, in
[MR09], Mishna and Rechnitzer showed that Q(1, 1, t) is not t-holonomic for two of the 5 genus
zero unweighted models and in [MM14], Melczer and Mishna showed that this remained true for
all 5 of the genus zero unweighted models. On the other hand, Bostan, Raschel and Salvy proved
in [BRS14] that Q(0, 0, t) is not t-holonomic for every genus one unweighted model with an
infinite group. We also note that, in [BBMR15, BBMR17], it is shown that the generating series
of the 9 exceptional genus zero unweighted models mentioned above are differentially algebraic
in the variable t as well. Finally, the first two authors proved in [DH19] that, if the generating
series is x- or y-differentially transcendental, then it is t-differentially transcendental. Thus,
although the present paper focuses on the x- and y-differential properties of Q(x, y, t), it also
gives information concerning its t-differential properties.

In the present paper, we start from the 5 unweighted models corresponding to a genus zero
kernel curve. These models arise from the following 5 sets of steps.

(S)

We say that a weighted model arises from (S) when this model is obtained by choosing a set of
steps in (S) and by assigning nonzero weights to this set of steps. One can show that the kernel
curve of a weighted model arising from (S) is still a genus zero curve. Our main result may be
stated as follows:

Main Theorem. If 0 < t < 1 is transcendental‡ and if the weighted model arises from (S), then
Q(x, y, t) is x- and y-differentially transcendental.

Our study generalizes the result of Mishna and Rechnitzer on the non holonomy of the com-
plete generating series of the unweighted models of walks {NW,N, SE} and {NW,NE,SE}
(see [MR09, Theorem 1.1]) and also the one by Melczer and Mishna (for the five cases). Our

‡This assumption is used repeatedly in our proofs and is crucial in our proof of Proposition 3.4.
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strategy of proof is inspired by [FIM17, Chapter 6]. We associate to each of the generating series
of these weighted models a function meromorphic on C. These associated functions satisfy first
order difference equations of the form y(qs) − y(s) = b(s) for a suitable q ∈ C and b(s) ∈ C(s).
The associated functions are differentially transcendental if and only if the generating series are
differentially transcendental. We then use criteria stating that if these associated functions were
differentially algebraic then the b(s) must themselves satisfy b(s) = h(qs)−h(s) for some rational
functions h(s) on C. This latter condition puts severe limitations on the poles of the b(s) and,
by analyzing the b(s) that arise, we show that these restrictions are not met. Therefore the
generating series are not differentially algebraic, see Theorem 3.1. Note that some unweighted
models of walks in dimension three happen to be, after projection, equivalent to two dimensional
weighted models of walks [BBMKM16, DHW16]. We apply our theorem in this setting as well.
We note that finding the difference equation y(qs)− y(s) = b(s) and the remaining calculations
involve only algebraic computations as is true in [DHRS18]. The general approach followed
in the present work is inspired by [DHRS18] but the details are quite different and justify an
independent exposition.

The rest of the paper is organized as follows. In Section 1, we first present the generating
series attached to a weighted model of walks and we give some of their basic properties. We
then introduce the kernel curves (they are algebraic curves associated to any model of walk in
the quarter plane) and we state some of their properties. One of their main properties is that,
for the weighted models arising from (S), the kernel curves have genus zero and, hence, can be
parameterized by birational maps from P1(C). Such parameterizations, suitable for our needs,
are given at the end of Section 1. In Section 2, using these parameterizations, we attach to
any model some meromorphic functions on C that satisfy simple q-difference equations of the
form y(qs)− y(s) = b(s) for some b(s) ∈ C(s). Moreover, we prove that these meromorphic
functions are differentially algebraic if and only if the generating series of the associated models
are differentially algebraic. In addition, we present necessary conditions on the poles of b when
these equations have differentially algebraic solutions. In Section 3, we show that these necessary
conditions do not hold for the weighted models arising from (S).

Acknowledgments The authors would like to thank Kilian Raschel for pointing out many
references related to this work. In addition, we would like to thank the anonymous referees for
many useful comments and suggestions concerning this article.

1. Weighted walks in the quarter plane: generating series, functional equation
and kernel curve

In this section, we consider a weighted walk with small steps in the quarter plane Z2
≥0 and

the corresponding trivariate generating series Q(x, y, t) as in the introduction. We first recall a
functional equation satisfied by Q(x, y, t). We then recall the definition of the so-called kernel
curve associated to the walk under consideration and give its main properties when the steps set
is one of the five steps sets listed in (S).

1.1. Kernel and functional equation. The kernel of a weighted model is defined by

K(x, y, t) := xy(1− tS(x, y))

where
S(x, y) =

∑
(i,j)∈{0,±1}2 di,jx

iyj

= A−1(x) 1
y +A0(x) +A1(x)y

= B−1(y) 1
x +B0(y) +B1(y)x,

and Ai(x) ∈ x−1Q[x], Bi(y) ∈ y−1Q[y].
The following result generalizes [BMM10, Lemma 4].
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Lemma 1.1. The generating series Q(x, y, t) satisfies the following functional equation:

(1.1) K(x, y, t)Q(x, y, t) = xy − F 1(x, t)− F 2(y, t) + td−1,−1Q(0, 0, t)

where

F 1(x, t) := −K(x, 0, t)Q(x, 0, t), F 2(y, t) := −K(0, y, t)Q(0, y, t).

Proof. As in [BMM10, Lemma 4], we proceed as follows. First, let us prove that if we do not
consider the quadrant constraint, the functional equation would be (1− tS(x, y))Q(x, y, t) = 1.

Indeed, in this situation, if we write Q(x, y, t) =

∞∑
`=0

Q`(x, y)t`, then Q0(x, y) = 1 and

Q`+1(x, y) = S(x, y)Q`(x, y). This is exactly (1 − tS(x, y))Q(x, y, t) = 1. However, this for-
mula does not take into account the quadrant constraint. We need to withdraw the walks that
leave the x-axis (resp. y-axis), i.e. ty−1A−1(x)Q(x, 0, t) (resp. tx−1B−1(y)Q(0, y, t)). Since
we withdraw two times the walks going from (0, 0) in south west, we have to add the term
tx−1y−1d−1,−1Q(0, 0, t). So

(1−tS(x, y))Q(x, y, t) = 1−ty−1A−1(x)Q(x, 0, t)−tx−1B−1(y)Q(0, y, t)+tx−1y−1d−1,−1Q(0, 0, t).

It now suffices to multiply by xy the above equality. �

1.2. The algebraic curve defined by the kernel. We recall that the affine curve Et defined
by the kernel K(x, y, t) is given by

Et = {(x, y) ∈ C× C | K(x, y, t) = 0}.

