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PLURISIGNED HERMITIAN METRICS

DANIELE ANGELLA, VINCENT GUEDJ, AND CHINH H. LU

Abstract. Let (X,ω) be a compact hermitian manifold of dimension n. We
study the asymptotic behavior of Monge-Ampère volumes

∫
X(ω + ddcϕ)n,

when ω+ ddcϕ varies in the set of hermitian forms that are ddc-cohomologous
to ω. We show that these Monge-Ampère volumes are uniformly bounded
if ω is “strongly pluripositive”, and that they are uniformly positive if ω is
“strongly plurinegative”. This motivates the study of the existence of such
plurisigned hermitian metrics.

We analyze several classes of examples (complex parallelisable manifolds,
twistor spaces, Vaisman manifolds) admitting such metrics, showing that they
cannot coexist. We take a close look at 6-dimensional nilmanifolds which ad-
mit a left-invariant complex structure, showing that each of them admit a
plurisigned hermitian metric, while only few of them admit a pluriclosed met-
ric. We also study 6-dimensional solvmanifolds with trivial canonical bundle.
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Introduction

The study of complex Monge-Ampère equations on compact hermitian (non-
Kähler) manifolds has gained considerable interest in the last decade. Tosatti-
Weinkove [TW10] and then Székelyhidi-Tosatti-Weinkove [STW17] have resolved
the Gauduchon-Calabi-Yau conjecture, extending to the hermitian setting Yau’s
fundamental result [Yau78]. Associated degenerate complex Monge-Ampère equa-
tions have been systematically studied by Dinew, Ko�lodziej, and Nguyen [DK12,
KN15,Din16,KN19], as well as in [LPT21,GL21a,GL21b,GL21c].

By comparison with the setting of Kähler manifolds, a key new difficulty lies
in the uniform control of Monge-Ampère volumes. Given X a compact complex
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manifold of complex dimension n equipped with a hermitian metric ω, it is of crucial
importance to decide whether

v+(ω) := sup

{∫
X

(ω + ddcϕ)n : ϕ ∈ C∞(X) and ω + ddcϕ > 0

}

is finite, and whether

v−(ω) := inf

{∫
X

(ω + ddcϕ)n : ϕ ∈ C∞(X) and ω + ddcϕ > 0

}

is bounded away from zero. Here d = ∂ + ∂ and dc = 1
2i (∂ − ∂).

It follows from Stokes theorem that v−(ω) = v+(ω) =
∫
X
ωn when ω is closed or,

more generally, when ddcω = 0 and ddcω2 = 0. The latter conditions are however
rather restrictive and it is an important open problem to decide whether v+(ω)
(resp. v−(ω)) is always finite (resp. positive). We refer the reader to [GL21b, The-
orem C] for an illustration of how the finiteness of v+(ω) is related to a transcen-
dental form of Demailly’s holomorphic Morse inequalities, while [GL21c] strongly
motivates the condition v−(ω) > 0.

It has been shown in [GL21b, Theorem A] that the condition v+(ω) < +∞ (resp.
v−(ω) > 0) is independent of the choice of hermitian metric—it only depends on
the complex structure—and is a bimeromorphic invariant.

We further study these conditions in this article, testing them on various classes
of examples. Our first observation is the following hereditary result.

Theorem A. Let (X,ωX) be a compact hermitian manifold and let Y ⊆ X be a
closed submanifold equipped with a hermitian form ωY . If v+(X,ωX) < +∞ then
v+(Y, ωY ) < +∞.

We then establish the finiteness of v+(X) (resp. positivity of v−(X)) when X
admits special pluripositive (resp. plurinegative) hermitian metrics.

Theorem B. Let X be a compact complex manifold of dimension n.

(1) If there exists a hermitian metric ω and ε > 0 such that ddcω ≥ 0 and
ddcωq ≥ εω ∧ ddcωq−1, for 2 ≤ q ≤ n− 2, then v+(ω) < +∞.

(2) If n = 3 and X admits a metric ω such that ddcω ≤ 0, then v−(ω) > 0.

In particular if n = 3 and ω is pluriclosed then 0 < v−(ω) ≤ v+(ω) < +∞.

We also provide a curvature condition to control v−(ω) in higher dimension, see
Definition 3.1 and Theorem 3.2.

These conditions are always fulfilled when dimC X ≤ 2, so we initiate a system-
atic study of the 3-dimensional case. Using Hahn-Banach theorem in the spirit of
[Mic82,HL83], one can show (Theorems 2.4 and 3.5) that there exists a pluripositive
(resp. plurinegative) hermitian metric ω on X if and only if any positive current τ
of bidimension (2, 2) such that ddcτ ≤ 0 (resp. ddcτ ≥ 0) satisfies ddcτ = 0. Thus
in dimension 3 such plurisigned hermitian metrics cannot coexist, i.e. the following
conditions are mutually exclusive (see Corollary 3.7):

• X admits a hermitian metric ω such that ddcω ≥ 0 and ddcω �= 0;
• X admits a hermitian metric ω such that ddcω = 0;
• X admits a hermitian metric ω such that ddcω ≤ 0 and ddcω �= 0;
• X does not admit any hermitian metric ω such that ddcω has a sign.

