
UNIPOTENT RADICALS OF TANNAKIAN GALOIS
GROUPS IN POSITIVE CHARACTERISTIC

by

Charlotte Hardouin

Abstract. — Let T be a Tannakian category over a field C of strictly positive

characteristic. We show in this note how one can characterize the unipotent radical

of the Tannakian Galois group of an object U , extension of the unit object 1 by a
completely reducible object Y in terms of the group Ext1(1,Y) of isomorphism classes

of extension of 1 by Y. We deduce from our Theorem that, under certain hypothesis,
the Tannakian Galois group of a direct sum of extensions is entirely determined

by the relations of linear dependence satisfied by these extensions in Ext1(1,Y).

This corollary reduces the computation of an algebraic group to a question of linear
algebra. As an application, we show how it gives an alternative proof of the algebraic

independence of the Carlitz logarithms of M. Papanikolas ([14]).
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Introduction. —

Computation of Tannakian Galois groups. — The theory of Tannakian categories
gives a precise answer to the question: “when is a category equivalent to the category
RepG of finite dimensional representations of an affine group scheme?” By definition,
a Tannakian category T over a field C is a rigid abelian tensor category (see [7, §2.8]).
It is said to be neutral if there exists a functor ω : T → V ectC from T into the category
of finite dimensional C-vector spaces, called “fiber functor”, that is C-linear, faithful,
exact and tensor compatible (see [7, §1.9]). For instance, the category of differential
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modules over the differential field (C(x), ∂ := d
dx ) is a Tannakian category (see [18,

§2.2]). The choice of a basis of a differential moduleM yields to a differential system
∂Y = AY with A ∈ Glν(C(x)). Then, a basis of solutions of this last system provides
a fiber functor for the full Tannakian sub-category generated by M. The category
of differential modules over a differential field of characteristic zero, the category
of iterative differential modules over a field of positive characteristic (see [13]), the
category of q-difference modules (see [19]), the category of Frobenius modules (see
[12]), which includes isocrystals in the p-adic case and t-motives (see [14]) in the t-
adic case are just other examples of Tannakian categories. The fundamental theorem
for Tannakian categories is the following

Theorem 1 (see Theorem 1.12 of [7] ). — Let T be a neutral Tannakian cate-
gory over a field C together with a fiber functor ω : T → V ectC . Then, the functor
Aut⊗(ω) of tensor compatible automorphisms of ω is representable by an affine group
scheme G defined over C and ω induces an equivalence of categories between T and
the category RepG of finite dimensional representations of G.

Then, the Galois group of an object M of a Tannakian category is defined as
follows.

Definition 1 (see Theorem 3.2.1.1 of [3]). — Let (T , ω) be a neutral Tannakian
category defined over a field C. We denote by 〈M〉⊗ the full Tannakian sub-category
generated by M in T . Then,

– there exists an affine group scheme GM defined over C, together with a closed
immersion ι from GM into Gl(ω(M)), such that ω|M : 〈M〉⊗ → V ectC induces
a ⊗-tensor equivalence of categories between 〈M〉⊗ and the category RepGM ;

– the image of ι is the closed sub-group of Gl(ω(M)) which stabilizes all the sub-
objects N contained in any finite sum

⊕
i,j(M⊗i⊗(M∗)⊗j), whereM∗ denotes

the dual of M.

We call GM the Galois group of M.

For a differential module M over C(x), the linear algebraic group GM is defined
over C and isomorphic to the differential Galois group attached to M by Picard-
Vessiot constructions (see [18, Definition 1.25]). Its dimension over C is equal to
the transcendence degree of the field generated over C(x) by a basis of solutions
of a differential system attached to M. In [3, Theorem 3.4.2.3], it is shown that,
for an object M in a neutral Tannakian category of either differential or difference
modules over C, there is a one to one correspondence between fiber functors over
〈M〉⊗, Picard-Vessiot extensions of M (roughly, C-algebras generated by a basis of
solution of M plus some minimality conditions) and GM-torsors. Specifically, this
implies that the algebraic relations between the solutions of M are controlled by the
Galois group of M. The Tannakian categories are thus strongly related to questions
of functional transcendence and the computation of Tannakian Galois groups is a
powerful tool since it reduces these questions to the computation of a linear algebraic
group.



UNIPOTENT RADICALS OF TANNAKIAN GROUPS IN POSITIVE CHARACTERISTIC 3

There exist some algorithms to compute Galois groups of Tannakian objects but
they are, most of the time, specific to the Tannakian category considered. For in-
stance, in [10], E. Hrushovski proves that one can compute the Galois group of a
linear differential equation over Q(x). In the first part of this note, we present some
theorems of computation for Tannakian Galois groups, which generalize those men-
tioned in [16]. Even if they requires some technical hypothesis, these theorems are
valid for any Tannakian category in positive characteristic and they may thus ap-
ply, for instance, as well for iterative differential equations as for Frobenius difference
equations.