In Section 2 we show that the problem of showing that Q(x, y, t) is x- and y-differentially tran-
scendental can be reduced to understanding the relations among the poles of a rational function
on Et. When dealing with a rational function b(s) on C, one often needs to consider its behavior
”as s goes to infinity”. Although this can frequently be finessed, it is convenient to add a point
at infinity, constructing the complex projective line as defined below, and consider the behavior
at this point. When dealing with rational functions on curves in the affine plane, their behavior,
such as the appearance of poles, often depends on missing points ”at infinity” and we will see
that this is the case in Section 2. To do this we must include the missing points at infinity and so
it is useful to compactify such a curve by adding these points. This can be done in several ways
(see Remark 1.2 below) but, as in [DHRS18], it will be useful to consider a compactification Et
of Et in P1(C)× P1(C), which is called the kernel curve.

We first recall that P1(C) denotes the complex projective line, which is the quotient of C ×
C \ {(0, 0)} by the equivalence relation ∼ defined by

(x0, x1) ∼ (x′0, x
′
1)⇔ ∃λ ∈ C∗, (x′0, x′1) = λ(x0, x1).

The equivalence class of (x0, x1) ∈ C × C \ {(0, 0)} is usually denoted by [x0 : x1] ∈ P1(C).
The map x 7→ [x : 1] embeds C inside P1(C). The latter map is not surjective: its image is
P1(C) \ {[1 : 0]}; the missing point [1 : 0] is usually denoted by ∞. Now, we embed Et inside
P1(C)× P1(C) via (x, y) 7→ ([x : 1], [y : 1]). The kernel curve Et is the closure of this embedding
of Et. In other words, the kernel curve Et is the algebraic curve defined by

Et = {([x0 : x1], [y0 : y1]) ∈ P1(C)× P1(C) | K(x0, x1, y0, y1, t) = 0}

where K(x0, x1, y0, y1, t) is the following bihomogeneous polynomial

(1.2) K(x0, x1, y0, y1, t) = x2
1y

2
1K(

x0

x1
,
y0

y1
, t) = x0x1y0y1 − t

2∑
i,j=0

di−1,j−1x
i
0x

2−i
1 yj0y

2−j
1 .
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•

•

•

•

•

P ι2(P )

ι1(P ) σ(P )

σ−1(P )
Et

Figure 1. The maps ι1, ι2 restricted to the kernel curve Et

Since K(x0, x1, y0, y1, t) is quadratic in each of the variables, the curve Et is naturally endowed
with two involutions ι1, ι2, namely the vertical and horizontal switches of Et defined, for any
P = (x, y) ∈ Et, by

{P, ι1(P )} = Et ∩ ({x} × P1(C)) and {P, ι2(P )} = Et ∩ (P1(C)× {y})

(see Figure 1). Let us also define

σ := ι2 ◦ ι1.

Remark 1.2. There are several choices for the compactification of Et. For instance, we could
have compactified the curve Et in the complex projective plane P2(C) instead of P1(C) × P1(C)
but, in this case, the compactification is not defined by a biquadratic polynomial so that the
construction of the above-mentioned involutions in that situation is not so natural.

Assumption 1.3. From now on, we consider a weighted model arising from (S) and we fix a
transcendental real number 0 < t < 1.§

Proposition 1.4. The curve Et is an irreducible genus zero curve.

Proof. This is the analog of [FIM17, Lemmas 2.3.2, 2.3.10], where the case t = 1 is considered. �

1.3. Parametrization of Et. Since Et has genus zero, there is a rational parameterization of
Et, see [Ful89, Page 198, Ex.1], i.e., there exists a birational map

φ : P1(C) → Et
s 7→ (x(s), y(s)).

Proposition 1.5 below gives such an explicit parametrization, which induces a bijection between
P1(C) \ φ−1(Ω) and Et \ {Ω}, where Ω = ([0 : 1], [0 : 1]) ∈ Et. It is the analogue of [FIM17,
Section 6.4.3], where the case t = 1 is considered. The proof is similar for t transcendental and
the details are left to the reader.

We first introduce some notations. For any [x0 : x1] and [y0 : y1] in P1(C), we denote by
∆x

[x0:x1] and ∆y
[y0:y1] the discriminants of the degree two homogeneous polynomials given by

y 7→ K(x0, x1, y, t) and x 7→ K(x, y0, y1, t) respectively. We have

∆x
[x0:x1] = t2

(
(−1

t
x0x1 + d0,0x0x1 + d1,0x

2
0)2 − 4d1,−1x

2
0(d−1,1x

2
1 + d0,1x0x1 + d1,1x

2
0)
)

§In this paper, we have assumed that the di,j belong to Q, but everything stays true if we assume that di,j
are positive real numbers and that t is transcendental over the field Q(di,j).
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and

∆y
[y0:y1] = t2

(
− 1

t
y0y1 + d0,0y0y1 + d0,1y

2
0)2 − 4d−1,1y

2
0(d1,−1y

2
1 + d1,0y0y1 + d1,1y

2
0)
)
.

Let us write

∆x
[x:1] =

4∑
`=2

α`x
`

and let a1 = a2 = 0, a3, a4 be the four roots of this polynomial. Similarly, let us write

∆y
[y:1] =

4∑
`=2

β`x
`

and let b1 = b2 = 0, b3, b4 be the four roots of this polynomial. We have

α2(t) = 1− 2td0,0 + t2d2
0,0 − 4t2d−1,1d1,−1 β2(t) = 1− 2td0,0 + t2d2

0,0 − 4t2d1,−1d−1,1

α3(t) = 2t2d1,0d0,0 − 2td1,0 − 4t2d0,1d1,−1 β3(t) = 2t2d0,1d0,0 − 2td0,1 − 4t2d1,0d−1,1

α4(t) = t2(d2
1,0 − 4d1,1d1,−1) β4(t) = t2(d2

0,1 − 4d1,1d−1,1).

Moreover, a3, a4, b3 and b4 are given by the following formulas

a3 a4

α4(t) 6= 0

[
−α3(t)−

√
α3(t)2−4α2(t)α4(t)

2α4(t) : 1

] [
−α3(t)+

√
α3(t)2−4α2(t)α4(t)

2α4(t) : 1

]
α4(t) = 0 [1 : 0] [−α2(t) : α3(t)]

b3 b4

β4(t) 6= 0

[
−β3(t)−

√
β3(t)2−4β2(t)β4(t)

2β4(t) : 1

] [
−β3(t)+

√
β3(t)2−4β2(t)β4(t)

2β4(t) : 1

]
β4(t) = 0 [1 : 0] [−β2(t) : β3(t)]

Proposition 1.5. An explicit parameterization φ = (x, y) : P1(C)→ Et is given by

φ(s) =

(
4α2(t)√

α3(t)2 − 4α2(t)α4(t)(s+ 1
s )− 2α3(t)

,
4β2(t)√

β3(t)2 − 4β2(t)β4(t)( sλ + λ
s )− 2β3(t)

)
for a certain λ ∈ C∗. Moreover we have (see Figure 2)

x(0) = x(∞) = a1, x(1) = a3, x(−1) = a4,
y(0) = y(∞) = b1, y(λ) = b3, y(−λ) = b4,

where a1 = a2 = [0 : 1] (resp. b1 = b2 = [0 : 1]).