Each case does occur as we show by analyzing several classes of examples:
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• Complex parallelisable manifolds and twistor spaces of K3 surfaces admit
pluripositive hermitian metrics (see Proposition 4.1 and Theorem 2.7).

• The existence of pluriclosed hermitian metrics has been thoroughly studied
in recent years (see [FPS04,FT09,Ver14,COUV16,Ot20,ADOS22]).

• Vaisman manifolds (a special type of locally conformally Kähler manifolds)
admit plurinegative hermitian metrics (Proposition 3.10).

• Non-Kähler manifolds from the class C of Fujiki do not admit any plurisgned
hermitian metric (see Proposition 3.8).

This alternative is however no longer valid in higher dimension, see Example 4.5.
We take a closer look at nilmanifolds X = Γ\G of (real) dimension 6, where

G is a connected and simply connected nilpotent Lie group, and Γ is a discrete
co-compact subgroup. There are 34 isomorphism classes of nilpotent Lie algebras
in dimension 6, only 18 of which admit a complex structure. Following [ABD11,
Uga07, UV14, COUV16] we gather them in four large families (Np), (Ni), (Nii),
(Niii) and show the following.

Theorem C. Consider a six-dimensional nilmanifold X = Γ\G endowed with a
left-invariant complex structure. There is always a plurisigned hermitian metric.
More precisely if X is not a complex torus, then

• either X belongs to one of the classes (Np), (Nii), (Niii) and then any
left-invariant hermitian metric is pluripositive but not pluriclosed.

• or X belongs to the class (Ni) and depending on the complex structure
it admits a left-invariant hermitian metric wich is either pluriclosed, or
pluripositive but not pluriclosed, or else plurinegative but not pluriclosed.

This analysis largely generalizes the influential work of Fino-Parton-Salamon
[FPS04] who characterized the existence of pluriclosed metric in this context. We
refer the reader to Section 4.2 for a more precise statement.

Following [FOU15] we also analyze the case of 6-dimensional solvmanifolds, i.e.
compact quotients of a connected solvable Lie group by a discrete subgroup, en-
dowed with left-invariant complex structures with holomorphically trivial canonical
bundle. These are gathered in ten large families (see Section 4.4), besides the four
large families of nilmanifolds that are dealt with by the previous statement.

Theorem D. Consider a six-dimensional solvmanifold endowed with a left-invari-
ant complex structure with holomorphically-trivial canonical bundle. Then, there is
always a plurisigned metric.

We refer the reader to Theorem 4.7 for a more precise statement, which notably
shows that in most cases the plurisigned metric is pluripositive.

1. Preliminaries

In the whole article we let X denote a compact complex manifold of complex
dimension n ≥ 1, and we fix a hermitian form ωX on X.

1.1. Quasi-plurisubharmonic functions. Let ω be a semi-positive (1, 1)-form.

1.1.1. Quasi-plurisubharmonic functions.

Definition 1.1. A function is quasi-plurisubharmonic (quasi-psh for short) if it is
locally given as the sum of a smooth and a plurisubharmonic function.
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Given an open set U ⊂ X, quasi-psh functions ϕ : U → R ∪ {−∞} satisfying
ωϕ := ω + ddcϕ ≥ 0 in the weak sense of currents are called ω-psh functions on U .
Constant functions are ω-psh functions since ω is semi-positive.

A C2-smooth function u ∈ C2(X) has bounded Hessian, hence εu is ω-psh on X
if 0 < ε is small enough and ω is positive (i.e. hermitian).

Definition 1.2. We let PSH(X,ω) denote the set of all ω-plurisubharmonic func-
tions which are not identically −∞.

The set PSH(X,ω) is a closed subset of L1(X), for the L1-topology. We refer
the reader to [Dem,GZ,Din16] for basic properties of ω-psh functions, and simply
recall that:

• PSH(X,ω) ⊂ PSH(X,ω′) if ω ≤ ω′;
• PSH(X,ω) ⊂ Lr(X) for r ≥ 1; the induced Lr-topologies are equivalent;
• the subset PSHA(X,ω) := {u ∈ PSH(X,ω), −A ≤ supX u ≤ 0} is com-
pact in Lr(X) for any r ≥ 1 and any A > 0.

Definition 1.3. A quasi-psh function ϕ has analytic singularities if it can be locally
written as

ϕ(z) = c log

s∑
j=1

|fj(z)|2 + ρ(z),

where c > 0, the fj ’s are holomorphic functions and ρ is a smooth function.

We recall the following fundamental regularization result of Demailly [Dem92].

Theorem 1.4. Any quasi-psh function is the decreasing limit of smooth quasi-psh
functions. Moreover when ω is a hermitian form, any function ϕ ∈ PSH(X,ω) is
the decreasing limit of functions ϕj ∈ PSH(X,ω) with analytic singularities.

1.1.2. Monge-Ampère measure. The complex Monge-Ampère measure (ω+ ddcu)n

is well-defined for any ω-psh function u which is bounded, as follows from the theory
developed by Bedford-Taylor in bounded pseudoconvex domains of Cn.

If β = ddcρ is a Kähler form that dominates ω in a local chart U , the function u
is β-psh in U hence the positive currents (β+ ddcu)j are well defined for 0 ≤ j ≤ n
by [BT82]. This allows one to make the following definition.