We detail below the results of the first section of this note. Let C be a field and
let (T , ω) be a neutral Tannakian category over C. Let 1 be the unit object for the
tensor product. Let Y be a completely reducible object of T , i.e. Y is a direct sum
of finitely many irreducible objects. We say that U , an object of T , is an extension
of 1 by Y if there exists an exact sequence in T such that

0→ Y → U → 1→ 0.

To consider extensions of 1 by Y is a way to build “logarithms of the solutions” of Y.
For instance, if Y is a differential module over (C(x), ddx ) associated to the differential
system d

dxY (x) = A(x)Y (x) with A(x) ∈ Glν(C(x)), then an extension of 1 by Y
corresponds to a differential system of the form d

dxZ(x) = A(x)Z(x) + B(x) with
B(x) ∈ (C(x))ν .

Using Levi decomposition, we see that the Galois group GY of an extension U
of 1 by Y a completely reducible object, may be written as the semi-direct product
GU = Ru(GU ) oGY where Ru(GU ) stands for the unipotent radical of GU . Then, if
we assume that GY is given, the computation of GU is reduced to the computation
of the unipotent radical of GU . If the characteristic of C is equal to zero, it is proved
in [9, Theorem 2.1] that the unipotent radical of GU is isomorphic to a vectorial sub-
group of the fiber ω(Y), entirely determined by the structure of Ext1(1,Y), the group
of isomorphism classes of extensions of 1 by Y in T. The proof extends and follows
closely the kummerian arguments of [5] and [4]. If the characteristic of C is strictly
positive, one has to be more careful ; first of all, it may happen that the Galois groups
are not reduced and, secondly, the image of a vectorial group by a group morphism is
not necessarily a vectorial group. Then, if Gm denotes the multiplicative group over
C, we have

Theorem 2. — Let Y be an object of T, and let U be an extension of 1 by Y. Assume
that

1. every GY -module is completely reducible,
2. the center of GY contains Gm,
3. the action of Gm on ω(Y) is isotypic (1),
4. GU is reduced.

(1)We recall that the action of a group G on a module V is isotypic if the module V is the direct

sum of irreducible isomorphic G-modules.
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Then, there exists a smallest sub-object V of Y such that U/V is a trivial extension
of 1 by Y/V. The unipotent radical of the Galois group GU is then equal to ω(V).

First of all, we just want to emphasize the fact that every diagonal C-group scheme
satisfy the first hypothesis (see [11, p.35]). Secondly, the third hypothesis may be
removed if one thinks in terms of weights of the characters of Gm acting on each
isotypical components of ω(Y ). But, for simplicity of exposition, we assume that the
action of Gm is isotypic, i.e. involves one single character. As a corollary of Theorem
2, we show

Corollary 1. — Let Y be an object of T. Let ∆ be the ring End(Y), and let E1, ..., En
be extensions of 1 by Y. Assume that

1. every GY -module is completely reducible,
2. the center of GY contains Gm,
3. the action of Gm on ω(Y) is isotypic,
4. GE1 , ..., GEn

are reduced.
Then, if E1, ..., En are ∆-linearly independent in Ext1(1,Y), the unipotent radical of
GE1⊕...⊕En is isomorphic to ω(Y)n.

The meaning of this corollary is the following. Algebraic relations between the
extensions occur if and only if the group GE1⊕...⊕En

is not as big as possible, i.e. , if
and only if its unipotent radical is strictly contained in ω(Y)n. Corollary 1 then states
that algebraic relations are exactly given by the relations of linear dependence. As
for Theorem 2, this corollary holds in characteristic zero (see [9, Cor. 2.2]). Even if,
in full generality, the criteria of linear dependency of the extensions shall seem rather
complicated, it reduces most of the time, to a question of existence of a rational
solution of a given equation.

An application to the transcendency of periods of Drinfeld module. — In the second
section, we show how the computation theorems of the first section may apply to the
Tannakian category of t-motives defined by M. Papanikolas in [14] and thus to the
study of the transcendence properties of some periods of Drinfeld modules.

Let Fq be the field of q elements, where q is a power of a prime p. Let k := Fq(θ),
where θ is transcendental over Fq. Define a valuation |.|∞ at the infinite place of
k such that |θ|∞ = q. Let k∞ := Fq((1/θ)) be the ∞-adic completion of k, let k∞
be an algebraic closure of k∞, let K be the ∞-adic completion of k∞, and let k be
the algebraic closure of k in K. One call “numbers ” the elements of K. A number
which is not in k is a transcendent number. Let K[τ ] be the twisted polynomial
ring in τ over K subject to the relation τc = cqτ for all c ∈ K. Now, let t be an
independent variable from θ. A Drinfeld Fq[t]-module ρ is an Fq-algebra homorphism
ρ : Fq[t]→ K[τ ] such that for all a ∈ Fq[t], the constant term of ρ(a), as a polynomial
in τ , is a(θ). The rank of a Drinfeld Fq[t]-module ρ is defined as the degree of ρ(t) in
τ . The period lattice of a Drinfeld Fq[t]-module ρ of rank r is defined as follows. The
exponential function of ρ is the function expρ(z) = z+

∑∞
i=1 αiz

qi

, with αi ∈ K such
that expρ(θz) = ρ(t)(expρ(z)). It is shown that expρ is entire, Fq-linear. The kernel
Λρ of expρ is a discrete, free Fq[θ]-module of rank r called the period lattice of ρ. They
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are many analogies between the periods of Drinfeld Fq[t]-modules and the complex
numbers 2πi, log(n), ζ(n) with n ≥ 2 (see [16]). A famous conjecture in Number
Theory affirms that if u1, ..., un are n complex numbers, Q-linearly independent such
that exp(ui) ∈ Q for all i, then 1, u1, ..., un are algebraically independent over Q. In
a recent work , C. Chang and M. Papanikolas proved the algebraic independence of
Drinfeld logarithm, i.e.