Remark 1.6. When t = 1, we recover the uniformization of [FIM17, Section 6.4.3]. Note that
if we consider x3, x4 (resp. y3, y4) defined in [FIM17, Chapter 6], we have the equality of sets
{a3, a4} = {x3, x4} and {b3, b4} = {y3, y4}, but do not have necessarily ai = xi, bj = yj, with
3 ≤ i, j ≤ 4.

The number

q := λ2

will be crucial in the rest of the paper. The following lemma determines q up to its inverse.

Proposition 1.7. One of the two complex numbers {q, q−1} is equal to

(1.3)
−1 + d0,0t−

√
(1− d0,0t)2 − 4d1,−1d−1,1t2

−1 + d0,0t+
√

(1− d0,0t)2 − 4d1,−1d−1,1t2
.
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0 ∞

1

−1

λ

−λ

Ω

(a3, ∗)

(a4, ∗)

(∗, b3)

(∗, b4)

φ : P1(C) −→ Et

Figure 2. The uniformization map

Proof. Using the explicit formulas for x(s) and y(s), we get

lim
s→0

x(s)

y(s)
=
λα2(t)

√
β3(t)2 − 4β2(t)β4(t)

β2(t)
√
α3(t)2 − 4α2(t)α4(t)

and lim
s→0

x(1/s)

y(1/s)
=

α2(t)
√
β3(t)2 − 4β2(t)β4(t)

λβ2(t)
√
α3(t)2 − 4α2(t)α4(t)

.

But, x(1/s)
y(1/s) = x(s)

y(ι̃1(s)) . So, the above two limits imply the following:

lim
s→0

y(ι̃1(s))

y(s)
= q.

Now, let us note that y(s), y(ι̃1(s)) equals to

−x+ d0,0xt+ d1,0x
2t±

√
(x− d0,0xt− d1,0x2t)2 − 4d1,−1x2t2(d−1,1 + d0,1x+ d1,1x2)

−2d−1,1t− 2d0,1xt− 2d1,1x2t
,

with the shorthand notation x = x(s). Since x(s) tends to 0 when s goes to 0, we obtain the
result. �

Remark 1.8. One of the referees remarked that for the special case d0,0 = 0, and d1,−1 =
d−1,1 = d, the inverse of (1.3) becomes

−1 +
√

1− 4d2t2

−1−
√

1− 4d2t2
=

1−
√

1− 4d2t2

1 +
√

1− 4d2t2
=

(1−
√

1− 4d2t2)2

4d2t2
=

1−
√

1− 4d2t2

2d2t2
− 1.

This expression is very similar to the generating series 1−
√

1−4x
2x of the Catalan numbers. Re-

grettably, we do not have, in general, a combinatorial interpretation of q.

Remark 1.9. The uniformization is not unique. More precisely, the possible uniformizations
are of the form φ ◦ h, where h is an homography. However, if one requires that h fixes setwise
0,∞ then q is uniquely defined up to its inverse.

The real q or q−1 specializes for t = 1 to the real ρ2 in [FIM17, Page 178]. In [FIM17, (7.2.18)
and Proposition 7.2.3] it is proved that the ratio of the argument of ρ by π is related to the angle
between the tangent lines to the curve E1, the kernel curve at t = 1, and the horizontal axis.
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This relation is obtained by a degeneracy argument from the genus 1 case to the genus 0 case.
More precisely, let ω3 be the period attached to the automorphism of the model of the walk in an
elliptic lattice Zω1 + Zω2 corresponding the elliptic kernel curve and where ω2 is a real period.

Then, arg(ρ)
π is obtained by degeneracy of the fraction ω3

ω2
from the genus 1 to the genus 0 case.

It is not completely obvious if these arguments pass to the situation where t varies. In the zero
drift situation, this has been done in [FR11]. In the general situation, it might be interesting to

compute the rotation number ω3(t)
ω2(t) of the real elliptic fibration ([Dui10, Page 82]) and to study

its degeneracy. One could then expect that the ratio of the argument of q by 2π is counting the
number of rotations of the curve around the origin induced by the action of the automorphism of
the model of the walk.

Corollary 1.10. We have q ∈ R \ {±1}.

Proof. We first claim that (1− d0,0t)
2 − 4d1,−1d−1,1t

2 > 0. We know that the di,j are ≥ 0, that
the sum of the di,j is equal to 1 and that the model is not included in {(0, 0), (1,−1), (−1, 1)}.
Therefore, we have 1 > d0,0 + d1,−1 + d−1,1, i.e., 1−d0,0 > d1,−1 +d−1,1. Since t ∈]0, 1[, we have
1− d0,0t > 1− d0,0. Thus, (1− d0,0t)

2 > (1− d0,0)2 > (d1,−1 + d−1,1)2 and, hence,

(1− d0,0t)
2 − 4d1,−1d−1,1t

2 > (d1,−1 + d−1,1)2 − 4d1,−1d−1,1t
2

≥ (d1,−1 + d−1,1)2 − 4d1,−1d−1,1 = (d1,−1 − d−1,1)2 ≥ 0.

This proves our claim.
Now Proposition 1.7 implies that q is a real number 6= 1. Moreover, it also shows that q = −1

if and only if −1 + d0,0t = 0. But this is excluded because 1 > d0,0t. �

In particular, this implies that the birational maps σ and σ̃ have infinite order (see also
[BMM10, FR11]). It follows that the group associated with these models of walks, namely the
group 〈i1, i2〉 generated by i1 and i2, has infinite order (because σ is induced on Et by i1 ◦ i2,
so if σ has infinite order then 〈i1, i2〉 has infinite order as well). Note that in [BMM10], this was
proved using a valuation argument. Using the valuation of the successive elements (i1◦i2)`(f) for
` ∈ Z and f ∈ Q(x, y), it was proved that i1 ◦ i2 could not be of finite order. Initially, the group
of the weighted model was defined as a group of birational transformations of C2, generated by
two involutions. This is the group studied in [BMM10]. It is a finite group if and only if the
automorphism of the weighted model σ is of finite order.

