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1. Introduction

Initially, the Galois theory of q-di¤erence equations was built for jqj not equal to a
root of unity (see for instance [SvP]). This choice was made in order to avoid the increase
of the field of constants to a transcendental field. However, P. A. Hendricks studied this
problem in his PhD work under the supervision of M. van der Put (see [He]). In Chapter
6, he gave a notion of Galois groups for q-di¤erence equations over CðzÞ with qm ¼ 1. His
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idea was to compare the category Di¤CðzÞ of q-di¤erence modules over CðzÞ with the cate-
gory FModZ of modules over the ring CðzmÞ½t; t&1'. He thus obtained an equivalence of
categories and a fiber functor from Di¤CðzÞ with values in the category VectCðzmÞ of vector
spaces of finite dimension over CðzmÞ. However, in his case there is no unique Picard-
Vessiot ring of a q-di¤erence equation. This construction is also not totally satisfying be-
cause we do not want to have such transcendental base fields for Galois groups.

In the same matter, the question of the constant field for di¤erential modules in pos-
itive characteristic has given rise to the construction of a di¤erential Galois theory in posi-
tive characteristic. The first work in this direction was made by H. Hasse and F. K.
Schmidt [Ha], but it was only in 2000 when B. H. Matzat and M. van der Put set up a
modern and systematic approach to this theory (see [MvP] and [Ma]). The main idea is to
consider not only one derivation but a whole family of derivations, called higher derivations
or iterative derivations. By defining the constants as the elements annihilated by the whole
family of derivations, they succeeded in getting a good constant field, for instance Fp in-
stead of FpðzpÞ. So they were able to give a complete description of the Picard-Vessiot
theory of di¤erential equations in positive characteristic and relate it to a Tannakian
approach.

For q-di¤erence theory, the problem is not the characteristic but the roots of unity.
Inspired by the work of B. H. Matzat and M. van der Put, we consider in this paper a fam-
ily of iterative di¤erence operators instead of considering just one di¤erence operator, and
in this way we stop the increase of the constant field and succeed in setting up a Picard-
Vessiot theory for q-di¤erence equations where q is a root of unity. The theory we obtain
is quite the exact translation of the iterative di¤erential Galois theory developed by B. H.
Matzat and M. van der Put to the q-di¤erence world. This analogy between iterative di¤er-
ential Galois theory and iterative di¤erence Galois theory could perhaps be explained in a
more theoretical way, as it is done in the paper of Y. André [And] for classical theories.
However we give some tracks of connections in section 3.

The interests of building such a theory are multiple. The first one is to fill in the gap in
the classical q-di¤erence Galois theory for q a root of unity. Thus the theory of iterative
q-di¤erence operators developed in this paper encompasses and extends the work of Singer
and van der Put ([SvP]). But this theory could also provide a ‘‘good’’ functor of confluence
over complex fields from the world of q-di¤erence to the world of di¤erential equations as
it is done over p-adic fields by A. Pulita ([Pul]). Moreover it would be really interesting to
establish a link between the ðsq; qÞ-modules introduced by A. Pulita at the roots of unity
and the iterative q-di¤erence modules. In a similar way, it will be very enlightening to build
a confluence functor in characteristic p from iterative q-di¤erence modules to iterative dif-
ferential modules.

Another goal of this theory will be to obtain an iterative q-di¤erence version of the
Grothendieck Conjecture following the work of L. Di Vizio [DiV] and the work of P. A.
Hendricks [He]. In other words, we want to prove that the behavior of an iterative q-
di¤erence module defined over Q is determined by the behavior of its reduction modulo p
for almost all prime p. One could try also as it is conjectured in the di¤erential case by
Matzat and van der Put (see [MvP], p. 51) to relate the finiteness of the Galois group of a
usual q-di¤erence module to the existence of an iterative q-di¤erence structure for the re-
duction of the module modulo p for almost all prime p.
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For the whole paper, we fix an algebraically closed field C and q A C with q3 1. Let
F ¼ CðtÞ denote the field of rational functions over C and sq the automorphism of F which
associates to a function f ðtÞ the function f ðqtÞ.

In the second section, we introduce the arithmetic basis of iterative q-di¤erence alge-
bra. In this section we work in all generality, i.e., we do not make any assumptions wether q
is a root of unity or not. With this choice we want to emphasize the fact that we just gen-
eralize the Galois theory of q-di¤erence of M. F. Singer and M. van der Put ([SvP]). From
the third section until the end of the paper, we will restrict ourselves to the case of q a prim-
itive root of unity, where the most peculiar phenomena appear. In Section 3 we define the
category of iterative q-di¤erence modules and their relation with some specific category of
projective systems. As in [Ma], the equivalence of categories yields a family of q-di¤erence
equations, related to the fact that an iterative q-di¤erence operator is a family of maps.
Such a family of equations can be regarded in two di¤erent ways, a general and a relative
one using the projective system. Both formulations are used in later sections. We build a
Picard-Vessiot theory for iterative q-di¤erence equations by using the classical theory as
formulated for instance in [SvP].

In Section 5, we adopt Kolchin’s way of thinking and show how an iterative q-
di¤erence Galois group is formed by the C-points of an a‰ne group-scheme. We also ob-
tain the analogue of Kolchin’s theorem for our theory and the usual Galois correspon-
dence. To be a little more concrete, at the end of the section, we give a method to realize
linear algebraic groups of dimension one as iterative q-di¤erence Galois groups.

As a conclusion to this paper, we state an analogue of the Grothendieck-Katz conjec-
ture for iterative q-di¤erence Galois groups as in the work of L. Di Vizio.

Acknowledgements. I would like to thank A. Roescheisen and J. Hartmann for all
their help, remarks and so useful comments and also L. Di Vizio specially for enlightening
discussions about section 5. Last but not least, I am sincerely grateful to Professor B. H.
Matzat for the inspiration his theory has provided to me and for all his help and encour-
agement to pursue this study. The author also thanks the referee for his important sugges-
tions.

2. Iterative q-di¤erence rings

In considering an element q of a field C which may be a primitive root of unity and
trying to construct a q-di¤erence Galois theory, we have to deal with the problem that the
field of constants of the usual q-di¤erence operator extends to a transcendental field. To
avoid this increase of the constants, we have to consider a more arithmetic approach,
such as the one introduced by H. Hasse and F. K. Schmidt [Ha] for di¤erential equations
in positive characteristic. Until the end of this article, we let F ¼ CðtÞ denote the field of
rational functions over an algebraically closed field C and sq the q-di¤erence operator of
F defined as follows: sq

!
f ðtÞ

"
:¼ f ðqtÞ.

2.1. q-Arithmetic properties. In this paragraph, we just recall the most usual q-
arithmetical objects.
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Definition 2.1. Let kfN(. Put ½0'q ¼ 0, ½k'q :¼
qk & 1

q& 1
.

(1) Let ½k'q! denote the element of C defined by ½k'q½k & 1'q . . . ½1'q and by convention
set ½0'q! ¼ 1. We will say that ½k'q! is the q-factorial of k.

(2) Let
r

k

# $

q

denote the element of C defined by
½r'q!

½k'q!½ðr& kÞ'q!
. We will say that

r

k

# $

q

is the q-binomial coe‰cient of r over k.

(3) ðt; qÞm :¼ ð1& tÞð1& qtÞ . . . ð1& qm&1tÞ.

Proposition 2.2. (1)
r

0

# $

q

¼
r

r

# $

q

¼ 1.

(2)
0

k

# $

q

¼ 0 if k3 0 and
0

0

# $

q

¼ 1.

(3) Assume that q is a primitive n-th root of unity. Then for two integers a > b,

an

bn

# $

q

¼
a

b

# $
:ð1Þ

(4)
P

iþj¼k; ies; jer

r

j

# $

q

s

i

# $

q

qiðr&jÞ ¼
rþ s

k

# $

q

for all ðk; r; sÞ A N3 with rþ sf k.

Proof of part (3). Let m A N. One expands the function ðt; qÞm of CðtÞ defined in 2.1
part ð3Þ, i.e.

ðt; qÞm ¼
Pm

j¼0
ð&1Þ j

m

j

# $

q

q jð j&1Þ=2t j:ð2Þ

Because qn ¼ 1 and n is the order of q, we have ðt; qÞan ¼ ðt; qÞan . Using Equation (2), we
obtain

Pan

j¼0
ð&1Þ j

an

j

# $

q

q jð j&1Þ=2t j ¼
Pa

j¼0

a

j

# $
ð&1Þnjqnðn&1Þj=2tnj:

By comparing the terms in tbn, we have
an

bn

# $

q

q
bnðbn&1Þ

2 ¼
a

b

# $
qb

nðn&1Þ
2 :

Proof of part (4). Let ðk; r; sÞ A N3 with rþ sf k. We have

ðt; qÞrþs ¼ ðt; qÞrðq
rt; qÞs:ð3Þ
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By comparing the terms in tk, we obtain

ð&1Þkqkðk&1Þ=2 rþ s

k

# $

q

¼
P

iþj¼k; ies; jer

ð&1Þ iþjqkðk&1Þ=2 r

j

# $

q

s

i

# $

q

qiðr&jÞ: r

Remark 2.3. If C is of characteristic p > 0, then for p j > i we get from equation (1)
np j

ni

# $

q

¼ 0.

2.2. Iterative q-di¤erence ring. In this paragraph, we establish the formal properties
of the iterative q-di¤erence operator. In the world of q-di¤erence the analogue of the deri-

vation
d

dt
is the operator dq :¼

sq & id

ðq& 1Þt
(see for instance [And2], p. 1). Heuristically speak-

ing, when q goes to 1, dq goes to the usual derivation
d

dt
. Thus the main idea of our

constructions is to deform the iterative derivations into iterative di¤erence operators by

replacing
d

dt
by dq and all the arithmetical factors occurring in their Definition 1:1 of [Ma]

by their q-analogues. The only change appears at the part (4) of Definition 2.4, where a
twist by sq occurs.

Definition 2.4. Let R be a finitely generated CðtÞ-algebra having an automorphism
also called sq extending sq on CðtÞ (see [SvP], section 1:1) and let d(R :¼ ðdðkÞR Þk AN be a col-
lection of maps from R to R. The family d(R is called an iterative q-di¤erence operator on R,
if for all a; b A R and all i; j; k A N, the following properties are satisfied:

(1) d
ð0Þ
R ¼ id.

(2) d
ð1Þ
R ¼

sq & id

ðq& 1Þt
.

(3) d
ðkÞ
R ðxþ yÞ ¼ d

ðkÞ
R ðxÞ þ d

ðkÞ
R ðyÞ.

(4) dðkÞðabÞ ¼
P

iþj¼k

s i
q

!
d
ð jÞ
R ðaÞ

"
d
ðiÞ
R ðbÞ.

(5) d
ðiÞ
R * dð jÞR ¼

i þ j

i

# $

q

d
ðiþjÞ
R .

The set of iterative q-di¤erence operators is denoted by IDqðRÞ. For d(R A IDqðRÞ, the tuple
ðR; d(RÞ is called an iterative q-di¤erence ring (IDq-ring). We say that an element c of R is a
constant if dðkÞR ðcÞ ¼ 0 for all k A N(. We denote by CðRÞ the ring of constants of R.

Remark 2.5. If R is a ring, then CðRÞ is a ring. If R is a field, then CðRÞ is a field.

Lemma 2.6. For all j; i A N, we have

s j
qd

ðiÞ
R ¼ 1

q ji
d
ðiÞ
R s j

q:ð4Þ
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Proof. In order to prove equation (4), it is su‰cient to prove it for j ¼ 1, the general
case obviously follows from this case.

For all k > 0, we have

d
ðkÞ
R t

1

t

# $
¼ 0 ¼ d

ðkÞ
R ðt&1Þtþ sq

!
d
ðk&1Þ
R ðt&1Þ

"
:ð5Þ

By part (5) of Definition 2.4, we get dð1ÞR * dðiÞR ¼ d
ðiÞ
R * dð1ÞR for all i A N. Using part (2)

and (4), we obtain that

sq & id

t
* dðiÞR ðxÞ ¼ d

ðiÞ
R *

sq & id

t

# $
ðxÞð6Þ

¼
Pi

k¼1
sk
q

!
d
ði&kÞ
R ðsq & idÞðxÞ

"
d
ðkÞ
R ðt&1Þ þ d

ðiÞ
R

!
ðsq & idÞðxÞ

"
t&1

for all x A R and i A N. By equation (6), we get

sq
t
* dðiÞR ðxÞ ¼ &1

t
sq

%Pi&1

k¼0
sk
q

!
d
ði&1&kÞ
R ðsq & idÞðxÞ

"
d
ðkÞ
R ðt&1Þ

&
þ
d
ðiÞ
R * sqðxÞ

t
;

i.e.,

sq
t
* dðiÞR ðxÞ ¼ &1

t
sq
!
d
ði&1Þ
R * dð1ÞR ðxÞ

"
þ
d
ðiÞ
R * sqðxÞ

t

that is,

sq
t
* dðiÞR ðxÞ ¼ & q& 1

t
sq *

qi & 1

q& 1
d
ðiÞ
R

# $
ðxÞ þ d

ðiÞ
R * sqðxÞ

t
:

This last equation gives

sqd
ðiÞ
R ðxÞ ¼ 1

qi
d
ðiÞ
R sqðxÞ

which concludes the proof. r

Remark 2.7 (Classical case). If q is not a root of unity then d
ðkÞ
R ¼ ðdð1ÞR Þ

k

½k'q!
and the

iterative q-di¤erence rings that we consider are the q-di¤erence algebras extensions of CðtÞ
studied by M. van der Put and M. F. Singer in [SvP], chapter 1.

Main example. The field of rational functions over C.

Definition 2.8. Let k A N. Let dðkÞq denote the additive map from C½t' to C½t'

defined by dðkÞq ðltrÞ :¼ l
r

k

# $

q

tr&k; for all r A N, and l A C. Using the formula

dðkÞðabÞ ¼
P

iþj¼k

s i
q

!
dð jÞq ðaÞ

"
dðiÞq ðbÞ, we extend dðkÞq to F ¼ CðtÞ.
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Proposition 2.9. The collection ðdðkÞq Þk AN of maps from F to F , defined previously,
satisfy:

(1) dð0Þq ¼ id.

(2) dð1Þq ¼
sq & id

ðq& 1Þt
.

(3) For all k A N, the map dðkÞq is additive.

(4) dðiÞq * dð jÞq ¼
i þ j

i

# $

q

dðiþjÞ
q .

Proof. By construction of ðdðkÞq Þk AN, it is su‰cient to prove that all the formulas
hold upon evaluation on tr with r A N.

(1) Because
k

0

# $

q

¼ 1, it is obvious that dð0Þq ¼ id.

(2) For all r A N, we have dð1Þq ðtrÞ ¼
r

1

# $

q

tr&1 ¼ qrtr & tr

ðq& 1Þt
¼

sq & id

ðq& 1Þt
ðtrÞ.