Theorem 3 (see Theorem 1.1.1 in [15]). — Let ρ be a Drinfeld Fq[t]-module de-
fined over k. Let u1, ..., un ∈ K be satisfyng expρ(ui) ∈ k for i = 1, .., n. If u1, ..., un
are linearly independent over Kρ, the fraction field of the endomorphism ring of ρ,
then they are algebraically independent over k.

Their strategy of proof relies on the deep connection between Drinfeld modules
and Anderson t-motives (see [2]). An Anderson-t-motive is defined as follows

Definition 2. — Let k[t, σ] be the ring of polynomials in t and σ over k subject to
the relations ct = tc, σt = tσ, σc = c1/qσ, c ∈ k. An Anderson t-motive is a left k[t, σ]-
module M that is free and finitely generated as both a left k[t]-module and as a left
k[σ]-module and that satisfies (t− θ)nM ⊂M for all n sufficiently large.

Let T := K{t} be the Tate algebra of power series in K[[t]] that are convergent on
the closed unit disk in K. For a Laurent series f =

∑
i ait

i ∈ K((t)) and an integer
n ∈ Z, we set σ−n(f) := f (n) :=

∑
i a
qn

i t
i. If M is an Anderson t-motive and m is

a k[t]-basis of M , there is a matrix Φ with coefficient in k[t] representing the action
of σ on M in the basis m, i.e., σm = Φm, such that det(Φ) = c(t − θ)s for some
c ∈ k∗ and s ≥ 1. The Anderson t-motive is “rigid analytically trivial” if there is a
matrix Ψ ∈ Glr(T) so that Ψ(−1) = ΦΨ. In [2], it is proved that the category of rigid
analytically trivial Anderson t-motives is equivalent to the category of uniformizable
abelian Drinfeld Fq[t]-modules defined over k. There are also explicit connections
between the k-linear combination of entries of Ψ(θ)−1 for a given Anderson t-motiveM
and the periods of its corresponding Drinfeld Fq[t]-module. In [14, §3.4], Papanikolas
proved that the category of rigid analytically trivial Anderson t-motives up to isogeny
embeds as a full category of a neutral Tannakian category T over Fq(t) whose object
are called t-motives. By Tannakian equivalence, Papanikolas succeed in attaching to
a given Anderson t-motive M a Galois group GM defined over Fq(t), which, roughly,
corresponds to the Galois group of a Frobenius-difference system. Thanks to a linear
independence criterion developed by Anderson, Brownawell and Papanikolas in [1],
M. Papanikolas was able to prove the following theorem

Theorem 4 (see Theorem 1.1.7 in [14]). — Let M be a t-motive and let GM be
its Galois group. Suppose that Φ ∈ Glr(k[t]) represents multiplication by σ on M and
that det(Φ) = c(t − θ)s, c ∈ k∗. Let Ψ a rigid analytic trivialization of Φ ∈ Glr(T).
Finally, let L be the subfield of k∞ generated over k by the entries of Ψ(θ). Then,

trdegk(L) = dimGM .
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This theorem is crucial in the proof since it makes a bridge between the special
values at t = θ of the solutions of the t-motive, which interpolate the periods of the
associated Drinfeld module, and the computation of a Tannakian Galois group.

In [14], Papanikolas gives, as an illustration of his Tannakian theory of t-motive,
the first proof of the algebraic independence of Drinfeld logarithms in the case of the
Carlitz module C. It is the Drinfeld Fq[t]-module of rank 1, which is associated to
the homomorphism Fq[t] → K[τ ] defined by t → θ + τ . The exponential function of

the Carlitz module is expC(z) := z +
∑
i=1

zqi

(θqi−θ)(θqi−θq)...(θqi−θqi−1 )
. Theorem 3 in

the case of the Carlitz module becomes

Theorem 5 (Theorem 1.2.6 in [14]). — Let u1, ..., un ∈ K be satisfying expC(ui) ∈
k for i = 1, .., n. If u1, ..., un are linearly independent over k, , then they are alge-
braically independent over k.