2. Analytic continuation and differential transcendence criteria

The aim of this section is to give differential transcendence criteria adapted to the study of
the generating series of the weighted models arising from (S). Let us describe our strategy.
In Lemma 1.1, we defined the auxiliary series F 1(x, t) := −K(x, 0, t)Q(x, 0, t), F 2(y, t) :=
−K(0, y, t)Q(0, y, t). Since it is obvious that Q(x, y, t) converges for |x| < 1, |y| < 1, |t| < 1, we
have the same conclusion for these former series as well. Using the parameterization φ = (x, y) :
P1(C)→ Et given in the previous section, we can pull back these functions to functions

F̃ 1(s) = F 1(x(s), t) and F̃ 2(s) = F 2(y(s), t)

analytic in a neighborhood of 0 in P1(C). Using the functional equation (1.1), we will prove that

F̃ 1(s) and F̃ 2(s) each satisfy very simple q-difference equations

F̃ 1(qs)− F̃ 1(s) = b̃1(s), F̃ 2(qs)− F̃ 2(s) = b̃2(s),

for suitable b̃1, b̃2 ∈ C(s). This implies in particular that F̃ 1(s) and F̃ 2(s) can be continued into

meromorphic functions on all of C. A result of Ishizaki, see [Ish98], implies that if either F̃ 1(s)

or F̃ 2(s) are s-differentially algebraic then they must be in C(s) and results from the theory of
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linear q-difference equations allow us to detect this via the partial fraction decomposition of b̃1
and b̃2. In addition, we will show that F̃ 1(s) (resp. F̃ 2(s)) is s-differentially algebraic if and only
if Q(x, 0, t) (resp. Q(0, y, t)) is x-differentially algebraic (resp. y-differentially algebraic). We will
therefore be able to reduce the question of whether Q(x, 0, t) (resp. Q(0, y, t)) is x-differentially
algebraic (resp. y-differentially algebraic) to seeing if the above mentioned conditions on the

partial fraction decomposition of b̃1 and b̃2 hold. This will be done in Section 3 where we will see
that the latter conditions never hold. We now turn to supplying the details of this brief sketch.

In this section, we continue to assume that Assumption 1.3 holds true.

2.1. Functional equation. We let φ = (x, y) : P1(C)→ Et be the parameterization of Et given
in Proposition 1.5. Straightforward calculations show that

• φ(0) = φ(∞) = ([0 : 1], [0 : 1]);
• x(ι̃1(s)) = x(s) where ι̃1(s) = 1

s ;

• y(ι̃2(s)) = y(s) where ι̃2(s) = q
s = λ2

s ;
• σ̃(s) = qs where σ̃ = ι̃2 ◦ ι̃1.

In particular, we have that ι̃k ◦ φ = φ ◦ ιk and σ̃ ◦ φ = φ ◦ σ which will allow the following
computations.

Recall the functional equation (1.1):

K(x, y, t)Q(x, y, t) = xy − F 1(x, t)− F 2(y, t) + td−1,−1Q(0, 0, t).

This equation is a formal identity but for |x| < 1 and |y| < 1, the series Q(x, y, t), F 1(x, t) and
F 2(y, t) are convergent. Using our parameterization of Et, we will show how we can pull back
these convergent series and analytically continue them to meromorphic functions on C satisfying
simple q-difference equations.

The set V = {([x : 1], [y : 1]) ∈ Et | |x|, |y| < 1} is an open neighborhood of ([0 : 1], [0 : 1]) in
Et for the analytic topology, and, for all (x, y) ∈ V , we have

(2.1) 0 = xy − F 1(x, t)− F 2(y, t) + td−1,−1Q(0, 0, t).

Since φ(0) = φ(∞) = ([0 : 1], [0 : 1]), there exists U ⊂ P1(C) which is the union of two small
open discs centered at 0 and ∞ such that φ(U) ⊂ V .

For any s ∈ U , we set F̆ 1(s) = F 1(x(s), t) and F̆ 2(s) = F 2(y(s), t). Then, F̆ 1 and F̆ 2 are
meromorphic functions over U and (2.1) yields, for all s ∈ U ,

(2.2) 0 = x(s)y(s)− F̆ 1(s)− F̆ 2(s) + td−1,−1Q(0, 0, t).

Replacing s by ι̃2(s) in (2.2), we obtain, for all s close to 0 or ∞, (in what follows, we use

x(ι̃1(s)) = x(s), y(ι̃2(s)) = y(s), F̆ 1(ι̃1(s)) = F̆ 1(s) and F̆ 2(ι̃2(s)) = F̆ 2(s))

0 = x(ι̃2(s))y(ι̃2(s))− F̆ 1(ι̃2(s))− F̆ 2(ι̃2(s)) + td−1,−1Q(0, 0, t)

= x(ι̃1(ι̃2(s)))y(s)− F̆ 1(ι̃1(ι̃2(s)))− F̆ 2(s) + td−1,−1Q(0, 0, t)

= x(q−1s)y(s)− F̆ 1(q−1s)− F̆ 2(s) + td−1,−1Q(0, 0, t).(2.3)

Subtracting (2.2) from (2.3), and then replacing s by qs, we obtain, for all s close to 0 or ∞,

F̆ 1(qs)− F̆ 1(s) = (x(qs)− x(s))y(qs).(2.4)

Remark 2.1. If we set t = 1 and replace F̆ 1 by −F̆ 1

K(0,y,t) , then a similar argument leads to

another functional equation which is the one given in [FIM17, Theorem 6.4.1].
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Similarly, replacing s by ι̃1(s) in (2.2), we obtain, for all s close to 0 or ∞,

0 = x(ι̃1(s))y(ι̃1(s))− F̆ 1(ι̃1(s))− F̆ 2(ι̃1(s)) + td−1,−1Q(0, 0, t)

= x(s)y(ι̃2(ι̃1(s)))− F̆ 1(s)− F̆ 2(ι̃2(ι̃1(s))) + td−1,−1Q(0, 0, t)

= x(s)y(qs)− F̆ 1(s)− F̆ 2(qs) + td−1,−1Q(0, 0, t).(2.5)

Subtracting (2.5) from (2.2), we obtain, for all s close to 0 or ∞,

F̆ 2(qs)− F̆ 2(s) = x(s)(y(qs)− y(s)).(2.6)

We let F̃ 1 and F̃ 2 be the restrictions of F̆ 1 and F̆ 2 to a small disc around 0. They satisfy
the functional equations (2.4) and (2.6) for s close to 0. Since |q| /∈ {0, 1}, this implies that

each of the functions F̃ 1 and F̃ 2 can be continued to a meromorphic function on C with (2.4)
satisfied for all s ∈ C. Note that there is a priori no reason why, in the neighborhood of∞, these
functions should coincide with the original functions F̆ 1 and F̆ 2.