Definition 1.5. The complex Monge-Ampère measure of u is

(ω + ddcu)n :=
n∑

j=0

(
n
j

)
(−1)n−j(β + ddcu)j ∧ (β − ω)n−j .

We refer to [DK12] for an adaptation of the main properties of [BT82] to this
hermitian and global context.

The mixed Monge-Ampère measures (ω + ddcu)j ∧ (ω + ddcv)n−j are also well
defined for any 0 ≤ j ≤ n, and any bounded ω-psh functions u, v.

A basic property we shall use is the following extension of a fundamental result
of Bedford-Taylor:

Lemma 1.6. Let u, v be bounded ω-psh functions, then max(u, v) ∈ PSH(X,ω)
and

1{u<v}(ω + ddc max(u, v))n = 1{u<v}(ω + ddcv)n.

The subtle point here is that the set {u < v} is not open in the usual sense if v
is not continuous, it is merely open for the plurifine topology.
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1.2. Uniform bounds on Monge-Ampère volumes. Let (X,ω) be a compact
hermitian manifold of complex dimension n.

Definition 1.7. We consider

v−(ω) := inf

{∫
X

(ω + ddcu)n, u ∈ PSH(X,ω) ∩ L∞(X)

}

and

v+(ω) := sup

{∫
X

(ω + ddcu)n, u ∈ PSH(X,ω) ∩ L∞(X)

}
.

The supremum and infimum in the definition of v+(ω) and v−(ω) can be taken
over PSH(X,ω) ∩ C∞(X) as follows from Theorem 1.4 and Bedford-Taylor’s con-
vergence theorem [BT82]. These quantities have been studied in [GL21b]. A major
open problem is the following.

Problem 1.8. Understand whether v+(ω) < +∞ and/or v−(ω) > 0.

It follows from Stokes theorem that 0 < v−(ω) = v+(ω) =
∫
X
ωn < +∞ when ω

is a Kähler form. The same result holds true as soon as the hermitian form satisfies

ddcω = 0 and dω ∧ dcω = 0,

a vanishing condition introduced by Guan-Li in [GL10].
This condition actually characterizes the preservation of Monge-Ampère masses,

as was observed by Chiose in [Chi16b].

Theorem 1.9 ([Chi16b]). The following properties are equivalent:

(1)
∫
X
(ω + ddcϕ)n =

∫
X
ωn for all ϕ ∈ PSH(X,ω) ∩ L∞(X).

(2) ddcω = 0 and dω ∧ dcω = 0.

When n = 2 the vanishing of dω ∧ dcω is automatic for bidegree reasons, hence
the preservation of Monge-Ampère volumes is equivalent to ω being a Gauduchon
metric. In higher dimension this condition is quite restrictive and unstable.

Chiose further observed that the Guan-Li condition is moreover equivalent to

ddcω ≥ 0 and dω ∧ dcω ≥ 0.

Indeed

ddc(ωn−1) = (n− 1)(n− 2)dω ∧ dcω ∧ ωn−3 + (n− 1)ddcω ∧ ωn−2

while Stokes theorem ensures that
∫
X
ddc(ωn−1) = 0.

Remark 1.10. Note thatX satisfying the ∂∂-Lemma is not enough to ensure the vol-
ume preservation property v−(ω) = v+(ω) =

∫
X
ωn. Some splitting-type complex

structures arising as deformations of the holomorphically-parallelizable Nakamura
solvmanifold satisfy the ∂∂-Lemma [AK17,AOUV17], but they never admit pluri-
closed metrics [AOUV17], in particular the Guan-Li conditions are never satisfied
(see also Proposition 3.8). It is a folkore conjecture that balanced metrics always
exist on compact complex manifolds satisfying the ∂∂-Lemma [Pop17], and it is
also expected that balanced and pluriclosed metrics cannot coexist on a compact
complex manifold unless it admits Kähler metrics [FV15]. If these two conjectures
were true, the volume preservation property would never be satisfied by compact
complex non-Kähler manifolds satisfying the ∂∂-Lemma.
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In the sequel we analyze several families of compact complex manifolds admitting
a hermitian metric ω such that ddcω ≥ 0 (resp. ddcω ≤ 0). We can further expect
that dω ∧ dcω ≤ 0 (resp. dω ∧ dcω ≥ 0), but we should not expect, in general, that
these two forms are both globally positive (resp. negative).

We recall the following properties established in [GL21b].

Theorem 1.11 ([GL21b, Proposition 3.2, Theorem 3.7, Theorem 4.12]). Let X be
a compact complex manifold of dimension n and let ω be a hermitian metric.

• The condition v+(ω) < +∞ is independent of the choice of the hermitian
metric ω, and it is a bimeromorphic invariant.

• The condition v−(ω) > 0 is independent of the choice of the hermitian
metric ω, and it is a bimeromorphic invariant.

• If α ∈ H1,1
BC(X,R) is a nef class with αn > 0, then α contains a Kähler

current (hence X belongs to the Fujiki class C) if and only if v+(ω) < +∞.

Here H1,1
BC(X,R) denotes the first Bott-Chern cohomology group of X. The last

item is a partial answer to an important conjecture of Demailly-Paun [DP04].
A main goal of this article is to introduce curvature conditions that allow one to

partially answer Problem 1.8, and to try and establish them on various classes of
non-Kähler manifolds.