(3) Let r A N. We have

dðiÞq * dð jÞq ðtrÞ ¼
r& j

i

# $

q

r

j

# $

q

tr

and

r& j

i

# $

q

r

j

# $

q

¼
i þ j

i

# $

q

r

i þ j

# $

q

;

which gives

dðiÞq * dð jÞq ðtrÞ ¼
i þ j

i

# $

q

dðiþjÞ
q ðtrÞ: r

Proposition 2.10. The field F ¼ CðtÞ endowed with the collection of maps ðdðkÞq Þk AN as
in Definition 2.8 is an iterative q-di¤erence field with dðnÞq ðtnÞ ¼ 1 for all n A N and thus
CðFÞ ¼ C.

Tensor product of IDq-rings.

Lemma 2.11. Let ðR1; d
(
R1
Þ and ðR2; d

(
R2
Þ be two iterative q-di¤erence rings. We have

P
iþj¼k

s i
q

!
d
ð jÞ
R1
ðaÞ

"
n d

ðiÞ
R2
ðbÞ ¼

P
iþj¼k

d
ð jÞ
R1
ðaÞn s j

q

!
d
ðiÞ
R2
ðbÞ

"
ð7Þ

for all k A N, ða; bÞ A R1 + R2.
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Proof. The formula (7) is obviously true for k ¼ 1, using the definition of dð1Þ. If (7)
holds for k and l in N, we have

k þ l

k

# $

q

P
iþj¼kþl

s i
q

!
d
ð jÞ
R1
ðaÞ

"
n d

ðiÞ
R2
ðbÞ ¼

# P
rþs¼l

sr
qðd

ðsÞ
R1
Þn d

ðrÞ
R2

$# P
iþj¼k

s i
q

!
d
ð jÞ
R1
ðaÞ

"
n d

ðiÞ
R2
ðbÞ

$

that is
# P

rþs¼l

sr
qðd

ðsÞ
R1
Þn d

ðrÞ
R2

$# P
iþj¼k

s i
q

!
d
ð jÞ
R1
ðaÞ

"
n d

ðiÞ
R2
ðbÞ

$

¼
# P

rþs¼l

d
ðrÞ
R1

n sr
qðd

ðsÞ
R2
Þ
$# P

iþj¼k

d
ð jÞ
R1
ðaÞn s j

q

!
d
ðiÞ
R2
ðbÞ

"$

and thus

k þ l

k

# $

q

P
iþj¼kþl

s i
q

!
d
ð jÞ
R1
ðaÞ

"
n d

ðiÞ
R2
ðbÞ ¼

k þ l

k

# $

q

P
iþj¼kþl

d
ð jÞ
R1
ðaÞn s j

q

!
d
ðiÞ
R2
ðbÞ

"
:

Then, if
k þ l

k

# $

q

3 0, the formula (7) holds for k þ l. If q is not a root of unity, we can

conclude by induction.

Assume now that qn ¼ 1. It remains to show that formula (7) holds for k A nN. We
will first prove it for k ¼ n.

Because

P
iþj¼n

s i
q

!
d
ð jÞ
R1
ðaÞ

"
n d

ðiÞ
R2
ðbÞ ¼ d

ðnÞ
R1
ðaÞn bþ an d

ðnÞ
R2
ðbÞ þ

Pn&1

i¼1
s i
q

!
d
ðn&iÞ
R1

ðaÞ
"
n d

ðiÞ
R2
ðbÞ;

the proof for k ¼ n will be complete if we show that

Pn&1

i¼1
s i
q

!
d
ðn&iÞ
R1

ðaÞ
"
n d

ðiÞ
R2
ðbÞ ¼

Pn&1

i¼1
d
ðiÞ
R1
ðaÞn s i

q

!
d
ðn&iÞ
R2

ðbÞ
"
:ð8Þ

We have dðkÞ ¼ ðdð1ÞÞk

½k'q!
and

ðdð1ÞÞk ¼ ð&1Þk
!
ðq& 1Þt

"k
Pk

j¼0
ð&1Þ j

k

j

# $

q&1

q&
jð j&1Þ

2 s j
q ¼

1
!
ðq& 1Þt

"k
Pk

j¼0
aj;ks

j
q

for 0 < k < n (see [DiV], Lemma 1:1:10). Then,

Pn&1

i¼1
s i
q

!
d
ðn&iÞ
R1

ðaÞ
"
n d

ðiÞ
R2
ðbÞð9Þ

¼ 1!
ðq& 1Þt

"n
Pn

l¼1

Pl

k¼0
s l
qðaÞn sk

q ðbÞ
# Pi¼l; i3n

i¼k; i30

al&i;n&iak; iq
&iðn&iÞ

½n& i'q!½i'q!

$
:
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If l3 n, k3 0 and l3 k, we have

Pi¼l; i3n

i¼k; i30

al&i;n&iak; iq
&iðn&iÞ

½n& i'q!½i'q!
¼ ð&1Þ lþnq&

nðn&1Þ
2

½n& l'q&1 !½k'q!½l & k'q!
Pl&k

i¼0
ð&1Þ i

l & k

i

# $

q

q
iði&1Þ

2 ¼ 0

(expand ð1; qÞl&k). If l ¼ n, then

Pi¼n; i3n

i¼k; i30

an&i;n&iak; iq
&iðn&iÞ

½n& i'q!½i'q!
¼ ð&1Þnþkþ1q&

nðn&1Þ
2

½k'q!½n& k'q&1

¼
Pi¼k; i3n

i¼0; i30

ak&i;n&ia0; iq
&iðn&iÞ

½n& i'q!½i'q!

(expand ð1; qÞk and ð1; qÞn&k). Because s
n
q ¼ id, it follows that the equation (9) is symmetric

in a and b. Thus the formula (8) holds and the equation (7) is true for k ¼ n.

For k ¼ 2n, we have

P
iþj¼n

s i
q

!
d
ð jÞ
R1
ðaÞ

"
n d

ðiÞ
R2
ðbÞ ¼ d

ð2nÞ
R1

ðaÞn bþ an d
ð2nÞ
R2

ðbÞ

þ
Pn&1

i¼1
s i
q

!
d
ð2n&iÞ
R1

ðaÞ
"
n d

ðiÞ
R2
ðbÞ þ d

ðnÞ
R1
ðaÞn d

ðnÞ
R2
ðbÞ

þ
P2n&1

i¼nþ1
s i
q

!
d
ð2n&iÞ
R1

ðaÞ
"
n d

ðiÞ
R2
ðbÞ:

Because dð2n&iÞ ¼ dðn&iÞ * dðnÞ for all i ¼ 1; . . . ; n& 1, we obtain by (8)

Pn&1

i¼1
s i
q

!
d
ð2n&iÞ
R1

ðaÞ
"
n d

ðiÞ
R2
ðbÞ ¼

Pn&1

i¼1
s i
q

!
d
ðn&iÞ
R1

!
d
ðnÞ
R1
ðaÞ

""
n d

ðiÞ
R2
ðbÞ ¼

Pn&1

i¼1
d
ðnþiÞ
R1

ðaÞn s i
q

!
d
ðn&iÞ
R2

ðbÞ
"

¼
P2n&1

i¼nþ1
d
ðiÞ
R1
ðaÞn s i

q

!
d
ð2n&iÞ
R2

ðbÞ
"
:

We also have

P2n&1

i¼nþ1
s i
q

!
d
ð2n&iÞ
R1

ðaÞ
"
n d

ðiÞ
R2
ðbÞ ¼

Pn&1

i¼1
d
ðiÞ
R1
ðaÞn s i

q

!
d
ð2n&iÞ
R2

ðbÞ
"
:

This concludes the proof for k ¼ 2n. The same arguments give the other cases. r

Proposition 2.12 (Definition). Let ðR1; d
(
R1
Þ and ðR2; d

(
R2
Þ be two iterative q-di¤erence

rings. We define a collection of maps ðdðkÞR1nR2
Þk AN from R1 nF R2 to R1nF R2 as follows:

d
ðkÞ
R1nR2

ðr1 n r2Þ :¼
P

iþj¼k

s i
q

!
d
ð jÞ
R1
ðr1Þ

"
n d

ðiÞ
R2
ðr2Þ for all k A N; r1 A R1 and r2 A R2:

Then ðR1 nF R2; d
(
R1nR2

Þ is an iterative q-di¤erence ring.
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Proof. It is obvious that the family ðdðkÞR1nR2
Þk AN satisfies the three first parts of De-

finition 2.4. By Lemma 2.11 we have

d
ðkÞ
R1nR2

ðr1 n r2Þ ¼
P

iþj¼k

s i
q

!
d
ð jÞ
R1
ðr1Þ

"
n d

ðiÞ
R2
ðr2Þ ¼

P
iþj¼k

d
ð jÞ
R1
ðr1Þn s j

q

!
d
ðiÞ
R2
ðr2Þ

"

for all k A N. Let ða; cÞ A R2
1 and ðb; dÞ A R2

2 . We have

d
ðkÞ
R1nR2

!
ðan bÞðcn dÞ

"
¼
P

iþj¼k

s i
q

!
d
ð jÞ
R1
ðacÞ

"
n d

ð jÞ
R2
ðbdÞ;

d
ðkÞ
R1nR2

!
ðan bÞðcn dÞ

"
¼

P
i1þi2þj1þj2¼k

s i1þi2þj1
q

!
d
ð j2Þ
R1

ðaÞ
"
s i1þi2
q

!
d
ð j1Þ
R1

ðcÞ
"
n s i1

q

!
d
ði2Þ
R2

ðbÞ
"
d
ði2Þ
R2

ðdÞ;

and thus,

d
ðkÞ
R1nR2

!
ðan bÞðcn dÞ

"
¼

P
i1þj2þi¼k

s i1þi
q

!
d
ð j2Þ
R1

ðaÞ
"
n d

ði1Þ
R2

ðdÞ
!
s i1
q

!
d
ðiÞ
R1nR2

ðcn bÞ
""
:

This gives

d
ðkÞ
R1nR2

!
ðan bÞðcn dÞ

"
¼

P
i1þi2þj1þj2¼k

s i1þi2þj1
q

!
d
ð j2Þ
R1

ðaÞ
"
s i1
q

!
d
ði2Þ
R1

ðcÞ
"
n s i1þi2

q

!
d
ð j1Þ
R2

ðbÞ
"
d
ði1Þ
R2

ðdÞ;

and thus

d
ðkÞ
R1nR2

!
ðan bÞðcn dÞ

"
¼
P

iþj¼k

s i
q

!
d
ð jÞ
R1nR2

ðan bÞ
"
d
ðiÞ
R1nR2

ðcn dÞ:

This is part (4) of Definition 2.4.

We now prove part (5). Let ðk; lÞ A N2 and ða; bÞ A R1 + R2. We have

d
ðkÞ
R1nR2

* dðlÞR1nR2
ðan bÞ ¼

P
iþj¼l; i1þj1¼k

qij1
j1 þ j

j1

# $

q

i1 þ i

i

# $

q

s i1þi
q

!
d
ð j1þjÞ
R1

ðaÞ
"
n d

ði1þiÞ
R2

ðbÞ;

that is

d
ðkÞ
R1nR2

* dðlÞR1nR2
ðan bÞ ¼

P
rþs¼kþl

sr
q

!
d
ðsÞ
R1
ðaÞ

"
n d

ðrÞ
R2
ðbÞ

 
P

iþj¼k; ie s; je r

r

j

# $

q

s

i

# $

q

qiðr&jÞ

!

:

Using part (5) of Proposition 2.2, we obtain

d
ðkÞ
R1nR2

* dðlÞR1nR2
ðan bÞ ¼

k þ l

k

# $

q

P
rþs¼kþl

sr
q

!
d
ðsÞ
R1
ðaÞ

"
n d

ðrÞ
R2
ðbÞ;

that is

d
ðkÞ
R1nR2

* dðlÞR1nR2
ðan bÞ ¼

k þ l

k

# $

q

d
ðkþlÞ
R1nR2

ðan bÞ: r
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2.3. Twisted ring of formal power series. This paragraph is devoted to the relations
between IDq-rings and rings of formal power series. By encoding all properties of an itera-
tive q-di¤erence operator into twisted formal power series, Property 2.16 provides us with a
very powerful tool for the proofs to come. This kind of twisted ring appears already in the
work of Yves André (see [And], 1.4.2.1).

Definition 2.13. Let ðR; d(RÞ be an iterative q-di¤erence ring. The twisted ring
Rsq ½½T '' of formal series with coe‰cients in R is defined as follows: The additive structure
of Rsq ½½T '' is the same as the one of R½½T '', the multiplicative structure is given by

lT r ( mT k :¼ sr
qðmÞlT

rþk

and extended by distributivity to R½½T ''.

We will denote by ‘‘.’’ the usual multiplication law on R½½T ''.

Lemma 2.14. The twisted ring ðRsq ½½T '';þ; (Þ as in Definition 2.13 is a non commu-
tative ring with unity.

Proof. We have

lT r ( 1 ¼ lT r ( T 0 ¼ sr
qð1ÞlT

rþ0 ¼ lT r ¼ 1 ( lT r ¼ s0
qðlÞT

r ¼ lT r:

Thus 1 is a neutral element for the twisted multiplication (.

Let us prove then, that ( is associative.

nT s ( ðlT r ( mT kÞ ¼ nT s (
!
sr
qðmÞlT

rþk
"
¼ srþs

q ðmÞss
qðlÞnT

rþsþk

and

ðnT s ( lT rÞ ( mT k ¼
!
ss
qðlÞnT

rþs
"
( mT k ¼ srþs

q ðmÞss
qðlÞnT

rþsþk

give

nT s ( ðlT r ( mT kÞ ¼ ðnT s ( lT rÞ ( mT k:

The product ( is therefore associative.

Now, we want to introduce an iterative q-di¤erence operator on ðRsq ½½T '';þ; :Þ, that
is to say, a collection of maps d(T which satisfies all the properties of Definition 2.4.

First we need an automorphism sq on ðRsq ½½T '';þ; :Þ such that ðRsq ½½T '';þ; :Þ is a
q-di¤erence ring extension of F . We put sqðaT iÞ :¼ sqðaÞqiT i for all i A N and a A R. By
extending this definition R-linearly, Rsq ½½T '' becomes a q-di¤erence ring extension of F . We

put dðkÞT ðT rÞ :¼
r

k

# $

q

T r&k for all ðk; rÞ A N2 and extend this definition by R-linearity. Ob-

viously ðdðkÞT Þk AN is an iterative q-di¤erence operator over ðRsq ½½T '';þ; :Þ (see Definition
2.4). r
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Definition 2.15. For all a A R,

TaðTÞ :¼
P
k AN

d
ðkÞ
R ðaÞT k

is called the q-iterative Taylor series of a. We define the map T : R ! Rsq ½½T '' where
TðaÞ :¼ TaðTÞ.