2.2. Application to differential transcendence. In this subsection, we derive differential
transcendency criteria for x 7→ Q(x, 0, t) and y 7→ Q(0, y, t). They are based on the fact that the

related functions F̃ 1 and F̃ 2 satisfy difference equations.

Definition 2.2. Let (E, δ) ⊂ (F, δ) be differential fields, that is, fields equipped with a map δ
that satisfies δ(a+ b) = δ(a) + δ(b) and δ(ab) = aδ(b) + δ(a)b. We say that f ∈ F is differentially
algebraic over E if it satisfies a non trivial algebraic differential equation with coefficients in E,
i.e., if for some m there exists a nonzero polynomial P (y0, . . . , ym) ∈ E[y0, . . . , ym] such that

P (f, δ(f), . . . , δm(f)) = 0.

We say that f is holonomic over E if in addition, the polynomial is linear. We say that f is
differentially transcendental over E if it is not differentially algebraic.

Proposition 2.3. The series x 7→ Q(x, 0, t) is differentially algebraic over (C(x), ddx ) if and

only if F̃ 1 is differentially algebraic over (C(s), dds ). The series y 7→ Q(0, y, t) is differentially

algebraic over (C(y), ddy ) if and only if F̃ 2 is differentially algebraic over (C(s), dds ).

Proof. This follows from Lemmas 6.3 and 6.4 of [DHRS18], since we go from x 7→ Q(x, 0, t) to

F̃ 1 by a variable change which is algebraic (and therefore differentially algebraic). The proof for

F̃ 2 is similar. �

Consequently, we only need to study F̃ 1 and F̃ 2. Recall that they belong to the fieldMer(C)
of meromorphic functions on C. Using a result due to Ishizaki [Ish98, Theorem 1.2] (see also
[HS08, Proposition 3.5], where a Galoisian proof of Ishizaki’s result is given), we get, for any
i ∈ {1, 2}, the following dichotomy¶:

• either F̃ i ∈ C(s), or

• F̃ i is differentially transcendental over C(s).

Remark 2.4. 1. Note that the fact that F̃ i is meromorphic on C is essential. For instance, if
q > 1, the Theta function θq(s) =

∑
n∈Z q

−n(n−1)/2sn is meromorphic on C∗, is not rational and
is differentially algebraic as it is shown for instance in [HS08, Corollary 3.4].
2. Combining Ishizaki’s dichotomy with the result of Mishna and Rechnitzer [MR09], and the

¶ Ishizaki’s proof of his result proceeds by comparing behavior at various poles and uses growth results from
Wiman-Valiron Theory. The approach of [HS08] avoids the growth considerations and is more algebraic. A

slightly weaker result, in the spirit of the considerations of [DHRS18], would suffice to establish this dichotomy,
see [HS08, Corollary 3.2, Proposition 6.4] or [Har08].
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result of Melczer and Mishna [MM14], on the non holonomy of the complete generating series of
the unweighted genus zero walks, one finds that these complete generating series are differentially
transcendental, thus proving directly Theorem 3.1 in the five unweighted cases.

So, we need to understand when F̃ i ∈ C(s). We set

b̃1(s) = y(qs)(x(qs)− x(s)) and b̃2(s) = x(s)(y(qs)− y(s)),

so that the functional equations (2.4) and (2.6) can be restated as

(2.7) F̃ 1(qs)− F̃ 1(s) = b̃1(s) and F̃ 2(qs)− F̃ 2(s) = b̃2(s)

for s ∈ C.

Lemma 2.5. For any i ∈ {1, 2}, the following facts are equivalent:

• F̃ i ∈ C(s);

• there exists fi ∈ C(s) such that b̃i(s) = fi(qs)− fi(s).

Proof. If F̃ i ∈ C(s) then (2.7) shows that b̃i(s) = fi(qs)−fi(s) with fi = F̃ i ∈ C(s). Conversely,

assume that there exists fi ∈ C(s) such that b̃i(s) = fi(qs)−fi(s). Using (2.7) again, we find that

(F̃ i − fi)(s) = (F̃ i − fi)(qs). Since the function F̃ i − fi is meromorphic over C, we may expand

it as a Laurent series at s = 0: F̃ i − fi =
∑
`≥`0 a`s

`. We then have
∑
`≥`0 a`s

` =
∑
`≥`0 a`q

`s`

and since q is not a root of unity, F̃ i − fi ∈ C. This ensures that F̃ i ∈ C(s). �

Remark 2.6. In [BBMR17], the authors introduce the notion of decoupling functions, that is
of functions F (x) ∈ Q(x, t) and G(y) ∈ Q(y, t) such that xy = F (x) + G(y) for x, y satisfying
K(x, y, t) = 0. It is easily seen that if F and G are decoupling functions, one has

ι2(xy)− xy = ι2(F (x))− F (x) and ι1(xy)− xy = ι1(G(y))−G(y),

when K(x, y, t) = 0. In our genus zero situation, composing the former identities with

the uniformization yields b̃i(s) = fi(qs) − fi(s) where f1(s) = F (x(s)) ∈ C(s) and
f2(s) = G(y(s)) ∈ C(s). Then, Lemma 2.5 is essentially the same kind of results as [BBMR17,
Lemma 2] but in the easier framework of a genus zero kernel curve.

The following lemma is a consequence of the functional equation satisfied by F̃ 1, F̃ 2. See
[FIM17, Corollary 3.2.5], or [DHRS18, Proposition 3.10], for similar results in the genus one
case.

Lemma 2.7. The following properties are equivalent:

• F̃ 1 ∈ C(s);

• F̃ 2 ∈ C(s).

Proof. Assume that F̃ 1 ∈ C(s). Lemma 2.5 states that there exists f1 ∈ C(s) such

that b̃1(s) = f1(qs)− f1(s). Note that b̃1(s) + b̃2(s) = (xy)(qs) − (xy)(s), so that we have

b̃2(s) = f2(qs)− f2(s), with xy(s) − f1(s) = f2(s) ∈ C(s). Lemma 2.5 implies that F̃ 2 ∈ C(s).
The converse is proved in a similar way. �

Theorem 2.8. The following properties are equivalent:

(1) The series Q(x, 0, t) is differentially algebraic over C(x);
(2) The series Q(x, 0, t) is algebraic over C(x);
(3) The series Q(0, y, t) is differentially algebraic over C(y);
(4) The series Q(0, y, t) is algebraic over C(y);

(5) There exists f1 ∈ C(s) such that b̃1(s) = f1(qs)− f1(s);
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(6) There exists f2 ∈ C(s) such that b̃2(s) = f2(qs)− f2(s).