2. Pluripositive hermitian metrics

2.1. The restriction property. We observe in this section that the condition
v+(ω) < +∞ is stable under restriction.

Theorem 2.1. Let (X,ωX) be a compact hermitian manifold and let Y ⊂ X be a
closed submanifold of X equipped with a hermitian form ωY . If v+(X,ωX) < +∞
then v+(Y, ωY ) < +∞.

Proof. Since the finiteness of v+ is independent of the choice of a hermitian metric,
we work here with ωY = (ωX)|Y .

It follows from Theorem 1.4 that one can approximate ϕ ∈ PSH(Y, ωY ) by a
decreasing sequence of smooth strictly ωY -psh functions. Since the complex Monge-
Ampère operator is continuous along decreasing sequences [BT82], it suffices to
establish a uniform bound from above on

∫
Y
(ωY + ddcϕ)k, where ϕ is smooth and

strictly ωY -psh and k = dimC Y .
It follows from [CGZ13, Proposition 2.1] that there exists a smooth extension

φ ∈ PSH(X,ωX) with φ|Y = ϕ. It is classical (see e.g. [DP04, Lemma 2.1]) that
one can find a function ψY ∈ PSH(X,ωX) which is smooth in X \Y , with analytic
singularities along Y , and such that

(ωX + ddcψY )
n−k ≥ δ0[Y ],

for some δ0 > 0, where [Y ] denotes the current of integration along Y . We infer∫
Y

(ωY + ddcϕ)k =

∫
X

(ωX + ddcφ)k ∧ [Y ]

≤ δ−1
0

∫
X

(ωX + ddcφ)k ∧ (ωX + ddcψY )
n−k

= lim
j→+∞

δ−1
0

∫
X

(ωX + ddcφ)k ∧ (ωX + ddcψj)
n−k,
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where ψj = max(ψY ,−j) ∈ PSH(X,ωX) ∩ L∞(X).

Observe now that uj =
φ+ψj

2 ∈ PSH(X,ωX) ∩ L∞(X) with

(ωX + ddcφ)k ∧ (ωX + ddcψj)
n−k ≤ 2n(ωX + ddcuj)

n,

and
∫
X
(ωX + ddcuj)

n ≤ v+(X,ωX), hence

v+(Y, ωY ) = sup
ϕ

∫
Y

(ωY + ddcϕ)k ≤ 2nδ−1
0 v+(X,ωX) < +∞,

completing the proof. �

2.2. Controlling v+. We propose here various curvature conditions on a hermitian
metric ω that ensure v+(ω) < +∞.

Theorem 2.2. Let X be a compact complex manifold of dimension n. Assume
there exists a hermitian metric ω and ε > 0 such that

• ddcω ≥ 0 and
• ddcωq ≥ εω ∧ ddcωq−1 for 2 ≤ q ≤ n− 2.

Then v+(ω) < +∞.

In complex dimension n = 3, the hypothesis boils down to ddcω ≥ 0. We
shall provide several examples of manifolds admitting such pluripositive hermitian
metrics in the sequel. Higher dimensional examples satisfying the conditions of
Theorem 2.2 will be presented in Example 4.2 and Example 4.6.

Proof. When n = 3 this observation is due to Chiose [Chi16b, Question 0.8]. We
include a proof as a warm up for the higher dimensional case. It follows from Stokes
theorem that

∫
X
(ddcu)3 = 0 for any u ∈ PSH(X,ω) ∩ C∞(X), hence∫

X

(ω + ddcu)3 =

∫
X

ω3 + 3

∫
X

ω2 ∧ ddcu+ 3

∫
X

ω ∧ (ddcu)2.

Integrating by parts we see that∣∣∣∣
∫
X

ω2 ∧ ddcu

∣∣∣∣ =
∣∣∣∣
∫
X

u ddcω2

∣∣∣∣ ≤ B

∫
X

|u|ω3 ≤ C

by compactness (see [GZ, Proposition 8.4]), as we can normalize u by supX u = 0.
On the other hand ∫

X

ω ∧ (ddcu)2 =

∫
X

−ddcω ∧ du ∧ dcu ≤ 0

whenever ddcω ≥ 0. The result follows.
We now treat the case n ≥ 4. Observe that it suffices to deal with aω-psh

functions, where 0 < a ≤ 1 is an arbitrarily small fixed constant. Indeed if u ∈
PSH(X,ω) ∩ L∞(X), then au ∈ PSH(X, aω) ∩ L∞(X) with

anωn
u ≤ ((1− a)ω + aωu)

n,

hence

v+(ω) ≤ a−n sup

{∫
X

(ω + addcu)n, u ∈ PSH(X,ω) ∩ L∞(X)

}
.
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We thus fix a > 0 and u ∈ PSH(X,ω) with supX u = 0. Stokes theorem yields∫
X

(ω + addcu)n

=
∑

0≤p≤n

(
n

p

)
ap

∫
X

ωn−p ∧ (ddcu)p

=

∫
X

ωn + na

∫
X

ωn−1 ∧ ddcu+
∑

2≤p≤n−1

(
n

p

)
ap

∫
X

ωn−p ∧ (ddcu)p

≤ C1 −
∑

2≤p≤n−1

(
n

p

)
ap

∫
X

du ∧ dcu ∧ (ωu − ω)p−2 ∧ ddc(ωn−p)

= C1 + S.