The method of M. Papanikolas for proving Theorem 5 is to compute the Galois
group GX of a certain t-motive X (see [14, §6.1]). This is the content of Theorem 6.3.2
of [14], where GX is denoted by ΓX . Note, however, that the paragraph following
§6.4 needs some clarification, since ΓX is not a linear subspace. In this note, we give
a Tannakian version of the computation of GX based on the theorems of the first
section, which while settling this point, actually simplifies the proof of [14]. An old
version of Theorem 2 and Corollary 2 was also partially used in the computation of
the Galois groups occurring in the proof of Theorem 3 in [15] and we think that
our theorems could now, in their full generality, perhaps simplify the computations
of [15]. We also think that they also could apply to more complicated t-motives,
involving periods of second and third kind of Drinfeld module, such as, for instance,
the ones related to the Carlitz-zeta values (see [6]).

1. Computation of Galois groups in Tannakian categories in positive
characteristic

1.1. Notations and proof of Corollary 1. — We recall here some notations of
the introduction. Let p be a prime number. Let C be a field of characteristic p. Let
(T , ω) be a neutral Tannakian category over C. Let 1 denote the unit object for
the tensor product of T , so that C = EndT (1). For any object X in T , we denote
by 〈X 〉⊗ the full tensor sub-category generated by X in T . Let GX be the linear
algebraic group scheme defined over C, which represents the functor Aut⊗(ω|〈X〉) of
tensor automorphisms of ω|〈X〉 (see [7]). Furthermore, we identify C-vector spaces,
such as ω(X ), to vectorial groups over C.

Let Y be an object of T . We endow the group Ext1T (1,Y) with a structure of
EndT (Y)-module as follows: for any extension E of 1 by Y, and for any α ∈ ∆, we
denote by α∗(E), the pushout of E by α, i.e., the extension of 1 by Y such that the
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following diagram commutes

0 // Y

α

��

// E

��

// 1 // 0

0 // Y // α∗(E) // 1 // 0

The proof of Theorem 2 is the object of section 1.2. We first show how one can
easily deduce Corollary 1 from Theorem 2

Proof of Corollary 1. — We first note that the direct sum Yn admits GYn = GY
as Galois group, and that Gm again acts on ω(Yn) = ω(Y)n through an isotypic
representation. On the other hand, the extension E1 ⊕ ... ⊕ En of 1n by Yn and its
pull-back E ∈ Ext1T (1,Yn) by the diagonal map from 1 to 1n generate in T the same
sub-Tannakian category. Therefore, their Galois groups GE1⊕...⊕En

and GE are equal,
and reduced in view of our hypothesis. Let us assume that the unipotent radical Ru
of GE do not fill up ω(Yn) = ω(Y)n.

By Theorem 2, Ru is equal to the C-vectorial group ω(V) where V ∈ T is the
smallest sub-object of Yn such that the quotient by V of the extension E of 1 by Yn is
trivial in the category T . If V is not equal to Yn, then ω(V) ( ω(Yn). Because ω(V)
is a sub-representation of the representation ω(Yn) of GY , it lies in the kernel H of
a non trivial GY -equivariant homomorphism φ from ω(Yn) to ω(Y). By Tannakian
equivalence of categories, then there exists a non trivial morphism Φ ∈ HomT(Yn,Y)
such that V ⊂ Ker(Φ).
Now, consider the following diagram:

Yn

��

Φ

''OOOOOOOOOOOO

Yn/V // Yn/Ker(Φ) ' Y.

Since Φ ∈ HomT(Yn,Y), we can write Φ(X1, ..., Xn) = α1X1 + ... + αnXn, with
αi ∈ EndT(Y). Then Φ∗(E) = α1∗(E1) +α2∗(E2) + ...+αn∗(En) is a quotient of E/V,
hence a trivial extension of 1 by Y in T . In conclusion, the extension α1E1+...+αnEn ∈
Ext1(1,Y) is trivial. But this contradicts the ∆-linearly independence in Ext1T (1,Y)
of the extensions E1, ..., En.

As noticed in the introduction, the meaning of Corollary 1 is that, under certain
hypothesis, the algebraic relations between the “solutions” of extensions of 1 by Y are
given by the relations of linear dependence between the extensions. One reduce an
algebraic study to a simple question of linear algebra. If T is a Tannakian category
over a field C of characteristic zero, Corollary 1 holds for any completely reducible
object Y. For instance, let T be the Tannakian category of differential modules with
coefficients in the field C(x) of rational functions over C and let Y be an irreducible
differential module. Let L ∈ C(x)[d/dx] be an irreducible linear differential equation
attached to Y and let b1, ..., bn be n elements of C(x) such that the extension Ei
corresponds to the equation L(y) = bi. Then, E1, ..., En are End(Y)-linearly dependent
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if and only if there exists (λ1, ..., λn) ∈ Cn non equal to zero and a rational function
f ∈ C(x) such that λ1b1 + ... + λnbn = L(f) − f . Corollary 1 is in that case an
analogue of the Kolchin Ostrowski theorem.

1.2. Proof of Theorem 2. — By Tannaka theorem (see [7]), there is an equiv-
alence of categories between 〈Y〉 and the category RepGY of GY -modules of finite
dimension over C. Then, it is clear that an object M in 〈Y〉 is completely reducible
in T if and only if ω(M) is a completely reducible GY -module.