Proof. Assume that (1) holds true. Proposition 2.3 implies that F̃ 1 is differentially algebraic

over C(s). Ishizaki’s Theorem ensures that F̃ 1 ∈ C(s). But x : P1(C) → P1(C) is locally (for
the analytic topology) invertible at all but finitely many points of P1(C) and the corresponding
local inverses are algebraic over C(x). It follows that F 1(·, t) can be expressed as a rational
expression, with coefficients in C, of an algebraic function, and, hence, is algebraic over C(x).
Hence (2) is satisfied. The fact that (2) implies (1) is obvious. The fact that (3) is equivalent to
(4) can be shown in a similar manner to the equivalence of (1) and (2). The fact that (1) to (4)
are equivalent now follows from Lemma 2.7 combined with [Ish98, Theorem 1.2]. The remaining
equivalences follow from Lemma 2.5. �

So, to decide whether Q(x, 0, t), Q(0, y, t) are differentially transcendental, we are led to the
following problem:

Given b ∈ C(s), decide whether there exists f ∈ C(s) such that b(s) = f(qs)− f(s).

When such an f exists, we say that b is q-summable in C(s). This problem is known as a
q-summation problem and has been solved by Abramov [Abr95]. This procedure was recast in
[CS12] in terms of the so-called q-residues of b, which we now define.

We begin by defining the q-orbit of β ∈ C∗ to be βqZ = {β · qi | i ∈ Z}. Given a rational
function b(s) ∈ C(s) we may rewrite its partial fraction decomposition uniquely as

(2.8) b(s) = c+ sp1 +
p2

sr
+

m∑
i=1

ni∑
j=1

ri,j∑
`=0

αi,j,`
(s− q` · βi)j

,

where c ∈ C, p1, p2 ∈ C[s],m, ni ∈ Z≥0 are nonzero, r, ri,j ∈ Z≥0, αi,j,`, βi ∈ C and the βi’s are
nonzero and in distinct q-orbits.

Definition 2.9. (cf. [CS12, Definition 2.7]) Let b ∈ C(s) be of the form (2.8). The sum
ri,j∑
`=0

q−`·jαi,j,`

is called the q-residue of b at the q-orbit of βi of multiplicity j (this is called the q-discrete residue
in [CS12]) and is denoted by qres(b, βi, j). In addition, we call the constant c the q-residue of b
at infinity and denote it by qres(b,∞).

Example 2.10. Let q = 2 and

b(s) = 1 + s+
s+ 2

s2
+

3

(s− 1)2
− 12

(s− 2)2
+

1

s− 5
.

We have qres(b,∞) = 1, qres(b, 1, 2) = 20 · 3 + 2−1·2(−12) = 0, and qres(b, 5, 1) = 1. All other
q-residues are 0.

One has the following criterion for q-summability.

Proposition 2.11. (c.f. [CS12, Proposition 2.10]) Let b = f/g ∈ C(x) be such that f, g ∈ C[x]
with gcd(f, g) = 1. Then b is q-summable in C(s) if and only if the q-residues qres(b,∞) = 0
and qres(b, β, j) = 0 for any multiplicity j and any β 6= 0 with g(β) = 0, g(q`β) 6= 0 for every
` < 0.

Applying this criteria to the above example we see that b is not q-summable because
qres(b,∞) 6= 0 as well as qres(b, 5, 1) 6= 0. In fact, whenever an element b ∈ C(x) has a pole of
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order m ≥ 1 at a point β and no other pole of order ≥ m in the q-orbit of β, then a q-residue of
multiplicity m will be nonzero. We therefore have the following corollary (also a consequence of
results in [Abr95]) which plays a crucial role in the next section.

Corollary 2.12. If β ∈ C∗ is a pole of b ∈ C(x) of order m ≥ 1 and if b has no other pole of
order ≥ m in the q-orbit of β, then b is not q-summable, i.e., there is no f(s) ∈ C(s) such that
b(s) = f(qs)− f(s).

Using the parameterization φ : P1(C) → Et, we can translate this to give a criterion for the
differential transcendence of x 7→ Q(x, 0, t) and y 7→ Q(0, y, t) over C(x) and C(y) respectively.
We set (see Section 1 for notations)

b1 = ι1(y)(ι2(x)− x) and b2 = x(ι1(y)− y),

so that we have
b̃1 = b1 ◦ φ and b̃2 = b2 ◦ φ.

Proposition 2.13. We suppose that Assumption 1.3 holds true and recall that |q| 6= 1. Let
b ∈ C(x, y) be a rational function on Et. Assume that P ∈ Et \ {Ω} is a pole of b of order m ≥ 1
such that none of the σi(P ) with i ∈ Z\{0} is a pole of b of order ≥ m, then

b = σ(g)− g
has no solution g ∈ C(x, y) which restricts to a rational function on Et.

In particular, if b2 = x(ι1(y) − y) satisfies this condition, then x 7→ Q(x, 0, t), (resp.
y 7→ Q(0, y, t)) is differentially transcendental over C(x) (resp. differentially transcendental
over C(y)).

Proof. We know that the parameterization φ = (x, y) : P1(C) → Et that we have constructed,
induces an isomorphism between P1(C) \ {0,∞} and Et \ {Ω}. If s0 ∈ P1(C) \ {0,∞} is such
that φ(s0) = P , then s0 is a pole of order m ≥ 1 of b ◦ φ such that none of the σ̃i(s0) = qis with
i ∈ Z\{0} is a pole of b ◦φ of order ≥ m. If g ∈ C(x, y) restricts to a rational function on Et and
satisfies b = σ(g)−g, then f = g ◦φ would satisfy b(s) = f(qs)−f(s) contradicting Lemma 2.12.

If b2 = x(ι1(y) − y) satisfies the condition of the Proposition, then b2 = σ(g) − g has
no solution g that is a rational function on Et. Pulling this back to P1(C), we see that for

b̃2(s) = b2 ◦ φ(s) = x(s)(y(1/s) − y(s)), the equation b̃2(s) = f(qs) − f(s) has no solution in
C(s). Theorem 2.8 yields our conclusion. �

Finally we note that given a fixed family of probabilities (di,j), the algorithms [Abr95, CS12]
permit us to decide if the generating series is differentially algebraic or not. In Section 3, we
will prove an unconditional statement, that is, for every set of probabilities di,j , the generating
series is differentially transcendental. Note that this kind of result may a priori not be obtained
via the above mentioned algorithms, since the generating series depends on parameters (the
probabilities di,j) and it is not clear how to make the algorithms give information about arbitrary
specializations of the parameters.