We decompose the sum S as follows,

S =
∑

2≤p≤n−1

0≤k≤p−2

Bk,pa
p(−1)k+1

∫
X

du ∧ dcu ∧ ωp−2−k
u ∧ ωk ∧ ddc(ωn−p)

= S1 + S2,

where Bk,p =
(
n
p

)(
p−2
k

)
, S1 is the sum for k even and S2 is the one for k odd. Using

the assumption on ddcωn−p we obtain

S1 = −
∑

2≤p≤n−2

0≤k=2l≤p−2

Bk,pa
p

∫
X

du ∧ dcu ∧ ωp−2−2l
u ∧ ω2l ∧ ddc(ωn−p)

≤ −
∑

2≤p≤n−2

0≤k=2l≤p−2

Bk,pa
pε

∫
X

du ∧ dcu ∧ ωp−2−2l
u ∧ ω2l+1 ∧ ddc(ωn−p−1),

while

S2 =
∑

3≤p≤n−1

0≤k=2l+1≤p−2

Bk,pa
p

∫
X

du ∧ dcu ∧ ωp−3−2l
u ∧ ω2l+1 ∧ ddc(ωn−p)

=
∑

2≤p≤n−2

0≤k=2l+1≤p−1

Bk,p+1a
p+1

∫
X

du ∧ dcu ∧ ωp−2−2l
u ∧ ω2l+1 ∧ ddc(ωn−p−1),

as follows from changing p in p− 1. Now S1 + S2 =

=
∑

2≤p≤n−2

0≤k=2l+1≤q−1

(−Bk,pε+Bk,p+1a)a
p

∫
X

du∧dcu∧ωp−2−2l
u ∧ω2l+1∧ddc(ωn−p−1) ≤ 0

if a is small enough, which yields S1 + S2 ≤ 0 hence v+(ω) ≤ a−nC1. �

2.3. Pluripositive hermitian metrics.

Definition 2.3. A hermitian metric ω is pluripositive if ddcω ≥ 0, plurinegative if
ddcω ≤ 0, and pluriclosed if ddcω = 0.
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Pluriclosed metrics are also often called SKT (strongly Kähler with torsion) in
the literature; a manifold X is called SKT if it admits a SKT hermitian metric.

The existence of a pluripositive hermitian metric ω is a condition that is stable
under blow-ups with smooth centers. Indeed if π : Y → X is the blow up of X with
smooth center Z ⊂ X, a hermitian metric on Y is obtained by considering

ωY = π∗ωX − εθZ ,

where ωX is a hermitian metric in X \ Z with poles along Z, θZ is a closed form
cohomologous to the current of integration along the exceptional divisor π−1(Z),
and 0 < ε is small. Thus ddcωY = π∗ddcωX has the same sign as that of ddcωX .

However this condition is not stable under modifications (see Proposition 3.8),
and there are obstructions to the existence of pluripositive hermitian metrics:

Theorem 2.4. The following properties are equivalent.

• There exists a hermitian form ω such that ddcω ≥ 0.
• There exists no positive current τ of bidimension (2, 2) such that S =
ddcτ ≤ 0 with S �= 0.

When the complex dimension is n = 3, this shows in particular that pluripositive
and plurinegative hermitian forms can not coexist (see Corollary 3.7).

Proof. Observe first that the two objects cannot coexist on X. Indeed if ω is a
hermitian form such that ddcω ≥ 0 and τ is a positive current of bidimension (2, 2)
such that ddcτ ≤ 0, we obtain

0 ≤
∫
X

ddcω ∧ τ =

∫
X

ω ∧ ddcτ ≤ 0,

which forces ddcτ = 0 since ω is a hermitian form. Conversely consider

C :=

{
negative currents S of bidimension (1, 1) with

∫
X

S ∧ ω = −1

}
.

This is a compact convex set for the weak topology of currents. We set

F := {currents S = ddcτ, where τ ≥ 0 has bidimension (2, 2)} .

This is a closed set for the weak topology. There exists no positive current τ of
bidimension (2, 2) such that S = ddcτ ≤ 0 with S �= 0 if and only if the sets C and
F are disjoints. If such is the case, it follows from Hahn-Banach theorem that we
can find a continuous functional Φ on the set of bidimension (1, 1) currents that is
semi-positive on F and strictly negative on C. By deRham duality the functional
Φ is defined by a form ω of bidegree (1, 1). Now

• Φ ≥ 0 on F is equivalent to ddcω ≥ 0, while
• Φ < 0 on C is equivalent to ω being hermitian,

as follows from a rescaling argument. �

2.4. Twistor spaces. Twistor spaces provide a large class of examples of compact
non-Kähler manifolds which admit a pluripositive hermitian metric.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

4640 DANIELE ANGELLA, VINCENT GUEDJ, AND CHINH H. LU

Dimension 4. Let (M, g) be a compact oriented riemannian 4-manifold. The vector
bundle Λ2T ∗M of 2-forms can be decomposed as a direct sum Λ2T ∗M = Λ+⊕Λ−,
where Λ± denotes the eigenspace of the Hodge �-operator corresponding to the
±1-eigenvalues of � (selfdual and anti-selfdual forms).