1.2.1. Existence of the smallest sub-object. — Let us denote by V the set of sub-
objects W of Y such that U/W is a trivial extension of 1 by Y/W. The set V is not
empty since Y is trivially in V. It is enough to prove that if V1 and V2 are in V,
their intersection W lies in V. Because Y is completely reducible, there exist three
sub-objects V ′, W ′1, W ′2 of Y such that :

1. V1 =W ⊕W ′1, V2 =W ⊕W ′2.
2. Y = V1 ⊕W ′2 ⊕ V ′ = V2 ⊕W ′1 ⊕ V ′ =W ⊕W ′2 ⊕W ′1 ⊕ V

We have :

Ext1(1,Y) ' Ext1(1,V1)×Ext1(1,W ′2⊕V ′) et Ext1(1,Y) ' Ext1(1,V2)×Ext1(1,W ′1⊕V ′).

Because V1 and V2 are in V, the projection of U is trivial on Ext1(1,W ′2⊕V ′) and on
Ext1(1,W ′1 ⊕V ′). Then the projection of U is also trivial on Ext1(1,W ′2 ⊕W ′1 ⊕V ′)
and thus W is in V.

1.2.2. Computation of the unipotent radical Ru of the Galois group GU of U . — By
assumption, U lies in an exact sequence:

0 // Y i // U
p // 1 // 0 .

Let R be a C-algebra. Since the categories 〈U〉 and RepGU are equivalent, ω(U)⊗R
is an extension of the unit representation 1R := 1 ⊗ R by ω(Y) ⊗ R in the category
RepGU (R) of GU (R)-modules of finite rank over R. Consider the exact sequence of
free R-modules :

0 // ω(Y)⊗C R
ω(i)R

// ω(U)⊗C R
ω(p)R

// 1R

sR

hh
// 0 ,

fix a section s of the underlying exact sequence of C-vector spaces, and put f =
sR(1R) ∈ ω(U)⊗ 1R, where sR = s⊗ 1.
Let us consider the morphism of C-schemes ζRω(U) : GU (R) → ω(Y) ⊗ R defined by
the relation :

∀σ ∈ GU (R), ζRω(U)(σ) = (σ − 1)f.

This defines a morphism of schemes ζω(U) over C from GU with value in the C-vector
group ω(Y), whose restriction to Ru is an immersion of algebraic group-schemes over
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C from Ru to the C-vectorial group ω(Y). Since GU is reduced, its scheme theoretic
image is again reduced, and we have,

Lemma 1.1 (see Lemma 2.8 in [9] in the case of char(C) = 0 and Prop. 6.2.3
in [14] for a particular case with char(C) > 0)

The image W of Ru under ζω(U) is a C-vectorial subgroup of the C vectorial group
ω(Y).

Proof. — Since W is reduced, it suffices to check this on points in the algebraic closure
of C. For all σ1 ∈ GY and σ2 ∈ Ru, we have

ζω(U)(σ1σ2σ1
−1) = σ1(ζω(U)(σ2)).

Indeed, we have :

(1) σ1ζω(U)(σ1
−1) = (1− σ1)f = −ζω(U)(σ1),

and

ζω(U)(σ1σ2σ1
−1) = σ1(ζω(U)(σ2σ1

−1))+ζω(U)(σ1) = σ1(σ2(ζω(U)(σ1
−1))+ζω(U)(σ2))+ζω(U)(σ1).

From (1), we deduce that : σ1(σ2(ζω(U)(σ1
−1))) = −σ1σ2σ1

−1(ζω(U)(σ1)). But
σ1σ2σ1

−1 is an element of Ru and ζω(U)(σ1) lies in ω(Y). Then, σ1(σ2(ζω(U)(σ1
−1))) =

−ζω(U)(σ1). Therefore σ1(ζω(U)(σ2)) = ζω(U)(σ1σ2σ1
−1) belongs to W .

In other words, W is an algebraic subgroup over C of ω(Y) which is stable under
the action of GY . Now, Gm is contained in GY and acts on ω(Y) through an isotypic
representation. This implies that W is a C-vectorial subgroup of the C-vectorial
group ω(Y).

Lemma 1.2 (see Prop. 2.9 in [9] in the case of char(C) = 0 )
The image under ω of the smallest sub-object of V is equal to W .

Proof. — Let us denote by V the minimal object of V, and by V its image under
ω. Then, GU acts on ω(U/V) through GY (because U/V is a trivial extension of 1
by a quotient of Y in the category T). Thus the projection of fC = s(1) in ω(U)/V
is invariant under the action of Ru, and the orbit {σfC − fC ; σ ∈ Ru} lies in V .
Therefore ζω(U)(Ru) := W ⊂ V .