Proposition 2.16. Let R be a q-di¤erence ring extension of F and let d(R ¼ ðdðkÞR Þk AN
be a sequence of maps from R to R. Let d(T be the iterative q-di¤erence operator of
ðRsq ½½T '';þ; :Þ defined previously, and let I denote the map

I : Rsq ½½T '' ! R;
P
k AN

akT
k 7! a0:

Then d(R is an iterative q-di¤erence operator for R if and only if:

(1) T is a ring homomorphism from R to ðRsq ½½T '';þ; (Þ, with I * T ¼ idR.

(2) d
ðkÞ
T * T ¼ T * dðkÞR for all k A N.

Proof. The fact that T is additive is equivalent to statement (3) in Definition 2.4.
The compatibility of T with the multiplication law in R and the twisted law ( in Rsq ½½T '',
in the case where d(R is an iterative q-di¤erence operator comes from the equations

TabðTÞ :¼
P
k AN

d
ðkÞ
R ðabÞT k ¼

P
k AN

# P
iþj¼k

s i
q

!
d
ð jÞ
R ðaÞ

"
d
ðiÞ
R ðbÞ

$
T k ¼ TaðTÞ ( TbðTÞ:

The second property is equivalent to the property (5) of the same definition. r

2.4. Iterative q-di¤erence morphisms and iterative q-di¤erence ideals.

Definition 2.17. Let ðR; d(RÞ and ðS; d(SÞ be two iterative q-di¤erence rings. We
say that a ring morphism f from R to S is an iterative q-di¤erence morphism if and only
if dðkÞS * f ¼ f * dðkÞR for all k A N.

The set of all iterative q-di¤erence morphisms from R to S is denoted by
HomIDq

ðR;SÞ. An iterative q-di¤erence ideal I HR (IDq-ideal) is an ideal of R stable by
d
ðkÞ
R for all k A N.

Lemma 2.18. Let I be an IDq-ideal of an iterative q-di¤erence ring R, that is to say
that I is stable under the action of d(R. Then the radical of I is an IDq-ideal.

Proof. Assume that q is an n-th primitive root of unity. From d
ð1Þ
R ¼

sq & id

ðq& 1Þt
, we get

sqðaÞ ¼ ðq& 1Þt
!
d
ð1Þ
R ðaÞ & a

"
for all a A I :

This shows that sqðaÞ A I for all a A I . Thus I is a sq-ideal. Conversely, if I is a sq-ideal
then it is a d

ð1Þ
R -ideal. Now, let us consider a A

ffiffiffi
I

p
. There exists m A N such that am A I . But,

sqðamÞ ¼
!
sqðaÞ

"m
A I . Thus sqðaÞ A

ffiffiffi
I

p
.
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Now, we will prove by induction that for all i < n, dðiÞR stabilizes
ffiffiffi
I

p
.

It is true for i ¼ 1. If it is true for k < n& 1, then k < n and we have

d
ð1Þ
R * dðk&1Þ

R ¼
k

1

# $

q

d
ðkÞ
R

where
k

1

# $

q

3 0 because k < n. We have that d
ð1Þ
R and d

ðk&1Þ
R stabilize

ffiffiffi
I

p
(by first step

and by inductive assumption). Thus d
ðkÞ
R stabilizes

ffiffiffi
I

p
. This concludes the proof by in-

duction.

It remains to consider the case where k ¼ n. Let a A
ffiffiffi
I

p
and m A N such that am A I .

We have

d
ðnmÞ
R ðamÞ ¼

P
i1þ!!!þim¼nm

s i2þ!!!þim
q

!
d
ði1Þ
R ðaÞ

"
. . . s im

q

!
d
ðim&1Þ
R ðaÞ

"
d
ðimÞ
R ðaÞ:ð10Þ

Because sn
q ¼ id, we can rewrite the equation (10) as follows: dðnmÞ

R ðamÞ ¼
!
d
ðnÞ
R ðaÞ

"m þ B
with

B ¼
P(

i1þ!!!þim¼nm
s i2þ!!!þim
q

!
d
ði1Þ
R ðaÞ

"
. . . s im

q

!
d
ðim&1Þ
R ðaÞ

"
d
ðimÞ
R ðaÞ

where
P(

i1þ!!!þim¼nm
means that we only consider the ði1; . . . ; imÞ such that there exists at least

one j with ij < n. We have already proved by induction that
ffiffiffi
I

p
is stable by sq and by d

ðiÞ
R

for i < n. This implies that B A
ffiffiffi
I

p
. Then

!
d
ðnÞ
R ðaÞ

"m
belongs to

ffiffiffi
I

p
since d

ðnmÞ
R ðamÞ A I be-

cause I itself is an IDq-ideal. It follows d
ðnÞ
R ðaÞ A

ffiffiffi
I

p
.

So we have proved that
ffiffiffi
I

p
is stable under d

ðkÞ
R for all ke n. Using the formula

d
ðiÞ
R * dðk&iÞ

R ¼
k

i

# $

q

d
ðkÞ
R and an inductive proof, we easily show that

ffiffiffi
I

p
is stable under dðkÞR

for all k B nN. The proof for k A nN is an analogue of the case k ¼ n. Therefore
ffiffiffi
I

p
is an

IDq-ideal. r

Remark 2.19 (Classical case). For q not equal to a root of unity, the proof of the
previous lemma is more elementary (see [SvP], Lemma 1.7). The reason is that if I is a
sq-ideal then its radical is obviously a sq-ideal because sq is an automorphism.

2.4.1. Extending iterative q-di¤erence operator.

Proposition 2.20. Let R be an integral domain, and let SHR be a multiplicatively
closed subset of R s tab le under the ac t ion o f sq such that 0 B S. Let d(R be an iterative
q-di¤erence operator on R. Then there exists a unique iterative q-di¤erence operator d(S&1R

extending d(R to S&1R.

13Hardouin, Iterative q-di¤erence Galois theory

(AutoPDF V7 4/2/10 11:01) WDG Tmath J-2219 CRELLE, (idp) PMU:(idp[KN]/W)4/2/2010 pp. 1–44 2219_6010 (p. 13)



Proof. Because d(R is an iterative q-di¤erence operator, the application
T : R 7! ðRsq ½½T '';þ; (Þ defined by a 7! TaðTÞ is a ring homomorphism (see 2.16). Since
R is commutative, we have

TabðTÞ ¼ TaðTÞ ( TbðTÞ ¼ TbðTÞ ( TaðTÞ for all a; b A R:

This allows us to define the quotient
TaðTÞ
TbðTÞ

(
of TaðTÞ by TbðTÞ with respect to the multi-

plication ( for all ða; bÞ A R+ R(. Thereby, the map T uniquely extends to a homo-

morphism ~TT : S&1R 7!
!
ðS&1RÞsq ½½T '';þ; (

"
via

a

b
7! ~TTa

b
ðTÞ :¼ TaðTÞ

TbðTÞ

(
. Define d

ðkÞ
S&1R

a

b

# $

to be the coe‰cient of T k in ~TTa
b
ðTÞ. Then the collection of maps ðdðkÞ

S&1R
Þk AN of S&1R to

itself satisfies conditions (1) and (2) of Proposition 2.16. Thus ðdðkÞ
S&1R

Þk AN is an iterative
q-di¤erence operator for S&1R. We also have

~TT
d
ðkÞ
S&1R

ðaÞðTÞ ¼ d
ðkÞ
T

!
~TTaðTÞ

"
for all a A R; k A N:

The Taylor series associated to both sides of the previous equation extend uniquely to
ðS&1RÞsq ½½T '' and since they coincide on Rsq ½½T '', they have to be equal. Then

~TT
d
ðkÞ
S&1R

ðaÞðTÞ ¼ d
ðkÞ
T

!
~TTaðTÞ

"
for all a A S&1R; k A N:

By Proposition 2.16, we get that ðdðkÞ
S&1R

Þk AN is an iterative q-di¤erence operator of S&1R
which uniquely extends ðdðkÞR Þk AN. r

Remark 2.21. Let ðR; d(RÞ be an integral iterative q-di¤erence ring. It is obvious that
the set S of non-zero divisors of R is a multiplicatively closed set and moreover stable under
the action of sq.

Remark 2.22. In this paragraph we did not mention the possibilities of extending an
iterative q-di¤erence operator over a field K to a finitely generated separable field extension
E=K . In fact, this problem appears already in the classical q-di¤erence Galois theory: Ex-
tending sq to an algebraic extension gives rise to uniqueness problems. Here is an example.
Consider a di¤erence field ðK; sqÞ, where sq is the identity on some algebraically closed
field C containing Q, K contains a solution y of sðxÞ ¼ cx, where c A C is non-zero and is
not a root of unity. Moreover assume that K does not contain the n-th roots of y for some
n > 1. Consider the extension of K given by bn ¼ y. Then sðbÞ ¼ rb, where rn ¼ c. The
possible choices for s on KðbÞ depend on the choices of r, and there are n possibilities,
which give rise to n non-isomorphic di¤erence field extensions of K .

But by chance, we will not have to handle such kind of extension till the end of the
paper.

2.5. The Wronskian determinant. In classical Galois theory of q-di¤erence equa-
tions, there exists an analogue of the Wronskian called the q-Wronskian or the Casoratian.
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If we consider a sq-module M over a field K and a family F :¼ fy1; . . . ; ymg of elements of
M, we will define the q-Wronskian of the family F as

Wqðy1; . . . ; ymÞ :¼ det
!!
s i&1
q ðyjÞ

"
1ei; jem

"
:

The nullity of the q-Wronskian gives a criterion for linear independence of the yi’s (see for
instance [DiV], 1:2). But when q is a root of unity, the q-Wronskian could vanish for other
reasons (for instance because sn

q ¼ id). Thus, we have to change the notion of q-Wronskian
for iterative q-di¤erence operators in order to get a similar criterion to the one in the clas-
sical theory.

Theorem 2.23. Let ðK ; d(KÞ be an iterative q-di¤erence field with field of constants C.
Then for any elements x1; . . . ; xr of K linearly independent over C, the iterative Taylor series
Tx1 ; . . . ;Txr are linearly independent over K.

Proof. This statement is obviously true for r ¼ 1. We will proceed by induction on r.
Let ðHrÞ be the hypothesis of induction, i.e., for any elements x1; . . . ; xr of K linearly inde-
pendent over C, the iterative Taylor series Tx1 ; . . . ;Txn are linearly independent over K .
Suppose that ðHr&1Þ is true and let x1; . . . ; xr A K be linearly independent over C. Assume
that Tx1 ; . . . ;Txr are linearly dependent over K, i.e.:

Txr ¼
Pr&1

j¼1
ajTxj

where aj A K not all equal to zero. This relation implies that

dðkÞðxrÞ ¼
Pr&1

j¼1
ajd

ðkÞðxjÞ for all k A N:ð11Þ

We will prove that sqðajÞ ¼ aj for all 1e je r& 1. First of all, let us remark that if
x1; . . . ; xr&1 A K are linearly independent over C then sqðx1Þ; . . . ; sqðxr&1Þ A K are linearly
independent over C.

Because of dð1Þ ¼
sq & id

ðq& 1Þt
and from equation (11), we have:

sq
!
dðkÞðxrÞ

"
& dðkÞðxrÞ ¼

Pr&1

j¼1
ajsq

!
dðkÞðxjÞ

"
&
Pr&1

j¼1
ajd

ðkÞðxjÞ

and

sq
!
dðkÞðxrÞ

"
¼
Pr&1

j¼1
sqðajÞsq

!
dðkÞðxjÞ

"
:

We also obtain that

Pr&1

j¼1

!
sqðajÞ & aj

"
sq
!
dðkÞðxjÞ

"
¼ 0
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for all k A N. Because sq
!
dðkÞðxjÞ

"
¼ 1

qk
dðkÞ

!
sqðxjÞ

"
, we get

Pr&1

j¼1

!
sqðajÞ & aj

"!
dðkÞ

!
sqðxjÞ

""
¼ 0

for all k A N. This means that
Pr&1

j¼1

!
sqðajÞ & aj

"
TsqðxjÞ ¼ 0. Since x1; . . . ; xr&1 A K are linearly

independent over C, sqðx1Þ; . . . ; sqðxr&1Þ A K are linearly independent over C. Thus we can
apply the induction hypothesis ðHr&1Þ to the set of elements sqðx1Þ; . . . ; sqðxr&1Þ of K and
so sqðajÞ ¼ aj for 1e je r& 1 as desired.

For all k; i A N, we have

i þ k

k

# $

q

dðiþkÞðxrÞ ¼ dðiÞdðkÞðxrÞ ¼
Pr&1

j¼1

Pi

l¼0
s i&l
q

!
dðlÞðajÞ

" i þ k & l

k

# $

q

dðiþk&lÞðxjÞ

and

i þ k

k

# $

q

dðiþkÞðxrÞ ¼
i þ k

k

# $

q

Pr&1

j¼1
ajd

ðkÞðxjÞ:

Because sqðajÞ ¼ aj for 1e je r& 1, the term for l ¼ 0 on the right-hand side is equal to
the left-hand side, thus

Pr&1

j¼1

Pi

l¼1
s i&l
q

!
dðlÞðajÞ

" i þ k & l

k

# $

q

dðiþk&lÞðxjÞ ¼ 0:ð12Þ

For i ¼ 1, we deduce from equation (12) that

Pr&1

j
dð1ÞðajÞdðkÞðxjÞ ¼ 0:

By applying dð1Þ, we obtain:

Pr&1

j
sq
!
dð1ÞðajÞ

"
dð1Þ

!
dðkÞðxjÞ

"
þ
Pr&1

j
dð1Þ

!
dð1ÞðajÞ

"
dðkÞðxjÞ ¼ 0;

i.e., since sr
qd

ðsÞ ¼ 1

qrs
d
ðsÞ
R sr

q for all r; s A N, and the aj’s are fixed by sq,

Pr&1

j

qðqkþ1 & 1Þ
q& 1

dð1ÞðajÞdðkþ1ÞðxjÞ þ
Pr&1

j
ðqþ 1Þ

!
dð2ÞðajÞ

"
dðkÞðxjÞ ¼ 0:
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For i ¼ 2, we deduce from equation (12) that

Pr&1

j
sq
!
dð1ÞðajÞ

" k þ l

k

# $

q

dðkþ1ÞðxjÞ þ
Pr&1

j
dð2ÞðajÞdðkÞðxjÞ ¼ 0:

By subtracting this from the equality above, we find

Pr&1

j
dð2ÞðajÞdðkÞðxjÞ ¼ 0:

By induction, the same arguments yields

Pr&1

j
dðiÞðajÞdðkÞðxjÞ ¼ 0 for kf 0 and if 1:

This leads to

Pr&1

j
dðiÞðajÞTxj ¼ 0:

By hypothesis of induction ðHr&1Þ, this implies that dðiÞðajÞ ¼ 0 for all if 1 and all

1e je r& 1. Hence all the aj’s are constants and lie in C. But we have xn ¼
Pr&1

j¼1
ajxj (see

equation (12) for k ¼ 0) and thus by assumption of C-linearly independence of x1; . . . ; xr,
we get that aj ¼ 0 for all 1e je r& 1. r

Corollary 2.24. Let x1; . . . ; xr A K linearly independent over C, there exist numbers
d1; . . . ; dr A N such that

det
!!
dðdiÞðxjÞ

"
i; j¼1;...; r

"
3 0:

Definition 2.25. Let ðK ; d(KÞ be an IDq field with CðKÞ ¼ C and let x1; . . . ; xr A K be
linearly independent over C. The smallest numbers d1; . . . ; dr A N (in lexicographical order)
such that det

!!
dðdiÞðxjÞ

"r
i; j¼1

"
3 0 (which exist by Corollary 2.24) are called the di¤erence

orders of x1; . . . ; xr. The determinant

wrðx1; . . . ; xrÞ :¼ det
!!
dðdiÞðxjÞ

"r
i; j¼1

"

is called the Wronskian determinant of x1; . . . ; xr.