The riemannian curvature operator R : Λ2T ∗M → Λ2T ∗M can be decomposed
under the action of the group of special isometries SO(4) as

R =
s

6
Id+W− +W++

◦
r,

where s is the scalar curvature,
◦
r is the trace free Ricci curvature, and W± are

the trace free endomorphisms of Λ±. The manifold M is called ASD (anti-selfdual)
if W+ = 0; this definition is conformally invariant [AHS78]. A famous result of
Taubes [Tau92] provides many examples of such ASD manifolds.

Definition 2.5. The twistor space X = X(M, [g]) of (M, [g]) is the total space of
the sphere bundle of self dual 2-forms.

There is a natural almost complex structure on X which is integrable if and only
if M is ASD [AHS78]. In this case X is a compact complex manifold of dimension
3 which is never Kähler unless M = S4 is the sphere (in which case X = CP

3), or
M = CP2 (in which case X is the flag space of C3), see [Hit81].

Despite being non-Kähler, twistor spaces have a lot of rational curves, in partic-
ular all fibers F ∼ P1 of the smooth submersion π : X → M . Note that there also
is a holomorphic projection π : X → P

1.

Dimension 4n. The previous construction generalizes as follows. Let (M, g,D) be
a quaternionic Kähler manifold of dimension 4n, i.e. an oriented complete 4n-
dimensional riemannian manifold (M, g) whose holonomy group is contained in the
product Sp(1)Sp(n) of quaternionic unitary groups. Such a manifold admits a rank
3 subbundle D ⊂ End(TM) invariant by the Levi-Civita connection.

Definition 2.6. The twistor space X = X(M, g,D) of (M, g,D) is the bundle of

spheres of radius
√
2 of D.

This is a locally trivial bundle with fibre S2 and structure group SO(3). It can
be endowed with a natural metric G and an almost complex structure J that is
integrable [Sal82, Theorem 4.1]. Thus (X, J) is a complex manifold of complex
dimension 2n+ 1.

When (M, g) is hyperkähler, i.e. when the holonomy group is contained in the
quaternionic unitary group Sp(n), it turns out that (M, g) admits three global g-
orthogonal integrable Kähler structures I, J,K such that IJ = −JI = K. We thus
obtain a pencil of complex structures

X(M, g,D) −→ P
1

which is integrable. It is called the Calabi family of (M, g,D).

Pluripositive hermitian metrics. Twistor spaces admit smooth hermitian (1, 1)-
forms ω that are balanced (i.e. dωn−1 = 0, see [Mic82] and [KV98, Proposition
4.5]). There is a natural hermitian form ω whose curvature has been computed
by Kaledin-Verbitsky [KV98, Proposition 8.15] and Deschamps-LeDu-Mourougane
[DLM17, Corollary 5.6]:
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Theorem 2.7. Let (M, g,D) be a quaternionic Kähler manifold of dimension 4n
with constant scalar curvature s ≤ 0. Then the natural hermitian form ω on the
twistor space X(M, g,D) is pluripositive ddcω ≥ 0.

3. Plurinegative hermitian metrics

3.1. Monge-Ampère lower bounds. We show that the condition v−(ω) > 0 is
satisfied if ω satisfies a special plurinegative condition.

Definition 3.1. We say that a hermitian form ω satisfies the condition Plurineg(n)
if it is a Gauduchon metric and either n = 2 or n ≥ 3 and

n−�−2∑
k=1

(−1)n−k−�

(
n

k

)(
n− k − 2

�

)
ddcωk ∧ ωn−k−2−� ≤ 0

for any � ∈ {0, . . . , n− 3}.

The condition Plurineg(n) requires the Gauduchon condition ddcωn−1 = 0. It
reduces to the latter when n = 2, while it moreover asks that

• ddcω ≤ 0 when n = 3;
• ddcω ≤ 0 and 3ddcω2 − 2ω ∧ ddcω ≤ 0 when n = 4;
• ddcω ≤ 0, ddcω2 − ddcω ∧ω ≤ 0, and 2ddcω3 − 2ω ∧ ddcω2 +ω2 ∧ ddcω ≤ 0
when n = 5.

Theorem 3.2. Let X be a compact complex manifold of dimension n. If X admits
a hermitian metric ω that satisfies Plurineg(n) then v−(ω) =

∫
X
ωn > 0.

Proof. Fix u a smooth ω-psh function. We first treat the case n = 3 to set the
scene. The Gauduchon condition yields

∫
X
ω2 ∧ ddcu = 0 while Stokes theorem

ensures that
∫
X
(ddcu)3 = 0, thus

∫
X

(ω + ddcu)3 =

∫
X

ω3 + 3

∫
X

ω2 ∧ ddcu+ 3

∫
X

ω ∧ (ddcu)2 +

∫
X

(ddcu)3

=

∫
X

ω3 + 3

∫
X

−ddcω ∧ du ∧ dcu

≥
∫
X

ω3

if ddcω ≤ 0, so that v−(ω) ≥
∫
X
ω3 > 0.