Conversely, the image W of Ru under ζω(U) is, by Lemma 1.1, a C-vector-space
stable under the action of GY in ω(Y). Then, by equivalence of category, there
exists a sub-object W of Y in T such that ω(W) = W . Let us show that W is an
element of V. Since W is the image of Ru, GU acts on ω(U)/W through its quotient
GU/Ru = GY . Therefore, ω(U)/W (C) is an extension of C by ω(Y)/W (C) in the
category RepGY(C). Since by hypothesis, every GY -module is completely reducible,
this extension is trivial in the category RepGY . By the Tannakian equivalence of
category, the extension U/W is also trivial in ExtT(1,Y/W), and W ∈ V. Then
V ⊂ W by minimality. This concludes the proof of Lemma 1.2, hence of Theorem
2.
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2. An application to logarithms of t-motives

2.1. A brief overview of the category of t-motives. — We recall here some
notations of the introduction. Let Fq be the field of q elements, where q is a power
of a prime p. Let k := Fq(θ), where θ is transcendental over Fq. Define a valuation
|.|∞ at the infinite place of k such that |θ|∞ = q. Let k∞ := Fq((1/θ)) be the ∞-adic
completion of k, let k∞ be an algebraic closure, let K be the∞-adic completion of k∞,
and let k be the algebraic closure of k in K. Let T be the Tate algebra of power series
in K[[t]] that are convergent on the closed unit disk in K and let L be its fraction
field in K((t)). For a Laurent series f =

∑
i ait

i ∈ K((t)) and an integer n ∈ Z, we
set σ−n(f) := f (n) :=

∑
i a
qn

i t
i. The ring k(t)[σ, σ−1] is the non commutative ring of

Laurent polynomials in the variable σ with coefficients in k(t), subject to the relation

σf = σ(f)σ = f (−1)σ,

for all f ∈ k(t).

2.1.1. The category of t-motives. — In [14, §3.2.1], M. Papanikolas defines the cat-
egory P of pre-t-motives as follows:

Definition 2.1. — The objects of P are the left k(t)[σ, σ−1]-modules that are finite
dimensional over k(t). The morphism in P are left k(t)[σ, σ−1]-modules homomor-
phisms.

The category P is the category of σ-difference modules over k(t) (see [17] ). The
category P is a rigid abelian Fq(t)-linear tensor category. To ensure the existence of a
fiber functor defined over Fq(t), Papanikolas consider a sub-category R of P, defined
as follows,

Definition 2.2. — A pre-t-motive M is rigid analytically trivial if there exists Ψ ∈
Glr(L) such that Ψ(−1) = ΦΨ where Φ represents the multiplication by σ in some
k(t)-basis of M . Then, the category R is the full sub-category of P formed by the
rigid analytically trivial pre-t-motives.

Then,

Theorem 2.3 (see Theorem 3.3.15 in [14]). — The category R is a neutral Tan-
nakian category over Fq(t) with fiber functor

R → V ectFq(t),M 7→MB := {µ ∈ L⊗k(t) M |σ(µ) = µ}.

Remark 2.4. — In characteristic 0, [7, Theorem 7.1] states that a rigid abelian
tensor category over k, whose objects have finite dimension, admits a fiber functor
defined on the algebraic closure of k. But nothing ensure that there exists a fiber
functor defined over k. The idea to impose some convergence properties on the so-
lutions in order to build a fiber functor defined over a smaller field of constants,
was for instance used by P. Etingov in [8] to attach to a q-difference equation over
C(x) a Galois group defined over C. The analytic solutions of a q-difference equation
with complex solutions are meromorphic functions over C∗ and the constants of the
field of meromorphic functions over C∗ are elliptic functions w.r.t. the elliptic curve
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C∗/qZ. In fact, one could build directly a fiber functor over C but it involves symbolic
solutions (see [17])

Now,

Definition 2.5 (see Definition 3.4.8 in [14]). — We define the category AI of
Anderson t-motives up to isogeny as follows:

– objects of AI : Anderson t-motives;
– Morphism of AI : for Anderson t-motives M and N ,

HomAI (M,N) := Homk[t,σ](M,N)⊗Fq [t] Fq(t).

Then, ARI denotes the full sub-category of rigid analytically trivial Anderson t-
motives up to isogeny by restriction.

We have,

Theorem 2.6 (see Theorem 3.4.9 in [14]). — The functor ARI → R,M 7→ M
is fully faithful.

We are now able to define the category of t-motives and the Galois group of a
t-motive.

Definition 2.7 (see §3.4.10 in [14]). — The category T of t-motives is the
strictly full Tannakian sub-category generated by the essential image of the functor
ARI → R,M 7→ M . The functor ω : T → V ectFq(t),M 7→ MB is a fiber functor of
T . For every object P of T , we denote by GP the Galois group of P w.r.t. ω.

In order to prove some results of transcendence for periods of Drinfeld Fq(t)-module
E, on has first to exhibit a rigid analytically trivial Anderson t-motive P , whose
special values of a trivialization Ψ at t = θ will interpolate the periods of the Drinfeld
module E. Then, Theorem 4 shows that the dimension of the Galois group GP of P
as t-motive is exactly the transcendence degree of the field generated by the periods
of E over k. The transcendence study is then reduced to the computation of a Galois
group. However, the explicit connection between periods of a Drinfeld module and
special values of an analytically trivial Anderson t-motives is, to my knowledge, a
work in progress of Anderson and Papanikolas.

2.1.2. Exemples of t-motives. — We introduce now the t-motives, whose special val-
ues of trivializations are involved in Theorem 5.