3. Iterative q-di¤erence modules and equations

Until the end of this article, we will assume that q is an n-th primitive root of unity
contained in an algebraically closed field C. But we do not make any assumption about the
characteristic of the field C.
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In Section 2, we have defined iterative q-di¤erence rings. Following the classical way,
we extend this concept to modules, in order to get a suitable notion of iterative q-di¤erence
equations associated to these modules.

Definition 3.1. Let ðR; d(RÞ be an iterative q-di¤erence ring. Let M be a free R-
module of finite type over R. We will say that ðM; d(MÞ is an iterative q-di¤erence module

if there exists a family of maps d(M ¼ ðdðkÞM Þk AN, such that for all i; j; k A N

(1) d
ð0Þ
M ¼ idM ,

(2) fM :¼ ðq& 1Þtdð1ÞM þ idM is a bijective map from M to M,

(3) d
ðkÞ
M is an additive map from M to M,

(4) d
ðkÞ
M ðamÞ ¼

P
iþj¼k

s i
q

!
d
ð jÞ
R ðaÞ

"
d
ðiÞ
MðmÞ for a A R and m A M,

(5) d
ðiÞ
M * dð jÞM ¼

i þ j

i

# $

q

d
ðiþjÞ
M .

The set of all iterative q-di¤erence modules over R is denoted by IDMqðRÞ.

Remark 3.2 (Classical case). If q is not a root of unity, it is easy to see that

fMðamÞ ¼ sqðaÞfMðmÞ for all a A R and m A M. Moreover, dðkÞM ¼ d
ð1Þ
M

k

½k'q!
. Thus, in the case

where q is not a root of unity, an IDq-module is nothing else than a q-di¤erence module in
the sense of [SvP], 1.4.

As in 2.5, we easily show that we have for all j; i A N,

f j
Md

ðiÞ
M ¼ 1

q ji
d
ðiÞ
Mf j

M :ð13Þ

Definition 3.3. Let ðM; d(MÞ and ðN; d(NÞ be two iterative q-di¤erence modules over R
and let f A HomRðM;NÞ. We will say that f is an iterative q-di¤erence homomorphism if
d
ðkÞ
N * f ¼ f * dðkÞM for all k A N.

Definition 3.4. Let ðR; d(RÞ be an iterative q-di¤erence ring. Let ðM; d(MÞ be an itera-
tive q-di¤erence module over R. The CðRÞ-module

VM :¼
T

k AN
KerðdðkÞM Þ

is called the solution space of the iterative q-di¤erence module M. We will say that M is a
trivial iterative q-di¤erence module if MFVM nCðRÞ R.

Theorem 3.5. Let ðL; d(LÞ be an iterative q-di¤erence field. Let us denote by IDMqðLÞ
the category with objects the iterative q-di¤erence modules over L and morphisms the itera-
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tive q-di¤erence morphisms. Then IDMqðLÞ is a neutral Tannakian category over CðLÞ. The
unit object is ðL; d(LÞ.

Proof. We refer to [Ma], Theorem 2.5. for the fact that IDMqðLÞ is an abelian cat-
egory, the case for iterative di¤erential modules being the same as the one of iterative q-
di¤erence modules. For M and N two objects of IDMqðLÞ, we define the tensor product
MnN :¼ MnL N by the usual tensor product as L-modules and turn it to an IDq-
module via

d
ðkÞ
MnNðxn yÞ ¼

P
iþj¼k

f j
M

!
d
ðiÞ
MðxÞ

"
n d

ð jÞ
N ðyÞ

for all x A M, y A N. The proof that ðdðkÞMnNÞk AN is an iterative q-di¤erence operator on
MnN is analogous to the proof of Proposition 2.12.

The dual of an object M of IDMqðLÞ is then given by M ( ¼ HomLðM;LÞ together
with

d
ðkÞ
M ( ð f Þ ¼

P
iþj¼k

ð&1Þ iq
iðiþ1Þ

2 s i
qðd

ð jÞ
L Þ * f * dðiÞM * f&i

M

for all f A M (. The proof that ðM; d(M ( Þ is an iterative q-di¤erence module is left to the
reader. We just recall that if ðM; fMÞ is a q-di¤erence module in the sense of [SvP], then
M ( is endowed with a q-di¤erence module structure via

fM (ð f Þ :¼ sq * f * f&1
M :

The evaluation map e : MnM ( ! 1IDMqðLÞ ¼ L sends xn f to f ðxÞ, and the co-

evaluation map h : L ! M (nM is defined by mapping 1 to
Pn

i¼1
x(
i n xi, where fxign

i¼1

denotes an L-basis of M and fx(
i g

n
i¼1 the associated dual basis of M (. Note that

the definition of h does not depend on the chosen basis. It remains to show that e
and h are IDq-homomorphisms and that they satisfy ðen idMÞ * ðidM n hÞ ¼ idM and
ðidM ( n eÞ * ðhn idM (Þ ¼ idM ( for all objects M of IDMqðLÞ. We have

e * dðkÞMnM (ðxn f Þ ¼ e

# P
iþj¼k

d
ðiÞ
MðxÞn f i

M(
!
d
ð jÞ
M (ð f Þ

"$
¼
P

iþj¼k

f i
M (

!
d
ð jÞ
M ( ð f Þ

"!
d
ðiÞ
MðxÞ

"

¼
P

iþj¼k

Pj

l¼0
ð&1Þ lqlðlþ1Þ=2s iþl

q ðdð j&lÞ
L Þ * f * dðlÞM * f&ðiþlÞ

M

!
d
ðiÞ
MðxÞ

"

¼
P

iþj¼k

Pj

l¼0
ð&1Þ lqlðlþ1Þ=2s lþi

q ðdð j&lÞ
L Þ * f * qiðiþlÞ i þ l

i

# $

q

d
ðiþlÞ
M

!
f
&ðiþlÞ
M ðxÞ

"

and thus

e * dðkÞMnM (ðxn f Þ ¼
P

i(þj(¼k

s i(
q ðd

ð j(Þ
L Þ * f * dði(ÞM

!
f&i(
M ðxÞ

"
 
Pi(

i¼0
ð&1Þ iqiði&1Þ=2 i(

i

# $

q

!

:
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By expanding ð1; qÞi( , we see that the inner sum equals zero if and only if i(3 0. We thus
get

e * dðkÞMnM ( ðxn f Þ ¼ d
ðkÞ
L

!
f ðxÞ

"
¼ d

ðkÞ
L * eðxn f Þ:

The proof for h is analogous.

Let x ¼
Pn

i¼1
aixi A M, then

ðen idMÞ * ðidM n hÞðxÞ ¼ en idM

 

xn
#Pn

i¼1
x(
i n xi

$!

¼ en idM

#Pn

i¼1
ðxn x(

i Þn xi

$
¼
Pn

i¼1
x(
i ðxÞn xi ¼

Pn

i¼1
aixi ¼ x:

Again, the second statement is proved analogously. Finally, we note that

EndIDMqðLÞð1IDMqðLÞÞ ¼ EndIDq
ðLÞ ¼ CðLÞ;

finishing the proof. r

Link with the iterative di¤erential modules. In this paragraph, we will show that iter-
ative q-di¤erence operators and iterative derivations are closely related.

Proposition 3.6. Let q be a primitive n-th root of unity. Let ðL; d(LÞ be an itera-
tive q-di¤erence field and let ðM; d(MÞ be an iterative q-di¤erence module over L. Set

L0 ¼
T

j B nN
Kerðdð jÞL Þ and M0 ¼

T
j B nN

Kerðdð jÞM Þ. Then
!
M0; ðqðkÞM :¼ d

ðnkÞ
M Þk AN

"
is an iterative

di¤erential module over the iterative di¤erential field
!
L0; ðqðkÞ :¼ d

ðnkÞ
L Þk AN

"
(see [Ma], De-

finition 2.1).

Hint of proof. For instance, we will prove point (2) of [Ma], Definition 2.1, that is

q
ðkÞ
M ðamÞ ¼

P
iþj¼k

qðiÞðaÞqð jÞM ðmÞ with ða;mÞ A L0 +M0:

We have

q
ðkÞ
M ðamÞ :¼ d

ðnkÞ
M ðamÞ ¼

P
iþj¼nk

s j
q

!
d
ðiÞ
L ðaÞ

"
d
ð jÞ
M ðmÞ:

Because ða;mÞ A L0 +M0 we have that d
ðiÞ
L ðaÞ ¼ 0 ¼ d

ð jÞ
M ðmÞ for all i B nN and j B nN.

Then

q
ðkÞ
M ðamÞ :¼ d

ðnkÞ
M ðamÞ ¼

P
niþnj¼nk

snj
q

!
d
ðniÞ
L ðaÞ

"
d
ðnjÞ
M ðmÞ ¼

P
iþj¼k

qðiÞðaÞqð jÞM ðmÞ:

The last inequality comes from the fact that sn
q ¼ id. To prove point (3) of [Ma], Definition

2.1, we use the same facts as in point (2) and the formula
in

jn

# $

q

¼
i

j

# $
. r
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Therefore, one could hope, as in [Ma], Theorem 2.8 (or in [MvP], section 5), to con-
struct projective systems deeply related to our iterative q-di¤erence module in order to ob-
tain a suitable notion of iterative q-di¤erence equations. These projective systems could be
perhaps seen as some kind of jet spaces for the iterative q-di¤erence operator.

But our situation is slightly di¤erent as the one considered in [MvP] because we treat
simultaneously fields of positive and zero characteristic.

In the case of characteristic zero, we may regain all the iterative q-di¤erence operators
only with the knowledge of dð1ÞM and d

ðnÞ
M . This is due to the formula ðdðnÞM Þn

k&1

¼ ðnk&1Þ!dðn
kÞ

M

and to the fact that the family fdð1ÞM ; ðdðn
kÞ

M Þk ANg generates the iterative q-di¤erence operator.
Therefore we will only obtain degenerated projective systems but this is not a hindrance to
the construction of iterative q-di¤erence equations in characteristic 0 (see Section 3.2).

In positive characteristic, the whole family fdð1ÞM ; ðdðnp
kÞ

M Þk ANg and not less is necessary
to recover the iterative q-di¤erence operator. In this situation, we will show that the cate-
gory of iterative q-di¤erence modules is equivalent to the category of some specific projec-
tive systems (see Section 3.1). This is a very nice tool because it allows us to translate our
computations from the non commutative world of iterative q-di¤erence modules to the
world of linear algebra, via the vector spaces associated to the projective systems.

This comparison between iterative di¤erential modules and specific projective systems
already appears in the work of B. H. Matzat and M. van der Put. But to obtain an equi-
valence of category between the one of projective systems linked to iterative derivations
and the one associated to iterative q-di¤erence, we need to have qp ¼ 1 and this assumption
makes no sense. A hope for realizing this equivalence will be perhaps to rebuild both
theories over non-algebraically closed base rings, such as Z=pmZ and try to reach the Witt
vectors. But this is a future research topic.

3.1. Case of characteristic p.

3.1.1. Projective systems. Let ðL; d(LÞ be an iterative q-di¤erence field of characteris-
tic p and let ðM; d(MÞ be an iterative q-di¤erence module over L. In positive characteristic,
we have the exact analogue of the equivalence of categories obtained by Matzat in [Ma],
Theorem 2.8.

Put Lkþ1 ¼
T

0ej<k

Kerðdðnp
jÞ

L ÞXKerðdð1ÞL Þ for k > 0 and L0 ¼ L.

Put Mkþ1 ¼
T

0ej<k

Kerðdðnp
jÞ

M ÞXKerðdð1ÞM Þ for all k > 0 and M0 ¼ M.

Proposition 3.7. We have:

(1) Mk is an Lk-vector space of finite dimension.

(2) The inclusion fk : Mkþ1 ,! Mk is Lkþ1-linear and defines a projective system
ðMk; fkÞk AN.
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(3) The map fk extends to an isomorphism of Lk-vector-spaces from Mkþ1 nLk to
Mk.

Proof. The two first statements are obvious. Let us prove the third one. For all
k A N, Lk nLkþ1

Mkþ1 HMk, thus dimLkþ1
ðMkþ1Þe dimLk

ðMkÞ. On the other hand, Mk is
an Lk-vector space and hence an Lkþ1-vector space since Lkþ1 HLk. For kf 1, the appli-
cation d

ðnpk&1Þ
M is Lkþ1-linear on Mk and ðdðnp

k&1Þ
M Þp ¼ 0, so

dimLkþ1ðMkþ1Þ ¼ dimLkþ1

!
Kerðdðnp

k&1Þ
M ÞjMk

"
f

1

p
dimLkþ1ðMkÞf dimLk

ðMkÞ;

where the last inequality comes from the fact that d
ðnpk&1Þ
L is an Lkþ1-linear endomor-

phism of Lk of order of nilpotence p. For k ¼ 0, we have ðdð1ÞM Þn ¼ 0. Therefore,

dimL1ðM1Þ ¼ dimL1

!
Kerðdð1ÞM jMÞ

"
f

1

n
dimL1ðMÞf dimLðMÞ, where the last inequality

comes from the fact that dð1ÞL is an L1-linear endomorphism of L of order of nilpotence n
(q is an n-th primitive root of unity). r

3.1.2. Equivalence of categories.

Notation 3.8. Let ðL; d(LÞ be an iterative q-di¤erence field of characteristic p. Let us
denote by ProjqðLÞ the category of projective systems ðNk;ckÞk AN over L with the proper-
ties:

(1) Nk is an Lk-vector space of finite dimension and ck is Lkþ1-linear.

(2) Each ck uniquely extends to an Lk-isomorphism

~cck : Lk nLkþ1
Nkþ1 ! Nk:

Theorem 3.9. Let ðL; d(LÞ be an iterative q-di¤erence field of positive characteristic.
Then the category ProjqðLÞ is equivalent to the category IDMqðLÞ.