To make the arguments clearer, we also explicitly look at the case n = 4. Using
the binomial expansion, the Gauduchon condition and Stokes theorem, we obtain

∫
X

ω4
u −

∫
X

ω4 = 6

∫
X

−ddcω2 ∧ du ∧ dcu+ 4

∫
X

−ddcω ∧ ddcu ∧ du ∧ dcu

= 2

∫
X

[−3ddcω2 + 2ddcω ∧ ω] ∧ du ∧ dcu+ 4

∫
X

−ddcω ∧ ωu ∧ du ∧ dcu

≥ 0

if Plurineg(4) is satisfied.
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We now consider the general case.

∫
X

ωn
u −

∫
X

ωn =
n−1∑
k=0

(
n

k

)∫
X

ωk ∧ (ddcu)n−k

=

∫
X

(ddcu)n +
n−2∑
k=1

(
n

k

)∫
X

ωk ∧ (ddcu)n−k + n

∫
X

u ddcωn−1

= −
n−2∑
k=1

(
n

k

)∫
X

ddcωk ∧ (ddcu)n−k−2 ∧ du ∧ dcu,

using the Gauduchon condition ddcωn−1 = 0. Thus

∫
X

ωn
u −

∫
X

ωn = −
n−2∑
k=1

(
n

k

)∫
X

ddcωk ∧ (ωu − ω)n−k−2 ∧ du ∧ dcu

= −
n−2∑
k=1

n−k−2∑
�=0

(−1)n−k−�

(
n

k

)(
n− k − 2

�

)∫
X

ddcωk ∧ ωn−k−2−� ∧ ω�
u ∧ du ∧ dcu

= −
n−3∑
�=0

n−�−2∑
k=1

(−1)n−k−�

(
n

k

)(
n− k − 2

�

)∫
X

ddcωk ∧ ωn−k−2−� ∧ ω�
u ∧ du ∧ dcu

= −
n−3∑
�=0

∫
X

n−�−2∑
k=1

(−1)n−k−�

(
n

k

)(
n− k − 2

�

)
ddcωk ∧ ωn−k−2−� ∧ ω�

u ∧ du ∧ dcu.

Therefore, if

n−�−2∑
k=1

(−1)n−k−�

(
n

k

)(
n− k − 2

�

)
ddcωk ∧ ωn−k−2−� ≤ 0

for any � ∈ {0, . . . , n− 3}, we get that v−(ω) ≥
∫
X
ωn. �

3.2. Monge-Ampère bounds in dimension 3. We focus in this section on the
3-dimensional setting and observe that the condition v−(X,ωX) > 0 is satisfied
if X admits a plurinegative hermitian metric which is not necessarily Gauduchon.
Note that the restriction of a plurinegative metric yields a plurinegative metric, but
the Gauduchon condition is in general not preserved under restriction.

Theorem 3.3. Let X be a compact complex manifold of dimension 3. If X admits
a hermitian metric ω such that ddcω ≤ 0, then v−(ω) > 0.

In particular if ω is pluriclosed, then 0 < v−(ω) ≤ v+(ω) < +∞.

Proof. Assume by contradiction that there exists a sequence (uj) such that uj ∈
PSH(X,ω) ∩ C∞(X), supX uj = −1 and∫

X

(ω + ddcuj)
3 → 0.

For each j, let φj ∈ PSH(X,ω) ∩ C∞(X) be the unique solution to

(ω + ddcφj)
3 = cju

2
jω

3

normalized by supX φj = 0. Here cj > 0 is a positive constant. The existence of φj

(and that of cj) follows from the main result of [TW10]. Observe that
∫
X
|uj |4ω3
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is uniformly bounded away from 0 and infinity. Thus by [KN15, Lemma 3.13 and
Theorem 5.8],

C−1 ≤ cj ≤ C, φj ≥ −C,

for some uniform constant C > 0.
Let B be a positive constant such that dω∧dcω ≤ Bω3. For u, v ∈ PSH(X,ω)∩

L∞(X) we set ωu := ω + ddcu, ωv := ω + ddcv. When ddcω ≤ 0 one obtains

ddc(ωu ∧ ωv) = ddcω ∧ ωu + ddcω ∧ ωv + 2dω ∧ dcω ≤ 2Bω3,

hence
ddc(ω2

uj
+ ω2

vj + ωuj
∧ ωvj ) ≤ 6dω ∧ dcω ≤ 6Bω3.

Fix t > 1 and set vj := max(uj , φj − t). Using Stokes theorem we obtain∫
X

(ω3
vj − ω3

uj
) =

∫
X

(vj − uj)dd
c(ω2

uj
+ ω2

vj + ωuj
∧ ωvj )

≤ 6B

∫
X

(vj − uj)ω
3 = 6B

∫
{uj<φj−t}

(vj − uj)ω
3

≤ 6B

∫
{uj<φj−t}

|uj |ω3

≤ 6B

tcj

∫
{uj<φj−t}

cj |uj |2ω3

≤ 6BC

t

∫
{uj<φj−t}

ω3
φj

≤ 6BC

t

∫
X

ω3
vj .

In the last line we have used the identity

1{uj<φj−t}ω
3
φj

= 1{uj<φj−t}ω
3
vj ≤ ω3

vj .