2.1.2.1. The unit object 1. — Let 1 := k(t) together with the σ-action defined by
σ(f) = σ(f) = f (−1) for all f ∈ 1. One has EndT (1) = Fq(t) and ω(1) = Fq(t) (see
[14, Lemma 3.3.2]).

2.1.2.2. The Carlitz motive C. — The Carlitz motive is the pre-t-motive whose un-
derlying k(t)-vector space is k(t) with σ-action given by

σf := (t− θ)f (−1), for all f ∈ C.
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One has to show that C is rigid analytically trivial.
Let Ω be the power series defined as follows

Ω(t) := ζθ

∞∏
i=1

(1− t/θ(i)) ∈ k∞(ζ∞)[[t]] ⊂ K[[t]],

with ζ∞ is a fixed (q − 1)-th root of −θ in k∞. The series Ω(t) has an infinite radius
of convergence and so Ω ⊂ T. Since Ω has no zeroes inside the unit disk, Ω ∈ T∗. It
also satisfies the functional equation

Ω(−1) = (t− θ)Ω.
The number

π̃ = − 1
Ω(θ)

= θζθ

∞∏
i=1

(1− θ1−qi

)−1 ∈ k∞(ζ∞)

is the Carlitz period, i.e., the period of the Carlitz-module C.

Proposition 2.8. — The Carlitz motive C is rigid analytically trivial with fiber
ω(C) = 1

ΩFq(t).

One can prove the following

Proposition 2.9. — – The Galois group of C is isomorphic to the multiplicative
group Gm over Fq(t) (see [14, Theorem 3.5.4]).

– Moreover, EndT (C) = Fq(t) (see [14, Lemma 3.5.3]).

2.1.2.3. The t-motive of Carlitz logarithm. — Let αi ∈ k
∗
. Set :

Φ(αi) :=
(

(t− θ) 0
α

(−1)
i (t− θ) 1

)
.

Φ(αi) defines a pre-t-motive X (αi), which is an extension in the category T of 1 by
the Carlitz motive C

0 // C // X (αi) // 1 // 0 .

For |α|∞ < |θ|q/(q−1)
∞ , define the power series

Lα := α+
∑
i=1

αq
i

(t− θq)(t− θq2)...(t− θqi)
.

One can show that Lα ∈ T and that Lα(z) converges for all z ∈ K with |z|∞ < |θ|q∞.
It satisfies the functional equation

L(−1)
αi

= α
(−1)
i +

Lαi

t− θ
.

The special value at θ of Lαi satisfy

Lα(θ) = logC(α),

where logC(z) := z +
∑
i=1

zqi

(θ−θq)(θ−θq2 )...(θ−θqi )
is the Carlitz logarithm, the inverse

of the exponential of the Carlitz module.
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Then

Proposition 2.10 (see Prop. 6.1.3 in [14]). — For |αi|∞ < |θ|q/(q−1)
∞ , the pre-t-

motive X (αi) is rigid analytically trivial and its trivialization is given by:

Ψ(αi) :=
(

Ω 0
ΩLαi 1

)
.

2.1.2.4. The multiple Carlitz logarithm motive. — Let α1, ..., αr ∈ k
∗

with |αi|∞ <

|θ|q/(q−1)
∞ . Set :

Φ(α1, ..., αr) :=


t− θ 0 · · · 0

α
(−1)
1 (t− θ) 1 · · · 0

...
...

. . .
...

α
(−1)
r (t− θ) 0 · · · 1

 .

Φ(α1, ..., αr) defines a pre-t-motive X (α1, ..., αr) which is an extension of 1r by the
Carlitz motive C :

0 // C // X (α1, ..., αr) // 1r // 0 .

The pre-t-motive X (α1, ..., αr) is rigid analytically trivial and its trivialization is given
by:

Ψ(α1, ..., αr) :=


Ω 0 · · · 0

ΩLα1 1 · · · 0
...

...
. . .

...
ΩLαr

0 · · · 1

 .

2.2. Papanikolas’s theorems on algebraic independence of Carlitz logarithms.—
First, we present an alternative formulation of Theorem 5. Since the Carlitz period
π̃ satisfies expC(π̃) = 0, the logarithmic version of Theorem 5 is the following

Theorem 2.11. — Let α1, ..., αr ∈ k
∗

with |αi|∞ < |θ|q/(q−1)
∞ . Assume that

π̃, logC(α1), ..., logC(αr) are linearly independent over k. Then they are algebraically
independent over k.

By §2.1.2, we have π̃ = − 1
Ω(θ) , logC(α1) = Lα1(θ), ..., logC(αr) = Lαr (θ). Then, the

field generated by the periods π̃, logC(α1), ..., logC(αr) over k coincides with the field
generated by the special values of Ψ(α1, ..., αr) at t = θ over k, i.e.

k(π̃, logC(α1), ..., logC(αr)) = k(Ψ(α1, ..., αr)(θ)).