Proof. We already saw in Proposition 3.7 how an object of IDMqðLÞ leads to an
object of ProjqðLÞ. Conversely, let us consider ðNk;ckÞk AN in the category ProjqðLÞ. We
will now construct its associated iterative q-di¤erence module.

Put M0 :¼ N0 and define Mk :¼ c0 * c1 * ! ! ! * ck&1ðNkÞ. Then

Mkþ1 HMk H ! ! ! HM0:

Let Bk ¼ fb1; . . . ; bmg be an Lk-basis for Mk, then by property (2) of Notation 3.8, Bk is an

L-basis of M ¼ M0. Let x A M, there exits ðliÞi¼1;...;m A Lm such that x ¼
Pm

i¼1
libi. Then, for

all j < npk&1, set

d
ð jÞ
M ðxÞ :¼

Pm

i¼1
d
ð jÞ
L ðliÞbi:
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This is possible because we want Bk to lie in the kernel of dð jÞM for j < npk&1. Because all
change of basis are with coe‰cients in Lk, this definition is independent of the choice of
the Lk-basis of Mk. Therefore, ðM0; d

(
M0

Þ is an object IDMqðLÞ.

Let us consider two objects M :¼ ðMk; fkÞk AN and N :¼ ðNk;ckÞk AN of ProjqðLÞ
and a a morphism from M to N in the category ProjqðLÞ, i.e. ak is Lk linear and the dia-
gram

Mk (((!ak Nk

fk

x??? ck

x???

Mkþ1 (((!
akþ1

Nkþ1

is commutative. Then we have d(N * a0 ¼ a0 * d(M . Also, with this property, it is then easy to
verify that

ProjqðLÞ ! IDMqðLÞ;

ðMk; fkÞ 7! ðM0; d
(
M0

Þ

(with d(M0
as defined above) is in fact an equivalence of categories. r

3.1.3. Iterative q-di¤erence equations in positive characteristic. As we expect from
standard q-di¤erence Galois theory, any iterative q-di¤erence module should give rise to
an iterative q-di¤erence equation consisting of a family of equations. Proposition 3.11
shows how to obtain this equation from a given IDq-module over a field of positive char-
acteristic.

Proposition 3.10. Let ðL; d(LÞ be an iterative q-di¤erence field of characteristic p and
let ðM; d(MÞ be an object of IDMqðLÞ. Let us consider the projective system ðMk; fkÞk AN as-
sociated to M as in 4.1.1. For all k A N, let us denote by Bk a basis of Mk as an Lk-vector
space (written as a row) and let Dk A GlnðLkÞ (with n ¼ dimLM) be the matrix of fk with
respect to that basis, i.e., BkDk ¼ Bkþ1:

Then, for any l A N( and for any X A Ln, we have:

(1) B0X ¼ BlXl where Xl ¼ D&1
l&1 . . .D

&1
0 X .

(2) d
ðkÞ
M ðB0X Þ ¼ Bld

ðkÞ
L ðXlÞ ¼ B0D0 . . .Dl&1d

ðkÞ
L ðD&1

l&1 . . .D
&1
0 X Þ for 0 < k < npl&1.

Proof. Part (1) is obvious by definition. For part (2) we have

d
ðkÞ
M ðB0X Þ ¼ d

ðkÞ
M ðBlXlÞ ¼ Bld

ðkÞ
L ðXlÞ ¼ B0D0 . . .Dl&1d

ðkÞ
L ðD&1

l&1 . . .D
&1
0 X Þ for 0 < k < npl&1;

using the definition of Bl . r

Proposition 3.11. Let y A Ln and B0 ¼ fb1; . . . ; bng be a basis of M. The following
statements are equivalent:
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(1) Let y A Ln. B0y ¼
Pn

i¼1
yibi A VM ¼

T
k AN

Mk.

(2) For all l A N(, we have dðkÞL ðylÞ ¼ 0 for 0 < k < npl&1, where yl ¼ D&1
l&1 . . .D

&1
0 y.

d
ðnpkÞ
L ðyÞ ¼ ~AAky for all kf 0ð3Þ

where

~AAk ¼ d
ðnpkÞ
L ðD0 . . .Dkþ1ÞðD0 . . .Dkþ1Þ&1 and d

ð1Þ
L ðyÞ ¼ A1y where A1 ¼ d

ð1Þ
L ðD0ÞðD0Þ&1:

Proof. First, we show that statements (1) and (2) are equivalent: B0y A VM if and
only if dðkÞM ðB0yÞ ¼ 0 for all k A N(. The claim is obvious by using the equation

d
ðkÞ
M ðB0yÞ ¼ Bld

ðkÞ
L ðylÞ

which holds for 0 < k < npl&1 (see the Proposition 3:10).

Finally, the equivalence of (2) and (3) is obtained using

d
ðnplÞ
L ðyÞ ¼ d

ðnplÞ
L ðD0 . . .Dlþ1ylþ2Þ ¼ d

ðnplÞ
L ðD0 . . .Dlþ1Þylþ2 þD0 . . .Dlþ1d

ðnplÞ
L ðylþ2Þ

¼ d
ðnplÞ
L ðD0 . . .Dlþ1ÞðD0 . . .Dlþ1Þ&1y ¼ ~AAly

where dðnp
lÞðylþ2Þ ¼ 0 and

d
ð1Þ
L ðyÞ ¼ d

ð1Þ
L ðD0y1Þ ¼ d

ð1Þ
L ðD0Þy1 þ sqðD0Þdð1ÞL ðy1Þ ¼ A1y: r

Definition 3.12. The family of equations fdð1ÞL ðyÞ ¼ A1y; d
ðnpkÞ
L ðyÞ ¼ ~AAkygkf0 related

to the IDMq-module ðM; d(MÞ by Proposition 3.11 is called an iterative q-di¤erence equation
(IDqE).

We give below some examples of iterative q-di¤erence equations over fields of posi-
tive characteristic.

Example 3.13. Let p be a prime number, let C ¼ Fp be an algebraic closure of Fp
and let F ¼ CðtÞ be the rational function field with coe‰cients in C. Let ðalÞlf0 be a set
of elements in C. Let M ¼ Fb1. Suppose that, Dlþ1 ¼ ðtalnp l Þ A Gl1ðFlþ1Þ for l A N and
D0 ¼ ð1Þ. We have

~AAk ¼ d
ðnpkÞ
L ðD0 . . .Dkþ1ÞðD0 . . .Dkþ1Þ&1 ¼ d

ðnkÞ
L ðt

T
k

l¼0

alnp
l

Þt
& T

k

l¼0

alnp
l

¼ ak

tnpk

because

Pk

j¼0
ajnp

j

npk

0

B@

1

CA

q

¼ ak. Hence dðnp
kÞ

M ðyÞ ¼ ak

tnpk y for all k A N.
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Example 3.14. Let p be a prime number, let C ¼ Fp be an algebraically closure of Fp
and let F ¼ CðtÞ be the rational function field with coe‰cients in C. Let ðalÞlf0 be a set of
elements in C. Let M ¼ Fb1 lFb2. Suppose that,

Dlþ1 :¼
1 alt

npl

0 1

 !

for all l A N

and

D0 :¼
1 0

0 1

# $
:

Using Proposition 3.11(3), we obtain

~AAk ¼
0 ak
0 0

# $

and A1 ¼ 0. So, the associated IDqE associated to M is

dðnp
kÞðY Þ ¼ ~AAkY ¼

0 ak
0 0

# $
Y for all k A N:

3.2. Case of characteristic 0.

3.2.1. Projective systems. Let ðL; d(LÞ be an iterative q-di¤erence field of zero char-
acteristic and let ðM; d(MÞ be an iterative q-di¤erence module over L. Put, for all k A N(,
Lk ¼

T
0ej<k

Kerðdðn
jÞ

L Þ and L0 ¼ L. Put, for all k A N(, Mk ¼
T

0ej<k

Kerðdðn
jÞ

M Þ and M0 ¼ M.

Proposition 3.15. (1) Mk is a Lk-vector space of finite dimension.

(2) Mk ¼ M2 for all kf 2.

(3) Let f1 be the embedding M2 ,! M1. Then the map f1 extends to a monomorphism
of L1-vector-spaces from M2 nL1 to M1.

(4) Let f0 be the embedding M1 ,! M0. Then the map f0 extends to an isomorphism of
L-vector-spaces from M1 nL to M0.

Proof. The first statement is obvious. Because ðdðnÞM Þn
k&1

¼ ðnk&1Þ!dðn
kÞ

M for all
kf 1 (see part (4) of Proposition 2.2), we have Mk ¼ M1 for all kf 2. The third state-
ment is obvious. We now prove the fourth statement. We have M1 nL1

LHM0 so
dimL1ðM1Þe dimLðMÞ.

Conversely, from ðdð1ÞM Þn ¼ 0 and ðdð1ÞL Þn ¼ 0 follows

dimL1ðM1Þ ¼ dimL1

!
Kerðdð1ÞM jMÞ

"
f

1

n
dimL1ðMÞf dimLðMÞ: r
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3.2.2. Iterative q-di¤erence equations in characteristic zero. The restriction of dðnÞM to
the L1-vector space M1 behaves like a connection (see Proposition 3.6), i.e. to be more pre-
cise

d
ðnÞ
M ðlxÞ ¼ ld

ðnÞ
M ðxÞ þ d

ðnÞ
L ðlÞx for all ðl; xÞ A L1 +M1:

This observation allows us to consider the matrix of dðnÞM jM1
with respect to an L1-basis of

M1 and thus to set the following notations.

Notation 3.16. Let B1 (resp. B0) be an L1-basis of M1 (resp. an L0-basis of M0). Let
n ¼ dimL M.

(1) Because of Proposition 3.15, we have M1 nLFM. Now let us denote by
D0 A GlnðLÞ the matrix of f0 with respect to the basis B1 and B0, i.e., B0D0 ¼ B1.

(2) Let Cn be the matrix of dðnÞM jM1 with respect to the basis B1, i.e.

EX A Ln
1 ; d

ðnÞ
M ðB1XÞ ¼ B1CnX þ B1d

ðnÞ
L X :

(3) Set A0 :¼ Idn;A1 :¼ d
ð1Þ
L ðD0ÞD&1

0 and define inductively Ak for all 0 < k < n& 1
with

Akþ1 ¼
ðq& 1Þ

!
d
ð1Þ
L ðAkÞ þ sqðAkÞA1

"

ðqkþ1 & 1Þ

and

An :¼ &D0CnD
&1
0 &

Pn&1

k¼0
D0s

k
q

!
d
ðn&kÞ
L ðD&1

0 Þ
"
Ak:

Proposition 3.17. Using the previous notation, the following statements are equivalent:

(1) B0y ¼
Pn

i¼1
yibi A VM ¼

T
k AN

Mk ¼ M1 XM2.

(2) d
ð1Þ
L ðyÞ ¼ A1y and d

ðnÞ
L ðyÞ ¼ Any, with A1, An defined in Notation 3.16.

Proof. B0y ¼
Pn

i¼1
yibi A VM if and only if for all 0 < ke n we have d

ðkÞ
M ðB0yÞ ¼ 0

(remember that it is su‰cient in the case of a base field of characteristic zero to consider
only the iterative q-di¤erence of order 1 and n).

Let us first consider the case k ¼ 1. We have as in Proposition 3.11

d
ð1Þ
L ðyÞ ¼ d

ð1Þ
L ðD0D

&1
0 yÞ ¼ d

ð1Þ
L ðD0ÞD&1

0 y ¼ A1y:ð14Þ
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For 0 < j < n& 1, we proceed by induction and using equation (14) and

d
ð1Þ
L * dð jÞL ¼ q jþ1 & 1

q& 1
d
ð jþ1Þ
L

we have dð jþ1Þ
L ðyÞ ¼ Ajy for all j < n where Aj ¼

ðq& 1Þ
!
d
ð1Þ
L ðAjÞ þ sqðAjÞA1

"

ðq jþ1 & 1Þ
.

By assumption

d
ðnÞ
M ðB0yÞ ¼ 0 ¼ d

ðnÞ
M ðB1D

&1
0 yÞ ¼ B1CnD

&1
0 yþ B1d

ðnÞ
L ðD&1

0 yÞ

and thus

0 ¼ D0CnD
&1
0 yþD0

Pn

j¼0
s j
q

!
d
ðn& jÞ
L ðD&1

0 Þ
"
d
ð jÞ
L ðyÞ

¼ D0CnD
&1
0 yþ

Pn&1

k¼0
D0s

k
q

!
d
ðn&kÞ
L ðD&1

0 Þ
"
Akyþ d

ðnÞ
L ðyÞ:

This gives dðnÞL ðyÞ ¼ Any:

Hence the first statement implies the second. By going through the computation back-
wards, we obtain the equivalence between the two statements. r

Definition 3.18. The family of equations fdð1ÞL ðyÞ ¼ A1y; d
ðnÞ
L ðyÞ ¼ Anyg related to

the IDMq-module ðM; d(MÞ by Proposition 3.17 is called an iterative q-di¤erence equation
(IDqE).

Example 3.19. Let L ¼ CðtÞ and let q be an n-th primitive root of unity. Let
M ¼ Fb1 be a rank one IDMqðLÞ-module and suppose that Fðb1Þ ¼ b1. Then an easy
computation leads to Cj ¼ 0 for all 1e j < n and Aj ¼ 0 for 1e j < n. Now, let a1 be an

integer and set Cn ¼
a1
tn

. Then An ¼
&a1
tn

.

4. Iterative q-di¤erence Picard-Vessiot extensions

In this section, we develop a Picard-Vessiot theory for iterative q-di¤erence equations.
We build the Picard-Vessiot ring inspired by the usual construction, but we have to adapt
our construction to an infinite set of variables, and thus some modifications are necessary.

4.1. Iterative Picard-Vessiot rings.

Notation 4.1. Let ðL; d(LÞ be an iterative q-di¤erence field. If,

(1) the characteristic of the constants field C of L is zero then let us denote by ðkCÞ
the family f1; ng,
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(2) the characteristic of the constants field C of L is positive equal to p then let us
denote by ðkCÞ the family f1; ðnpkÞk ANg.

Remark 4.2 (Classical case). As mentioned before, when q is not a root of unity, an
iterative q-di¤erence module is the same object as a q-di¤erence module. Moreover, in this
case the iterative q-di¤erence equation is just obtained by considering the equation of level
1 and if there exists Y A GlnðRÞ such that d

ð1Þ
L ðYÞ ¼ A1Y then for all k A N we have

d
ðkCÞ
L ðY Þ ¼ AkY . Thereby, when q is not a root of unity, an iterative q-di¤erence equation
is simply a q-di¤erence equation in the sense of [SvP], p. 5.

Definition 4.3. Let ðL; d(LÞ be an iterative q-di¤erence field, let ðM; d(MÞ be an object
of IDMqðLÞ, and let fdðkCÞL ðyÞ ¼ Akygk AN be an iterative q-di¤erence equation related to the
IDMq-module ðM; d(MÞ, denoted by IDqEðMÞ.