3. Differential transcendence: main result

In this section, we will prove the main result of this paper:

Theorem 3.1. We suppose that Assumption 1.3 is satisfied. Then, the functions x 7→ Q(x, 0, t)
and y 7→ Q(0, y, t) are differentially transcendental over C(x) and C(y) respectively.

Remark 3.2. (i) Models of walks in three dimensions in the octant have been recently studied.
In [BBMKM16, DHW16], the authors study such unweighted models having at most six steps.
Among the non trivial 35548 models, 527 are equivalent to weighted models of walks in the
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quarter plane, in the sense of [BBMKM16, Definition 2] and Assumption 1.3 is satisfied for
69 such models, see [DHW16, Section 3]. For these models of two dimensional walks our results
apply. For example, in [DHW16], the authors prove that one of the three dimensional unweighted
models of a walk in the octant is equivalent to the following weighted model of a two dimensional
walk of genus zero:

1/2 1/4

1/4

(ii) Combining Theorem 3.1 with Remark 2.6, we have proved that in the genus zero situation
there are no decoupling functions.

The proof of Theorem 3.1 will be given at the very end of this section. Our strategy will
be to use Proposition 2.13. So, we begin by collecting information concerning the poles of
b2 = x(ι1(y)− y).

3.1. Preliminary results concerning the poles of b2. We write

b2 = x(ι1(y)− y)

in the projective coordinates ([x0, x1], [y0, y1]) with x = x0

x1
and y = y0

y1
. We note that

Ω = ([0 : 1], [0 : 1]) is not a pole of b2. Since we want to compute the poles of b2, it is natural to
start with the poles of xy. Therefore let us focus our attention on the points ([x0 : x1], [y0 : y1])
of Et corresponding to the equation x1y1 = 0, namely:

P1 = ([1 : 0], [β0 : β1]),P2 = ι1(P1) = ([1 : 0], [β′0 : β′1]),

Q1 = ([α0 : α1], [1 : 0]),Q2 = ι2(Q1) = ([α′0 : α′1], [1 : 0]).

Since P1, P2 ∈ Et, to compute [β0 : β1] and [β′0 : β′1], we have to solve K(1, 0, y0, y1, t) = 0. We
then find that [β0 : β1] and [β′0 : β′1] are the roots in P1(C) of the homogeneous polynomial in y0

and y1 given by

d1,−1y
2
1 + d1,0y0y1 + d1,1y

2
0 = 0.

Similarly, the x-coordinates [α0 : α1] and [α′0 : α′1] of Q1 and Q2 are the roots in P1(C) of the
homogeneous polynomial in x0 and x1 given by

d−1,1x
2
1 + d0,1x0x1 + d1,1x

2
0 = 0.

Although the following Lemma already appears in [DHRS18, Lemma 4.11], we give its proof to
be self-contained.

Lemma 3.3. The set of poles of b1 = ι1(y) (σ(x)− x) in Et is contained in

S1 = {ι1(Q1), ι1(Q2), P1, P2, σ
−1(P1), σ−1(P2)}.

Similarly, the set of poles of b2 = x(ι1(y)− y) in Et is contained in

S2 = {P1, P2, Q1, Q2, ι1(Q1), ι1(Q2)} = {P1, P2, Q1, Q2, σ
−1(Q1), σ−1(Q2)}.

Moreover, we have

(3.1) (b2)2 =
x2

0∆x
[x0:x1]

x2
1(
∑2
i=0 x

i
0x

2−i
1 tdi−1,1)2

.
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Proof. The proofs of the assertions about the location of the poles of b1 and b2 are straightfor-
ward. Let us prove (3.1). By definition, the y coordinates of ι1(y0y1 ) and y0

y1
are the two roots

of the polynomial y 7→ K(x0, x1, y, t). The square of their difference equals to the discriminant
divided by the square of the leading term, that is,(

ι1(
y0

y1
)− y0

y1

)2

=
∆x

[x0:x1]

(
∑
i x

i
0x

2−i
1 tdi−1,1)2

.

Therefore, we find

b2

(
x0

x1
,
y0

y1

)2

=
x2

0∆x
[x0:x1]

x2
1(
∑
i x

i
0x

2−i
1 tdi−1,1)2

.

�

To apply Proposition 2.13 we now need to separate the orbits. Let us begin with P1 and P2

(resp. Q1 and Q2). In what follows, we will use the equivalent relation ∼ on Et defined, for
P,Q ∈ Et, by

P ∼ Q⇔ ∃` ∈ Z, σ`(P ) = Q.

Proposition 3.4. If P1 6= P2, then one of the following properties holds:

• P1 6∼ P2;
• d0,1 = d1,1 = 0.

If Q1 6= Q2, then one of the following properties holds:

• Q1 6∼ Q2;
• d1,0 = d1,1 = 0.

Proof. We only prove the statement for the Pi, the proof for the Qj being similar. Let p1, p2 ∈ C∗
be such that φ(p1) = P1 and φ(p2) = P2. Recall that Proposition 1.5 ensures that

α2 = 1− 2td0,0 + t2d2
0,0 − 4t2d−1,1d1,−1

α3 = 2t2d1,0d0,0 − 2td1,0 − 4t2d0,1d1,−1

α4 = t2(d2
1,0 − 4d1,1d1,−1)

and that, according to Proposition 1.7, one of the two complex numbers q or q−1 is equal to

−1 + d0,0t−
√

(1− d0,0t)2 − 4d1,−1d−1,1t2

−1 + d0,0t+
√

(1− d0,0t)2 − 4d1,−1d−1,1t2
.

The explicit formula for φ given in Proposition 1.5 shows that p1 and p2 are the roots of

−
√
α2

3 − 4α2α4X
2 + 2α3X −

√
α2

3 − 4α2α4 = 0.

So, we have (for suitable choices of the complex square roots‖)

p1 =
−α3 − 2

√
α2α4

−
√
α2

3 − 4α2α4

and p2 =
−α3 + 2

√
α2α4

−
√
α2

3 − 4α2α4

.

Assume that P1 ∼ P2. Then, there exists ` ∈ Z∗ such that p1
p2

= q` (` 6= 0 because P1 6= P2).

Using the above formulas for p1, p2 and q and replacing ` by −` if necessary, this can be rewritten
as:

(3.2)
−α3 − 2

√
α2α4

−α3 + 2
√
α2α4

=

(
−1 + d0,0t−

√
(1− d0,0t)2 − 4d1,−1d−1,1t2

−1 + d0,0t+
√

(1− d0,0t)2 − 4d1,−1d−1,1t2

)`
.