Combining this simple remark with Theorem 4 applied to the t-motive M =
X (α1, ..., αr), Papanikolas reduces the proof of Theorem 5 to showing:

Theorem 2.12 (see Theorem 6.3.2.c in [14]). — Let α1, ..., αr ∈ k
∗

with
|αi|∞ < |θ|q/(q−1)

∞ . Assume that π̃, logC(α1), ..., logC(αr) are linearly independent over
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k. Then, the dimension of the Galois group GX of the t-motive X = X (α1, ..., αr) is
equal to r + 1.

2.3. A new proof of the independence of the Carlitz logarithms. — So,
we have to compute the dimension of the Galois group attached to the motive X =
X (α1, ..., αr). As in [9, Proof of Cor 2.2.], we have:

Lemma 2.13. — The tannakian sub-category generated by X (α1, ..., αr) in T is
equal to the Tannakian sub-category generated by the motive

⊕r
i=1 X (αi).

This Lemma implies that the Galois group of X is equal to the Galois group G :=
GLr

i=1 X (αi). As in [14], 6.2.2, we see that the quotient of G by its unipotent radical
is isomorphic to the Galois group of the Carlitz motive C, i.e, to Gm. Therefore, it
remains to compute the dimension of the unipotent radical of G, that is the unipotent
radical of the Galois group of a sum of extensions of 1 by the Carlitz motive C. To
compute the latter dimension, we use the Corollary 1.

2.3.1. Application to Theorem 2.12. — We apply Corollary 1 to the category T of
t-motives over C := EndT (1) = Fq(t) in order to compute the unipotent radical of the
Galois group G := GLr

i=1 X (αi) associated with the extensions X (αi) ∈ Ext1T (1, C)
described in §2.1.2. The assumptions of Corollary 1 are satisfied since

– every GC = Gm-module is completely reducible;
– GC = Gm acts on the line ω(C) through its canonical character;
– the Galois group of t-motives are reduced (see [14]);

Then, the dimension of the algebraic group G = GLr
i=1 X (αi) is equal to 1 + n, where

n denotes the dimension of the vector space over ∆ := EndT (C) = Fq(t) generated
by the X (αi)’s in Ext1T (1, C).

First let us remark that a difference equation Ψ(−1) =
(

(t− θ) 0
b 1

)
Ψ, where

b ∈ k(t) corresponds to a trivial extension extension of 1 by C, if and only if, b is in
the cokernel of the Carlitz-motive, i.e. , if and only if, there exists f ∈ k(t) such that
b = (t − θ)f (−1) − f . Secondly, it is easy to see that a Fq(t)- linear combination of
the X (αi)’s in Ext1T (1, C) corresponds to a difference equation

Ψ(−1) =
(

(t− θ) 0∑s
i=1 µiα

(−1)
i (t− θ) 1

)
Ψ, whereµi ∈ Fq(t).

Thus, we get

n = max{s|∃f ∈ k(t), (µi)si=1 ∈ Fq(t) not all zero, such that(t−θ)f (−1)−f =
s∑
i=1

µiα
(−1)
i (t−θ)}.

By assumption, π̃, logC(α1), ..., logC(αr) are linearly independent over k = Fq(θ). Fol-
lowing [14], bottom of p. 171, we now prove that under this hypothesis, n is equal to r.
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Suppose that n < r. Then, let us consider s such that ∃f ∈ k(t), (µi)si=1 ∈ Fq(t)
non all equal to zero such that

(2) (t− θ)f (−1) − f =
s∑
i=1

µiα
(−1)
i (t− θ).

It follows from Equation (2) that f is regular at t = θ : if not, f (−1) must have a
pole at t = θ(−1) which implies that f has a pole at t = θ(−1). By repeating this
argument, we get that if f is singular at t = θ it is also singular at t = θ(−i) for all
i ≥ 1, which is impossible. Therefore, f and f (−1) are regular at t = θ.

Considering the form of Equation (2), we then get f(θ) = 0. Moreover, the solu-
tions y of (2) are of the following type :

y = µ
1
Ω

+
s∑
i=1

µiLαi

with µ ∈ Fq(t). So, there exists µ ∈ Fq(t), such that :

(3) f = µ
1
Ω

+
s∑
i=1

µiLαi .

By taking t = θ in (3), we get:

0 = µ(θ)π̃ +
s∑
i=1

µi(θ)logC(αi).

This is a non trivial relation over k between π̃, logC(α1), ..., logC(αr), which contra-
dicts our assumption.

So, dimG = r + 1. This concludes the proof of Theorem 2.12, and implies,
as recalled in Section 1, that trdegkk(π̃, logC(α1), ..., logC(αr)) = r + 1, i.e. that
π̃, logC(α1), ..., logC(αr) are algebraically independent over k.

References

[1] G. W. Anderson, W. D. Brownawell & M. A. Papanikolas – “Determination
of the algebraic relations among special Γ-values in positive characteristic”, Annals of
Mathematics. Second Series 160 (2004), no. 1, p. 237–313.

[2] G. W. Anderson – “t-motives”, Duke Math. J. 53 (1986), no. 2, p. 457–502.

[3] Y. André – “Différentielles non commutatives et théorie de Galois différentielle ou aux
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