Let ðR; d(RÞ be an iterative q-di¤erence extension of ðL; d(LÞ. A matrix Y A GlnðRÞ is
called a fundamental solution matrix for IDqEðMÞ if dðkCÞR ðY Þ ¼ AkY , for all k A N.

The ring R is called an iterative q-di¤erence Picard-Vessiot ring for IDqEðMÞ
(IPVq-ring for short) if it fulfills the following conditions:

(1) R is a simple IDq-ring (that means that R contains no proper iterative q-di¤erence
ideal).

(2) IDqEðMÞ has a fundamental solution matrix Y with coe‰cients in R.

(3) R is generated by the coe‰cients of Y and detðYÞ&1.

(4) CðRÞ ¼ CðLÞ.

Remark 4.4 (Classical case). As in Remark 4.2, we easily see that if q is not a root of
unity, the notion of an iterative Picard-Vessiot ring is exactly the same as the notion of
Picard-Vessiot ring in the sense of Singer, van der Put ([SvP], 1:1).

Proposition 4.5. Let ðL; d(LÞ be an iterative q-di¤erence field, with algebraically closed
field of constants CðLÞ, and let R=L be a simple IDq-ring. Then R is a reduced IDq-ring.
Moreover, if R is finitely generated over L, we have CðLÞ ¼ CðEÞ where E denotes the local-
ization of R by its set of non zeros divisors.

Proof. The fact that R is a reduced IDq-ring is a consequence of Lemma 2.18
where it is shown that if I is an IDq-ideal the same is true for its radical. For the second
statement, let us assume that R is finitely generated over L. Let c be a non zero constant

of E and put J ¼ fa A R j a:c A Rg. First of all, because d
ð1Þ
E ¼

sq & id

ðq& 1Þt
, we have that

sk
q ðcÞ ¼ c for all k A N. It is then quite clear that J is an IDq-ideal of R because of

d
ðkÞ
R ða:cÞ ¼ sk

q ðcÞ:d
ðkÞ
R ðaÞ ¼ c:dðkÞR ðaÞ for all k A N. Since R is simple, and J is a non trivial

IDq-ideal, we have J ¼ R, and thus 1:c ¼ c A R. Suppose that c B CðLÞ. Thus for all
d A CðLÞ the ideal ðc& dÞR is a non trivial IDq-ideal in R and also equal to R. This means
that ðc& dÞ A R( for all d A CðLÞ.
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Let fc : SpecðRÞ 7! A1
L be the morphism induced by

f : L½T ' ! R; T 7! c:

Since ImðfcÞXA1
L

!
CðLÞ

"
is empty, ImðfcÞ does not contain any open subset of A1

L.
Therefore the image of fc in A1

L is finite and closed. This implies that c is algebraic over L.
Let P A L½X ' be the minimal monic polynomial annihilating c. We have
d
ðkÞ
L

!
PðcÞ

"
¼ Pd

ðkÞ
L ðcÞ ¼ 0 where Pd

ðkÞ
L denotes the element of L½X ' obtained from P by ap-

plying d
ðkÞ
L on the coe‰cients of P. By minimality of P we conclude that P A CðLÞ½X '. Be-

cause CðLÞ is algebraically closed, we then have c A CðLÞ. This is a contradiction! r

Proposition 4.6. Let ðL; d(LÞ be an IDq-field and ðR; d(RÞ be an IDq-ring with q-
di¤erence operator extending the one given on L. Let Y and ~YY be two elements of GlnðRÞ,
fundamental matrices of solutions for the IDqE, d

ðkCÞ
R ðyÞ ¼ Aky. Then, there exists a matrix

P A Gln
!
CðRÞ

"
such that ~YY ¼ YP. Moreover, if both L and R satisfy the conditions of Pro-

position 4.5 then P A Gln
!
CðLÞ

"
.

Proof. It is obvious that there exists P A GlnðRÞ such that ~YY ¼ YP. We want to
show by induction that for all k A N(, we have dðkÞR ðPÞ ¼ 0. For k ¼ 1 we obtain

d
ð1Þ
R ð ~YYÞ ¼ d

ð1Þ
R ðY ÞPþ sqðYÞdð1ÞR ðPÞ ¼ A1

~YY þ sqðY Þdð1ÞR ðPÞ:

Thus, dð1ÞR ðPÞ ¼ 0 (because sq is an automorphism of GlnðRÞ). Using the formula

d
ðkÞ
R ð ~YYÞ ¼

P
iþj¼k

s i
q

!
d
ð jÞ
R ðY Þ

"
d
ðiÞ
R ðPÞ;

we get by induction that dðkÞR ðPÞ ¼ 0 for all k A N(. This implies that P A Gln
!
CðRÞ

"
. r

Theorem 4.7. Let ðL; d(LÞ be an iterative q-di¤erence field with CðLÞ algebraically
closed and let ðM; d(MÞ be an object of IDMqðLÞ with iterative q-di¤erence equation
d
ðkCÞ
L ðyÞ ¼ Aky

!
IDqEðMÞ

"
. Then there exists an iterative q-di¤erence Picard-Vessiot ring

for the iterative q-di¤erence equation which is unique up to iterative q-di¤erence isomorphism.

Proof. Let m be the dimension of M over L and set U ¼ L½xði; jÞ; detðxði; jÞÞ&1'.
The algebra U0 :¼ L½xði; jÞ' is given a structure of q-di¤erence extension of L via

sqðXÞ :¼ A1

ðq& 1Þt
X þ X where X ¼ ðxði; jÞÞði; jÞ. Because sq is a ring-automorphism, we

have that the ideal S generated in U0 by detðxi; jÞ is a sq-ideal and a multiplicatively closed
set. U0 has a non trivial IDq-structure via

d(U0
:¼ d

ðkCÞ
P ðXÞ ¼ AkX for all k A N:

Because S satisfies the condition of Proposition 2.20, there exists a unique iterative q-
di¤erence operator d(S&1U0

extending d(U0
on U ¼ S&1U0. Let PHU be a maximal IDq-ideal

of U . Then R :¼ U=P is a simple IDq-ring and Y :¼ X , the image of X under the projec-
tion of U to R, is a fundamental solution matrix of IDqEðMÞ. Moreover R=L is generated
by the coe‰cients of Y and detðY Þ&1. Thus R is an iterative q-di¤erence Picard-Vessiot
ring.
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Assume that ðR1; d
(
R1
Þ and ðR2; d

(
R2
Þ are two iterative q-di¤erence Picard-Vessiot rings

for M with fundamental solution matrix Y1 (resp. Y2) in R1 (resp. R2). Put N ¼ R1 nL R2.
As in Proposition 2.12 we endow N with an IDq-structure. Let PHN be a maximal
IDq-ideal, then R 0 :¼ N=P is a simple IDq ring. The two maps

f1 : R1 ! R 0; r1 7! ðr1 n 1Þ

and

f2 : R2 ! R 0; r2 7! ð1n r2Þ

induced by the natural inclusions are IDq-monomorphisms, and f1ðY1Þ and f2ðY2Þ are two
fundamental matrix solutions for M in R 0. By Proposition 4.6, there exists P A Gln

!
CðLÞ

"

such that f1ðY1Þ ¼ f2ðY2ÞP ðCðLÞ ¼ CðR1Þ ¼ CðR2Þ ¼ CðR 0ÞÞ, which implies that
f1ðR1ÞF f2ðR2Þ. This concludes the proof. r

4.2. The iterative q-di¤erence Galois group. In this section, we will define the itera-
tive q-di¤erence Galois group associated to an iterative q-di¤erence module. The way of
describing such a group is the exact translation in the q-di¤erence world of the work of A.
Roescheisen (see [Ro]) in the case of iterative di¤erential Galois theory. Until the end of
this section, ðL; d(LÞ will be an iterative q-di¤erence field with algebraically closed field
of constants C, ðR; d(RÞ an iterative q-di¤erence Picard-Vessiot ring for the iterative q-

di¤erence equation fdðkCÞL Y ¼ AkY ; k A Ng defined over L.

Notation 4.8. Let S be a ring. We denote by LocðSÞ its localization by its set of non-
zero divisors.

4.2.1. Functorial definition. First of all, let us remark that, given an algebra A over
C and an iterative q-di¤erence ring ðS; d(SÞ, we define an iterative q-di¤erence operator on

SnC A by setting d
ðkÞ
SnCA

ðsn f Þ :¼ d
ðkÞ
S ðsÞn f for all k A N. As in [Ro], Definition 10:4, we

say that d(S is extended trivially to SnC A.

Definition 4.9. Let us define the functor

AutðR=LÞ : ðAlgebras=CÞ !ð GroupsÞ; A 7! AutIDq
ðRnC A=LnC AÞ

where d(R (resp. d(L) is extended trivially to RnC A (resp. LnC A).

In the following, we will show that the functor AutðR=LÞ is representable by a certain
C-algebra of finite type and hence is an a‰ne group-scheme of finite type over C.

Lemma 4.10. Let R be a simple IDq-ring with CðRÞ ¼ C, let A be a finitely generated
C-algebra and RA :¼ RnC A with IDq-structure trivially extended from R. Then there is a
bijection

IðAÞ $ IIDq
ðRAÞ;

I 7! RAð1nC IÞ ¼ RnC I ;

JX ð1nC AÞ M J

between the ideals of A and the IDq-ideals of RA.
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Proof. Obviously, the two maps are well defined, and we only have to prove that
they are inverse to each other.

(1) We will prove that for I A IðAÞ, we have ðRnC IÞX ð1nC AÞ ¼ I . It is obvious
that I is contained in the ideal on the left side. Now let us consider a C-basis fei j i A ~NNg
of I ; then RnC I is a free R-module with basis f1n ei j i A ~NNg and an element
f ¼

P

i A ~NN

ri n ei A RnC I is constant if and only if all the ri’s are constants, i.e., if f A I .

(2) Conversely we have to prove that for J A IIDq
ðRAÞ, we have

RnC JX ð1nC AÞ ¼ J:

It is clear that J contains the ideal on the left side. Now, let fei j i A Ng a C-basis of A,
where N denotes an index set. Then, f1n ei j i A Ng is also a basis for the free R-module
RA.

For any subset N0 of N and i0 A N0, let AnnN0; i0 be the ideal of all r A R such that
there exists an element g ¼

P
i AN0

si n ei A J with si0 ¼ r. Since the iterative q-di¤erence oper-

ator of RA acts trivially on A and J is an IDq-ideal, it is clear that AnnN0; i0 is an IDq-ideal.
Because R is simple, AnnN0; i0 is equal to ð0Þ or R.

Now, let N0HN be minimal for the property that AnnN0; i0 3 ð0Þ for at least one
index i0 A N0 (minimal in the lattice of subsets). So there exists g ¼

P
i AN0

si n ei A J with
si0 ¼ 1 and by minimality of N0 we conclude that for all k A N(,

dðkÞðgÞ ¼
P

i AN0; i3i0

d
ðkÞ
R ðsiÞn ei ¼ 0:

This implies g A JX ð1nC AÞ. Now let g ¼
P
i AN

si n ei A J be an arbitrary element and

denote by N1 the set of indices i with si 3 0. It follows from the definition that
AnnN1; i 3 ð0Þ for all i A N1. Hence there exists N0HN1 minimal as above, i0 A N0 and
f ¼

P
i AN0

ri n ei A JX ð1nC AÞ with ri0 ¼ 1. By induction on the cardinality of N1, we

may assume that g& si0 f A RnC JX ð1nC AÞH J. Therefore

g ¼ g& si0 f þ si0 f A RnC JX ð1nC AÞ

and hence RnC JX ð1nC AÞ ¼ J. r

Proposition 4.11. Let R=L be an iterative q-di¤erence Picard-Vessiot ring associated
to an iterative q-di¤erence equation and let T be an IDq-simple ring containing L with
CðTÞ ¼ C ¼ CðLÞ such that there exists a fundamental matrix of solutions Y A GlnðTÞ.
Then there exists a finitely generated C-algebra U (with trivial IDq-structure) and a T-linear
IDq-isomorphism

gT : T nL R ! T nC U ;

where the IDq-structure is extended trivially to T nC U. (Actually U is isomorphic to the ring
of constants of T nL R.)
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Proof. R is obtained as a quotient of L
)
Xi; j;

!
detðXÞ

"&1*
with iterative q-

di¤erence operator given by dðkÞðX Þ ¼ AkX for all k A N by a maximal IDq-ideal

PHL
)
Xi; j;

!
detðX Þ

"&1*
. We then define a T-linear homomorphism

gT : T nL L½Xi; j; detðXÞ&1' ! T nC C½Zi; j; detðZÞ&1'

by Xi; j 7!
Pn

k¼1
Yi;k nZk; j. The morphism gT is indeed a T-linear isomorphism and if we

extend the IDq-structure trivially to L
)
Zi; j;

!
detðZÞ

"&1*
, gT induces an IDq-isomorphism.

By the previous lemma, the IDq-ideal gTðT nPÞ is equal to T n I for an ideal
I HC

)
Zi; j;

!
detðZÞ

"&1*
. So for U :¼ C

)
Zi; j;

!
detðZÞ

"&1*
=I , gT induces an IDq-

isomorphism

gT : T nL R ! T nC U : r

Theorem 4.12. Let R=L be an iterative q-di¤erence Picard-Vessiot ring. Then
the group functor AutðR=LÞ is representable by the finitely generated C-algebra
U ¼ CðRnL RÞ, i.e., AutðR=LÞ is an a‰ne group-scheme of finite type over C.

Definition 4.13. We call the a‰ne group scheme AutðR=LÞ the Galois group scheme
GalðR=LÞ of R over L.

Proof of Theorem 4.12. First we will show that for every C-algebra A any LA-
linear IDq-homomorphism f : RA ! RA is an isomorphism. The kernel of such a homo-
morphism f is an IDq-ideal of RA. So by Lemma 4.10, it is generated by constants,
i.e., elements in 1nA. But f is A-linear so its kernel is zero. If X A GlnðRÞ is a fundamen-
tal solution matrix, then f ðX Þ A GlnðRAÞ is also a fundamental solution matrix and so
there exists a matrix D A GlnðCRA

Þ ¼ GlnðAÞ such that X ¼ f ðXÞD ¼ f ðXDÞ. Hence
Xi; j; detðX Þ&1 A Imð f Þ and since R is generated by Xi; j, detðX Þ&1 over L, the homomor-
phism f is also surjective. Using the isomorphism g :¼ gR of Proposition 4.11, for a C-al-
gebra A, we obtain a chain of isomorphisms

AutIDqðRA=LAÞ ¼ Hom
IDq

LA
ðRA;RAÞFHom

IDq

RA
ðRA nL R;RAÞ

FHom
IDq

RA
ðRA nC U ;RAÞFHom

IDq

C ðU ;RAÞFHomCðU ;AÞ:

Hence U represents the functor AutðR=LÞ. r

Remark 4.14. By taking a closer look on the isomorphisms in the previous proof, we
see that the universal object idU A HomCðU ;UÞ corresponds to the IDq-automorphism
rn idU : RnC U ! RnC U where r ¼ gR * ð1n idRÞ : R ! RnL R ! RnC U . There-
fore the action of g A AutðR=LÞðAÞ ¼ HomCðU ;AÞ on r A R is given by

g:r ¼ ðidR n gÞ
!
gRð1n rÞ

"
A RnC A:
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Corollary 4.15. Let R=L be an iterative q-di¤erence Picard-Vessiot ring over L and
G :¼ GalðR=LÞ the Galois group scheme of R. Then SpecðRÞ is a GL-torsor.