‖Since pi is chosen so that φ(pi) = Pi, we need to take the square roots consistent with this selection.
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Recall that t is transcendental. We shall treat t as a variable and both sides of (3.2) as functions
of the variable t, algebraic over Q(t). Formula (3.2) shows that these algebraic functions coincide
at some transcendental number, therefore they are equal.

We now consider these algebraic functions near 0 (we choose an arbitrary branch) and will
derive a contradiction by proving that they have different behaviors at 0.

If d1,1 6= 0, then, considering the Taylor expansions at 0 in (3.2), we obtain, up to replacing `
by −` if necessary:

d1,0 −∆1

d1,0 + ∆1
+O(t) =

(
1

t2

(
1

d1,−1d−1,1
+O(1/t)

))`
where ∆1 is some square root of d2

1,0− 4d1,1d1,−1, and d1,0−∆1 and d1,0 + ∆1 are not 0 because
d1,1 6= 0 (note that, by Assumption 1.3, we have d1,−1d−1,1 6= 0). This equality is impossible.

If d1,1 = 0, then (3.2) gives

t
d0,1d1,−1

d1,0
+O(t2) =

(
1

t2

(
1

d1,−1d−1,1
+O(1/t)

))`
(note that we have d1,0 6= 0 because P1 6= P2). This implies d0,1 = 0 and concludes the proof. �

Proposition 3.5. Assume that d1,1 6= 0. Then, for any i, j ∈ {1, 2}, we have Pi 6∼ Qj.

Proof. Let pi, qj ∈ C∗ be such that φ(pi) = Pi and φ(qj) = Qj . As seen at the beginning of the
proof of Proposition 3.4, we have (for suitable choices of the square roots)

pi =
−α3 − 2

√
α2α4

−
√
α2

3 − 4α2α4

.

Similarly, we have (for suitable choices of the square roots)

qj = λ
−β3 − 2

√
β2β4

−
√
β2

3 − 4β2β4

.

Suppose to the contrary that Pi ∼ Qj . The condition d1,1 6= 0 yields that Pi 6= Qj . Then, there
exists ` ∈ Z∗ such that pi

qj
= q`. Using the above formulas for pi and qj , using Proposition 1.7

and replacing ` by −` if necessary, this can be rewritten as:

(3.3)
α3 + 2

√
α2α4√

α2
3 − 4α2α4

√
β2

3 − 4β2β4

β3 + 2
√
β2β4

=

(
−1 + d0,0t−

√
(1− d0,0t)2 − 4d1,−1d−1,1t2

−1 + d0,0t+
√

(1− d0,0t)2 − 4d1,−1d−1,1t2

)`+ 1
2

.

As in the proof of Proposition 3.4, we can treat t as a variable and both sides of (3.3) as functions
of the variable t algebraic over Q(t), the above equality shows that they coincide, and we shall
now consider these algebraic functions near 0 (we choose an arbitrary branch). Considering the
Taylor expansions at 0 in (3.3), we obtain:

−d1,0 −∆1√
d2

1,0 −∆1
2

√
d2

0,1 −∆2
2

−d0,1 −∆2
+O(t) =

(
1

t2

(
1

d1,−1d−1,1
+O(t)

))`+ 1
2

where ∆1 and ∆2 are suitable square roots of d2
1,0− 4d1,1d1,−1 and d2

0,1− 4d1,1d−1,1 respectively,

and none of the numbers −d1,0 − ∆1,
√
d2

1,0 −∆1
2,
√
d2

0,1 −∆2
2,−d0,1 − ∆2

2 is zero because

d1,1 6= 0. This equality is impossible. �
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3.2. Proof of Theorem 3.1. We shall use the criteria of Proposition 2.13 applied to b2. From
the expression of a3 and a4 given in Section 1, we may deduce that a3 6= a4 and therefore ∆x

[x0:x1]

seen as a function on P1(C) has at most a simple zero at P1 and P2. With (3.1) we find that P1

and P2 are poles of b2.
If d1,1 = d1,0 = 0 (and d0,1 6= 0 by Assumption 1.3), then a direct calculation shows that the

polar divisor of b2
∗∗ on Et is 3P1 +Q2 + ι1(Q2) where

• P1 = P2 = Q1 = ([1 : 0], [1 : 0]),
• Q2 = ([−d−1,1 : d0,1], [1 : 0]),
• ι1(Q2) = ([−d−1,1 : d0,1], [−td1,−1d−1,1 : d0,1(1− td0,0)]) 6= Q2.

The result is now a direct consequence of Proposition 2.13 because P1 is a pole of order three of
b2, and all the other poles of b2 have order 1.

The case d1,1 = d0,1 = 0 is similar.
Assume that d1,1 = 0 and d1,0d0,1 6= 0. In this case, we have

• P1 = Q1 = ([1 : 0], [1 : 0]),
• P2 = ι1(Q1) = ([1 : 0], [−d1,−1 : d1,0]),
• Q2 = ([−d−1,1 : d0,1], [1 : 0]),
• ι1(Q2) = ([−d−1,1 : d0,1], [−td1,−1d−1,1 : d0,1(1− td0,0) + td1,0d−1,1]).

Note that these four points are two by two distinct (since d0,1 6= 0 and t is transcendental, the
quantity d0,1(1− td0,0) + td1,0d−1,1 does not vanish). A direct computation shows that the polar

divisor of b2 on Et is 2P1 +2P2 +Q2 + ι1(Q2). Proposition 3.4 ensures that P1 6∼ P2. So, P = P1

or P2 is such that none of the σi(P ) with i ∈ Z\{0} is a pole of order ≥ 2 of b2. The result is
now a consequence of Proposition 2.13.

Last, assume that d1,1 6= 0. Then, combining Proposition 3.4 and Proposition 3.5, and using
the fact that the set of poles of b2 is included in {P1, P2, Q1, Q2, σ

−1(Q1), σ−1(Q2)}, we get that
P1 is such that none of the σi(P1) with i ∈ Z\{0} is a pole of b2. The result is now a consequence
of Proposition 2.13.
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Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd.

du 11 novembre 1918, F-69622 Villeurbanne cedex, France
Email address: roques@math.univ-lyon1.fr

Department of Mathematics, North Carolina State University, Box 8205, Raleigh, NC 27695-8205,
USA

Email address: singer@ncsu.edu


	Introduction
	1. Weighted walks in the quarter plane: generating series, functional equation and kernel curve
	1.1. Kernel and functional equation
	1.2. The algebraic curve defined by the kernel
	1.3. Parametrization of Et

	2. Analytic continuation and differential transcendence criteria
	2.1. Functional equation
	2.2. Application to differential transcendence

	3. Differential transcendence: main result
	3.1. Preliminary results concerning the poles of b2
	3.2. Proof of Theorem 3.1

	References