Proof. The isomorphism g :¼ gR of Proposition 4.11, determines an isomorphism of
schemes

SpecðgÞ : SpecðRÞ +L GL ¼ SpecðRÞ +C G ! SpecðRÞ +L SpecðRÞ:

By the previous remark and R-linearity of g, the composition of SpecðgÞ with the projection
on the second factor gives the action of GL on SpecðRÞ and the composition with the pro-
jection on the first factor equals the map SpecðRÞ +L GL ! SpecðRÞ. In other words,
SpecðRÞ is a GL-torsor. r

4.2.2. Galois correspondence.

Proposition 4.16 (Structure of the iterative q-di¤erence ring). Let R=L be an iterative
q-di¤erence Picard-Vessiot ring over L. Then, there exist idempotents e1; . . . ; es A R such
that:

(1) R ¼ R1 l ! ! ! lRs where Ri ¼ eiR and is a domain.

(2) The direct sum E of the fraction fields of the Ri’s is an iterative q-di¤erence ring. E
is called the total iterative q-di¤erence Picard-Vessiot extension of R.

Proof. Here, we give a partial analogue of [SvP], Corollary 1.16. We will thus fol-
low the proof of Singer, van der Put. But because we work in any characteristic, it will be
necessary to appeal to the book of Demazure, Gabriel ([DG]) to assure smoothness.

Let L be an algebraic closure of L and R ¼ OðZÞ for some GL-torsor Z. Since GLðLÞ
acts transitively on ZðLÞ, this latter algebraic subset must be smooth ([DG], 4.2). Therefore
the L-irreducible components Z1; . . . ;Zs must be disjoint. Thus OðZÞ is equal to the pro-
duct of the integral domains Ri ¼ OðZiÞ. Now let us consider the set S of non zero divisors
in R. It is a multiplicatively closed set which does not contain 0, stable under the action of
sq. By Proposition 2.20, the ring RS&1 is endowed with an iterative q-di¤erence structure

and it is obvious that RS&1 ¼
Ls

i¼1
FracðRiÞ where FracðRiÞ denotes the fraction field of

Ri. r

The next proposition shows that to be a torsor for an IDq-simple ring means, roughly
speaking, to be an iterative q-di¤erence Picard-Vessiot ring.

Proposition 4.17. Let R=L be a simple IDq-ring with algebraically closed field of con-
stants CðRÞ ¼ C. Further let GHGln;C be an a‰ne group scheme over C. Assume that
SpecðRÞ is a GL-torsor such that the corresponding isomorphism g : RnL R ! RnC C½G'
is an IDq-isomorphism. Then R is an iterative q-di¤erence Picard-Vessiot ring over L.

Proof. Since SpecðRÞ is a GL-torsor, the fiber product SpecðRÞ +GL
Gln;L is a Gln;L-

torsor.
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SpecðRÞ +GL
Gln;L is obtained as the quotient of the direct product by the GL-action

given by ðx; hÞ:g :¼ ðxg; g&1hÞ and is a right Gln;L-scheme acting on the second factor. By
Hilbert’s Theorem 90, every Gln;L-torsor is trivial, i.e., we have an Gln;L-equivariant iso-
morphism

SpecðRÞ +GL
Gln;L ! Gln;L:

Then the closed embedding SpecðRÞ ! SpecðRÞ +GL Gln;L ! Gln;L leads to an epimor-
phism L

)
Xi; j;

!
detðXÞ

"&1* ! R, which is GL-equivariant. Denote the image of X by Y .
Then we obtain that the action of G on Y is given by Y 7! Yg for any L-valued point
g A GLðLÞ. Since by assumption for every C-algebra A with trivial IDq-structure, the action
of GðAÞ commutes with the iterative q-di¤erence operator dðkÞðYÞ:Y&1 is G-invariant for all
k A N. So dðkÞðYÞ:Y&1 ¼ Ak belongs to GlnðLÞ and Y is a fundamental solution matrix for
the equation fdðkÞðYÞ:Y&1gk AN. Hence R is an IDq-Picard-Vessiot ring. r

In order to get a convenient Galois correspondence, we are obliged to define the no-
tion of an invariant in a functorial way. Let S be a C-algebra and H=C be a subgroup
functor of the functor AutðS=CÞ, i.e., for every C-algebra A, the set HðAÞ is a group acting
on SA and this action is functorial. An element s A S is called invariant if for all A, the ele-
ment sn 1 A SA is invariant under HðAÞ. The ring of invariants is denoted by SH. Let
E ¼ LocðSÞ be the localization of S by all non zero-divisors. We call an element
e ¼ r=s A E invariant under H, if for each C-algebra A and all h A HðAÞ,

h:ðrn 1Þ:ðsn 1Þ ¼ ðrn 1Þ:h:ðsn 1Þ:

EH denotes the ring of invariants (for the independence of this definition of the choice of
representation of e see [Ro], section 11 or [Ja], I.2.10).

Lemma 4.18. Let R=L be an iterative q-di¤erence Picard-Vessiot ring over L, let E
denote its total iterative q-di¤erence Picard-Vessiot extension and G :¼ GalðR=LÞ the Galois
group scheme of R. Let HHG be a closed subgroup-scheme. Denote by pG

H : C½G' ! C½H'
the epimorphism corresponding to the inclusionH ,! G. Then an element of r=s A E is invari-
ant under the action of H if and only if rn s& sn r is in the kernel of the map

ðidR n pG
HÞ * g : RnL R ! RnC C½H':

Proof. An element r=s A E is invariant under the action of H if and only if it is
invariant under the universal element in H, namely pG

H A GðC½H'Þ. By Remark 4.14 and
R-linearity of g, we have

ðidRn pG
HÞ

!
gðrn sÞ

"
¼ ðrn 1Þ:pG

Hðsn 1Þ A RnC C½H':

Therefore rn s& sn r is in the considered Kernel if and only if r=s is invariant under
H. r

Proposition 4.19. For every closed subgroup scheme HHG, the ring EH is an IDq-
ring in which every non zero divisor is a unit. Furthermore we have EH ¼ L if and only if
H ¼ G.
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Proof. By the previous lemma, it is obvious that EH is an IDq-ring in which every
non-zero divisor is a unit. Next, let r=s A EH. Then for all k A N, we have

dkðrn s& sn rÞ:ðsk n skÞ

¼
P

i1þi2þi3¼k

s i1þi3
q

 
dði2Þ

r

s

# $!
sks i3

q

!
dði1ÞðsÞ

"
n dði3ÞðsÞsk

& dði1ÞðsÞsk n s i1þi3
q

 

dði2Þ
r

s

# $!

sks i1
q

!
dði3ÞðsÞ

"

¼
P

i1þi2þi3¼k

!
s i3
q

!
dði1ÞðsÞ

"
n dði3ÞðsÞ

"
 

s i1þi3
q

 

dði2Þ
r

s

# $!

sk n sk

!

&
P

i1þi2þi3¼k

!
dði1ÞðsÞn s i1

q

!
dði3ÞðsÞ

""
 
sk n s i1þi3

q

 
dði2Þ

r

s

# $!
sk

!

¼
P

iþj¼k

!
dðiÞðsn sÞ

"
 

s i
q

 

dð jÞ
r

s

# $!

sk n sk & sk n s i
q

 

dð jÞ
r

s

# $!

sk

!

:

The left-hand side lies in KerðidR n pG
HÞ, since this kernel is an IDq-ideal. So by induc-

tion, we get that ðsn sÞ
!
dðkÞðr=sÞsk n sk & sk n dðkÞðr=sÞsk

"
A KerðidR n pG

HÞ and hence
dðkÞðr=sÞ A EH.

For the second statement: If H ¼ G, then pG
H ¼ idC½G' and the considered kernel is

trivial. Hence rn s ¼ sn r A RnL R is trivial for all r=s A EG. Thus, there exists c A L
such that r ¼ cs, i.e., r=s ¼ c A L.

Assume HkG. Since Z ¼ SpecðRÞ is a GL-torsor, the quotient scheme Z=GL is
equal to SpecðLÞ, in particular it is a scheme, and since GL and HL are a‰ne, GL=HL also
is a scheme. So by [Ja], I.5.16.(1), Z=HL FZ+GL ðGL=HLÞ is a scheme. According to
Proposition 4.16, Z is equal to the disjoint union of its irreducible components
fZigi¼1;...; s. Let pr : Z 7! Z=HL denote the canonical projection. Now let U LZ=HL be
an a‰ne open subset such that its inverse image U by pr has a non empty intersection with
all the Zi. We have a monomorphism pr( : OZ=HL

ðUÞ ! OZðUÞ whose image is OZðUÞH.
By construction of U , we have OZðUÞHHEH. If EH ¼ L, then also OZðUÞH ¼ L. So,
for every a‰ne open subset U LZ=HL such that its inverse image U by pr has a non
empty intersection with all the Zi, we have OZ=HL

ðUÞ ¼ L, i.e., U F SpecðLÞ is a single
point. Hence Z=HL ¼ SpecðLÞ, which contradicts the assumption HkG. r

Theorem 4.20 (Galois correspondence). Let R=L be an iterative q-di¤erence Picard-
Vessiot ring over L, let E denote its total iterative q-di¤erence Picard-Vessiot extension and
let G :¼ GalðR=LÞ be the Galois group scheme of R.

(1) Then there is an anti-isomorphism of lattices between

H :¼ fH jHHG closed subgroup scheme of Gg
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and

T :¼ fT jLHT HE intermediate IDq-ring s:t: any non zero divisor of T is a unit of Tg

given by C : H ! T, H 7! EH and F : T ! H, T 7! GalðRT=TÞ.

(2) If HHG is normal then RH is an iterative q-di¤erence Picard-Vessiot ring over L
and EH is its total iterative q-di¤erence Picard-Vessiot extension; the Galois group scheme of
RH over L is isomorphic to G=H.

(3) For H A H, the extension E=EH is separable if and only if H is reduced.

Proof. (1) Let T A T be an intermediate IDq ring such that any non zero divisor of
T is a unit of T . Then the compositum RT HE is an IDq-Picard-Vessiot ring over T . Fur-
thermore, the canonical IDq-epimorphism RT nC C½G' 7! RT nT RT gives rise to an
IDq-epimorphism

RT nC C½G' !
g&1
RT

RT nLR ! RT nT RT :

By Lemma 4.10, the kernel of this epimorphism is given by RT nC I for some ideal
I HC½G'. Denote by H the closed sub-scheme of G defined by I , then gRT induces an iso-
morphism

RT nT RT FRT nC C½H':

By construction, this isomorphism is the isomorphism for the base ring T , hence the sub-
scheme H equals the Galois group scheme GalðRT=TÞ. Thus GalðRT=TÞ is indeed a
closed subgroup scheme of G.

Now let us apply Proposition 4.19 to the extension E=T . It follows that
EGalðRT=TÞ ¼ T , so C *F ¼ idT. On the other hand, for given H A H and T :¼ EH, we
get an IDq-epimorphism RT nT RT 7! RT nC C½H' induced by gRT . This embeds H as
a closed subgroup scheme in GalðRT=TÞ. But the localization LocðRTÞ of RT by its set
of non zero divisors is equal to E, so LocðRTÞH ¼ EH ¼ T and so by Proposition 4.19,
we have H ¼ GalðRT=TÞ. Thereby F *C ¼ idH .

(2) Let HHG be normal. The isomorphism g is H-equivariant and hence we get an
IDq-isomorphism

RnL R
H FRnC C½G'H:

Since R is normal, G=H is an a‰ne group scheme with C½G=H' ¼ C½G'H ([DG], III, Sec.
3, Thm. 5.6). Again by taking invariants the isomorphism above restricts to an isomor-
phism

RHnL R
H FRH nC C½G=H':

The ring RH is IDq-simple, because for every IDq-ideal PHRH, the ideal P:RHR is an
IDq-ideal, hence equals ð0Þ or R and so P ¼ ðP:RÞH is ð0Þ or RH. Since LHRH HR, we
also have CðRHÞ ¼ C. So by Proposition 4.17, RH is an IDq-Picard-Vessiot ring over L
with Galois group scheme G=H. It remains to show that EH ¼ LocðRHÞ.
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Let ~LL :¼ LocðRHÞ and ~GG :¼ GalðE=~LLÞ. Then H is a normal subgroup of ~GG and by
the previous ðR:~LLÞH is a ~GG=H-torsor. But ðR:~LLÞH ¼ RH:~LL ¼ ~LL, so ~GG ¼ H, and hence
EH ¼ E

~GG ¼ ~LL ¼ LocðRHÞ.

(3) Without loss of generality we may assume that H ¼ G. Let us denote by
GredHG the closed reduced subgroup given by the nilradical ideal. Since Gred is normal in
G, by the second statement ~LL :¼ LocðRGredÞ is an IDq Picard-Vessiot extension of L with
Galois group scheme Galð~LL=LÞ ¼ Gred. But this group scheme is infinitesimal and so by
[Ch], Cor. 1.12, ~LL=L is purely inseparable. On the other hand, if E=L is inseparable and
p ¼ charðLÞ, then ~LL :¼ EXL

1
p 3L is a finitely purely inseparable IDq-ring extension of

L. Since every such extension is an IDq-Picard-Vessiot ring with an infinitesimal Galois
group scheme, G has a non reduced quotient and therefore G is not reduced. r

4.2.3. Examples of Galois groups.

The Galois group Gm in characteristic p. Let us denote by C ¼ Fp the algebraic
closure of Fp, where p is a prime number. Let F ¼ CðtÞ be a rational function field with
coe‰cients in C. Let ðalÞlf0 be a set of elements in Fp. Let M ¼ Fb1 be the IDq-module
with corresponding IDqE:

d
ðnpkÞ
M ðyÞ ¼ ak

tnpk y

where k A N and

d
ð1Þ
M ðyÞ ¼ y

t
:

Theorem 4.21. Let M be as above with its associated IDqE, and let a ¼
P
lf0

alp
l A Qp.

Then for an iterative Picard-Vessiot extension E=F for M, we have

GalðE=FÞFZ=mZ for some m if a A Q

and

GalðE=FÞFGm if a B Q:

Proof. First of all, let us show that GalðE=FÞ is a subgroup of Gm. Let y be a solu-
tion of the IDqE associated to M, then E ¼ FðyÞ. Let t A GalðE=FÞ and l A N, we have
dðnp

lÞ!tðyÞ=y
"
¼ 0 and dð1Þ

!
tðyÞ=y

"
¼ 0. Thus, there exists c A C ( such that tðyÞ ¼ cy.

Therefore, GalðE=FÞLGm.

Let us assume that a ¼ a=m where ða;mÞ A Z+N(. Put z ¼ ta=m. Because z ¼ ta, we
have dð jÞðzÞ ¼ 0 if j3 nk. We have

dðnp
kÞðzmÞ ¼

P

i1þ!!!þim¼npk

s i2þ!!!þim
q

!
dði1ÞðzÞ

"
. . . s im

q

!
dðim&1ÞðzÞ

"
dðimÞðzÞ:

If one of the ij is not equal to npk, there exists il such that il 3 p j for je npk. Then, an easy
computation shows that for all k A N,

dðnp
kÞðzmÞ ¼ mzm&1dðnp

kÞðzÞ:
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It follows that

mzm&1dðnp
kÞðzÞ ¼

a

npk

# $

q

ta&npk

:

By Proposition 2.2, we have
a

npk

# $

q

¼ mak and thus dðnp
kÞ

M ðzÞ ¼ ak
tnpk z. Because E ¼ FðzÞ

and zm A F , we get that GalðE=FÞ is a cyclic group.

Conversely, suppose that y is an algebraic solution of the IDqE associated to M, then
E ¼ FðyÞ is algebraic over F and GalðE=FÞðCÞkGmðCÞ is a cyclic group of order m. So
there exist s A Z and ðbiÞifs with bs ¼ 1 such that ym ¼

P
ifs

bit
i A F . Thus,

mym&1dðnÞðyÞ ¼ ym a0
tn

¼ dðnÞðymÞ ¼
P
ifs

bi
i

n

# $

q

ti&n:

By comparing the coe‰cient of tl , we obtain

mao ¼ bi
i

n

# $

q

for all if s:

Since bs ¼ 1 and because of the properties of q-binomial coe‰cients, we obtain

(1) s ¼ ksn with ks A Z and a0 ¼
ks
m
,

(2) bi ¼ 0 for all i3 0 mod n.

Induction using the higher iterative di¤erences shows that bi ¼ 0 for all i > s and
hence that ym ¼ ts. By an argument used in the first part of the proof it follows that
a ¼ s=m. r

The Galois group Gm in characteristic 0. Let L ¼ CðtÞ and let q be an n-th primitive
root of unity. Let M ¼ Fb1 be a rank one IDMqðLÞ-module and suppose that Fðb1Þ ¼ b1.
Let a A C. Then, let us consider the IDqE associated to M, that is dð1ÞðyÞ ¼ 0 and

dðnÞðyÞ ¼ a

ntn
y.

Theorem 4.22. Let M be as above with its associated IDqE. Then for an iterative
Picard-Vessiot extension E=F for M, we have

GalðE=FÞ is finite cyclic if a A Q

and

GalðE=FÞFGm if a B Q:
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Proof. First of all, let us show that GalðE=FÞ is a subgroup of Gm. Let y be a solu-
tion of the IDqE associated to M, then E ¼ FðyÞ. Let t A GalðE=FÞ. Then, we have

dð1Þ
tðyÞ
y

# $
¼ sq

1

y

# $
tðdð1ÞyÞ þ dð1Þ

1

y

# $
tðyÞ ¼ 0 ðdð1ÞðyÞ ¼ 0Þ;ð1Þ

dðnÞ
tðyÞ
y

# $
¼ 1

y

# $
tðdðnÞyÞ þ dðnÞ

1

y

# $
tðyÞ ¼ & a

ntn
tðyÞ
y

þ 1

y
t

a

ntn
y

# $
¼ 0:ð2Þ

Thus, there exists c A C ( such that tðyÞ ¼ cy. Therefore, GalðE=FÞeGm.

Let us assume that a ¼ nb=m where ðb;mÞ A Z+N(. Put z ¼ tnb=m. Because z ¼ ta,
we have dð jÞðzÞ ¼ 0 if j B nN. We have

dðnÞðzmÞ ¼
P

i1þ!!!þim¼n
s i2þ!!!þim
q

!
dði1ÞðzÞ

"
. . . s im

q

!
dðim&1ÞðzÞ

"
dðimÞðzÞ:

If one of the ij is not equal to n, there exists il such that il 3 n. Then, an easy computation
shows that

dðnÞðzmÞ ¼ mzm&1dðnÞðzÞ:

It follows that,

mzm&1dðnÞðzÞ ¼
nb

n

# $

q

tnb&n:

By Proposition 2.2, we have
nb

n

# $

q

¼ b ¼ m
a

n
and thus dðnÞM ðzÞ ¼ a

ntn
z. Thus E ¼ FðzÞ and

zm A F . It follows that GalðE=FÞ is a finite cyclic group.

Conversely, suppose that y is an algebraic solution of the IDqE associated to M, then
E ¼ FðyÞ is algebraic over F and GalðE=FÞkGm is a cyclic group of order m. So there
exist s A Z and ðbiÞifs with bs ¼ 1 such that ym ¼

P
ifs

bit
i A F . Thus,

mym&1dðnÞðyÞ ¼ ym a

ntn
¼ dðnÞðymÞ ¼

P
ifs

bi
i

n

# $

q

ti&n:

By comparing the coe‰cient of tl , we obtain that
a

n
¼ bi

i

n

# $

q

for all if s. Since bs ¼ 1 and

because of properties of the q-binomials coe‰cients, we get that:

(1) s ¼ ksn with ks A N and a ¼ nks
m

.

(2) bi ¼ 0 for all i3 0 mod n.

Induction using the higher iterative di¤erence shows that bi ¼ 0 for all i > s. It fol-
lows that ym ¼ ts and a ¼ nks=m. r
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The Galois group Ga in positive characteristic. Let us denote by C ¼ Fp the algebraic
closure of Fp, where p is a prime number. Let F ¼ CðtÞ be a rational function field with
coe‰cients in C. Let ðalÞlf0 be a set of elements in Fp. We choose q A C an n-th primitive
root of unity with n prime to p.

Let M ¼ Fb1 lFb2 be the IDq-module with corresponding IDqE:

dðnp
kÞðYÞ ¼ AkY ¼

0 ak
0 0

# $
Y

for k A N.

Theorem 4.23. Let M be as above with its associated IDqE. Let a ¼
P
lf0

alp
l A Qp.

Then for an iterative Picard-Vessiot extension E=F for M, we have

GalðE=FÞ is a finite subgroup of order r of Ga if a A Q

and

GalðE=FÞFGa if a B Q:

For the proof, we need the following lemma.

Lemma 4.24. Let ðalÞlf0 be a sequence of elements in Fp. The following statements
are equivalent:

(1) The sequence ðalÞlf0 is periodic from a certain rank.

(2) g ¼
P
l AN

alt
npl

A CððtÞÞ is separable algebraic over CðtÞ.

Proof. See [Ma], p. 30 and replace t by tn.

Proof of Theorem 4.23. We start with the iterative di¤erential equation

dðnp
kÞðY Þ ¼ Ak ¼

0 ak
0 0

# $
Y

for k A N.

Writing Y ¼
y1
y2

# $
, we find that dðkÞðy2Þ ¼ 0 for all k A N, which implies y2 A C.

Using this result we obtain dðnp
kÞðy1Þ ¼ aky2 for all k A N and dð1Þðy1Þ ¼ a&1y2: Thus, the

formal solution y1 is equal to

y1 ¼ y2

#P
l AN

alt
npl

$
:
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Then E ¼ Fðy1; y2Þ ¼ Fðy1Þ, and for any t A GalðE=FÞ we get

dðnp
lÞ!tðy1Þ & y1

"
¼ t

!
dðnp

lÞðy1Þ
"
& dðnp

lÞðy1Þ ¼ tðy2alÞ & y2al ¼ 0:

Thus there exists d A c such that tðy1Þ ¼ y1 þ d. Therefore GalðE=FÞ is a subgroup of Ga.

Using Lemma 4.23, we obtain:

(1) The solution y1 is separable algebraic over F if a A Q (the sequence ðalÞlf0 is pe-
riodic from a certain index if and only if a A Q), so the Galois group is actually finite.

(2) If a B Q, then y1 is transcendent over F , and hence E=F is purely transcendental
of degree 1, showing that GalðE=FÞFGa. r

Remark 4.25. These examples of iterative q-di¤erence equations are obtained by
q-deformation of the examples of B. H. Matzat in [Ma], example 2:14 and 2:15. The Galois
groups obtained here are the same as those obtained by Matzat. The fact that simple Galois
groups such as Gm and Ga do not degenerate by q-deformation give us a nice hope for con-
fluence studies.

5. An analogue of the Grothendieck-Katz conjecture

In this section, we state an analogue of the Grothendieck-Katz conjecture for iterative
q-di¤erence equations. In [DiV], L. Di Vizio proves this conjecture for q-di¤erence equa-
tions with q not equal to a root of unity and algebraic over Q. Briefly, she shows that given
a q-di¤erence equation, Ly ¼ 0 with coe‰cients in QðtÞ, one can describe the behavior of
the solutions of L by considering the reduction of L modulo the prime numbers.

Notation 5.1. Let K be a number field and OK the ring of integers of K. Let q A K (

an n-th root of unity. We denote by Sf the set of all finite places v of K . The uniformizer of
the finite place v is denoted by pv and j:jv denotes the v-adic absolute value of K. We denote
by pv the characteristic of the residue field kv of pv.

Let ðM; fM ; d(MÞ be an iterative q-di¤erence module defined over KðtÞ. By point (5) of
Definition 3.1, we get that ðdð1ÞM Þn ¼ ½n'q!d

ðnÞ
M ¼ 0. By [DiV], Proposition 2:1:2, this implies

that fn
M ¼ idM and that M is trivial as ordinary q-di¤erence module. In that case, the

q-analogous of the Grothendieck-Katz conjecture of L. Di Vizio (see [DiV], Theorem
7.1.1) is trivially satisfied.

This fact already appears in the work of Matzat-van der Put on iterative di¤erential
equations (see [MvP], Remarks p. 51). If one considers only the first derivation q

ð1Þ
M of an

iterative di¤erential module M, it is a nilpotent operator of order p, the characteristic of
the base field, and the iterative di¤erential module M is always trivial regarded as di¤eren-
tial module in the classical sense. This observation emphasizes the fact that one has to con-
sider the operator, iterative di¤erence or derivations of higher order, and not simply its first
rank to characterize the behavior of the iterative module.
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In our case, it means that all the information is encompassed in the iterative q-
di¤erence of order n, i.e. dðnÞM . If we change the basis of M so that the action of fM on this
new basis is given by the identity map, one has

d
ðnÞ
M ðleÞ ¼ dðnÞðlÞeþ ld

ðnÞ
M ðeÞ for all l A KðtÞ; e A B:

That is the operator dðnÞM behave quite like a connection. For di¤erential equations over a
zero characteristic base field, the Grothendieck conjecture can be restated in terms of p-
curvatures, i.e.:

A di¤erential equation Ly ¼ 0 with L A Q½q' has a full set of algebraic solutions if and
only if for almost all primes p A Z the reduction modulo p of Ly ¼ 0 has a full set of solutions
in FpðtÞ, i.e. the p-curvature of L, i.e. the p-iterate of the connection of the di¤erential equa-
tion is equal to zero.

In analogy with this case, one may introduce the following definition.

Definition 5.2. Let ðM; fM ; d(MÞ be an iterative q-di¤erence module defined over
KðtÞ. One defines the pv-curvature cpv of M as the pv-iterate, in the sense of the composi-
tion, of the operator dðnÞM , i.e.

cpv :¼ ðdðnÞM Þpv :

Now, we are able to state our analogous of the Grothendieck-Katz conjecture for the
iterative q-di¤erence modules.

Conjecture 5.3. Let ðM; fM ; d(MÞ be an iterative q-di¤erence module defined over
KðtÞ. The iterative q-di¤erence module M is isotrivial, i.e. becomes trivial after a finite
base field extension if and only if for almost all finite places v, the pv-curvature cpv induces
the zero map on the reduction of M modulo pv.

Computation of the curvature. Fix a basis e of M such that the actions of dð1ÞM , dðnÞM

w.r.t. e are given by

dð1Þe ¼ 0 and dðnÞðeÞ ¼ Ae with A A Mr

!
KðtÞ

"
:

Set A½1' :¼ A and define inductively A½k' with A½kþ1' :¼ dðnÞðA½k'Þ þ A½k'A½1'. Then,

ðdðnÞÞkðeÞ ¼ A½k'e:

The matrix of the pv-curvature cpv with respect to the basis e is A½ pv'.

Here is an example where Conjecture 5.3 holds.

Example 5.4 (Example 3.19). Let a A K . Then, let us consider the IDqE

dð1ÞðyÞ ¼ 0 and dðnÞðyÞ ¼ a

tn
y:
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Let v be a su‰ciently large place of K . A simple calculation shows that the reduc-

tion of ðdðnÞM Þpv modulo pv is equal to
aða& 1Þ . . .

!
a& ðpv & 1Þ

"

tnpv
idM (we have

A½1' ¼
a

tn
;A½2' ¼

&a

t2n
þ a2

tn
¼ aða& 1Þ

t2n
; . . .).

If we assume that for almost all finite places v, the reduction modulo pv of ðdðnÞM Þpv is
equal to zero, we get that for almost all finite places v there exists av A Z such that the val-
uation of a& av in pv is strictly positive. By the Density Theorem of Chebotarev, we obtain
that a A Q. We have proved in Theorem 4.22 that a A Q if and only if M has a finite Galois
group.

It would also be interesting to relate isotrivial q-di¤erence modules over KðtÞ (in the
classical sense) and iterative q-di¤erence modules. If one considers an element q A K not a
root of unity, its reduction qv at a finite place v, if it exists, is a root of unity. Thus, starting
from a q-di¤erence module one could ask what are the conditions such that given a finite
place v of K the reduction of M modulo pv can be endowed with a structure of iterative
qv-di¤erence modules.

For iterative di¤erential modules, this question gives rise to a conjecture enounced by
Matzat and van der Put ([MvP], p. 51). The analogue of this conjecture in the q-di¤erence
world is

Let a be q-di¤erence module M over KðtÞ. Suppose that for almost all finite places v,
the reduction of M modulo pv has a structure of iterative qv-di¤erence modules and has a
finite Galois group G then the di¤erence Galois group of M is isomorphic to G.

This statement should be a consequence or reformulation of the theorem of L. Di
Vizio, that is [DiV], Theorem 7.1.1.
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[And1] Y. André, On Galois theory of q-deformations of di¤erential equations, Prépublication 333, Institut de
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