Choosing t = 12BC we obtain
∫
X
ω3
vj ≤ 2

∫
X
ω3
uj
. Using [GL21b, Proposition 3.4],

we arrive at a contradiction since the functions vj are uniformly bounded. �
3.3. Various obstructions.

3.3.1. Pluriclosed and Plurinegative metrics. Constructing pluriclosed hermitian
metrics on compact complex manifolds is a problem that has attracted a lot of
attention in the last decades. We observe here a rigidity property of this condition.

Proposition 3.4. Let (X,ω) be a compact hermitian manifold such that ddcω = 0.
If ddcω2 ≤ 0 (resp. ddcω2 ≥ 0) then ddcωj = 0 for all j ≥ 1.

The restrictive condition ddcω = 0 & ddcω2 = 0 has been introduced by Guan-Li
[GL10], and further studied by Chiose [Chi16b], it is equivalent to the preservation
of the Monge-Ampères volumes, v+(ω) = v−(ω) =

∫
X
ωn (see Theorem 1.9 and

Remark 1.10).

Proof. It follows from Stokes theorem that
∫
X
ddc(ωn−1) = 0. Now

ddc(ωn−1)

n− 1
= {ddcω ∧ ω + (n− 2)dω ∧ dcω} ∧ ωn−3

=

{
n− 2

2
ddcω2 − (n− 3)ddcω ∧ ω

}
∧ ωn−3,
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hence
n− 2

2

∫
X

ddcω2 ∧ ωn−3 = (n− 3)

∫
X

ddcω ∧ ωn−2.

The conclusion follows. �

An adaptation of the proof of Theorem 2.4 yields the following characterization
of the existence of plurinegative metrics [Eg01, Theorem 3.3].

Theorem 3.5. The following properties are equivalent.

• There exists a hermitian form ω such that ddcω ≤ 0.
• There exists no positive current τ of bidimension (2, 2) such that S =
ddcτ ≥ 0 with S �= 0.

A similar obstruction for the existence of pluriclosed hermitian metrics is well-
known [Eg01, Theorem 3.3]: there exists a hermitian form ω such that ddcω = 0 if
and only if the only ddc-exact positive current S of bidimension (1, 1) is 0.

Remark 3.6. It follows from the work of Ivashkovich that one can extend meromor-
phic maps with values in compact non-Kähler manifolds endowed with a plurineg-
ative metric (see [Iv04, Theorem 2.2]).

3.3.2. Mutually exclusive conditions in dimension 3. Let X be a compact complex
3-fold. If X admits a pluripositive hermitian metric ω and another plurinegative
hermitian metric ω′, then these are actually both pluriclosed. More generally, it
follows from Theorems 2.4 and 3.5 that we have the following alternative.

Corollary 3.7. Let X be a compact complex 3-fold. The following conditions are
mutually exclusive:

• X admits a hermitian metric ω such that ddcω ≥ 0 and ddcω �= 0;
• X admits a hermitian metric ω such that ddcω = 0;
• X admits a hermitian metric ω such that ddcω ≤ 0 and ddcω �= 0;
• X does not admit any hermitian metric ω such that ddcω has a sign.

We refer the reader to the examples to follow for an illustration of each case.

Proof. Assume ω is a hermitian form such that ddcω ≥ 0, while ω′ is a hermitian
form such that ddcω′ ≤ 0. It follows from Theorem 2.4 and Theorem 3.5 that
ddcω = 0 and ddcω′ = 0. �

Recall that the class C of Fujiki consists of compact complex manifolds that are
bimeromorphic to a Kähler manifold. The non-existence of plurisigned hermitian
metric occurs on non-Kähler Fujiki 3-folds, as we now observe.

Proposition 3.8. Let X be a compact complex 3-fold in the Fujiki class C. Then
X does not admit any plurisigned hermitian metric, unless X is Kähler.

A celebrated example of a non-Kähler 3-fold bimeromorphic to CP
3 has been

provided by Hironaka [Hir60]. This shows that [Eg01, Theorem 6.5] is incorrect.

Proof. This is [Chi14, Theorem 2.3]. We include the proof for the reader’s con-
venience. Let X be a compact complex 3-fold in the Fujiki class C. Let ω be a
pluripositive hermitian metric. There exists a Kähler current on X, i.e. a posi-
tive closed current T of bidegree (1, 1) which dominates a hermitian form. Up to
rescaling, we can assume T ≥ ω.
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Then 0 ≤ ω ∧ ddcω ≤ T ∧ ddcω, hence

0 ≤
∫
X

ω ∧ ddcω ≤
∫
X

T ∧ ddcω = 0,

as follows from Stokes theorem. Thus ω is pluriclosed and it follows from [Chi14,
Theorem 2.2] that X is Kähler. The proof for plurinegative metrics is similar. �

3.4. Locally conformally Kähler manifolds. We observe in this section that
a large class of non-Kähler manifolds admits a plurinegative hermitian metric ω.
This ensures that v−(ω) > 0 when dimC X = 3. We then have a closer look at the
special subfamily of diagonal Hopf 3-folds.

3.4.1. Existence of plurinegative metrics. Recall that a complex manifold (X,ω)
is locally conformally Kähler (lck) if one can find local smooth conformal factors
fj > 0 in an open cover {Uj} of X such that fjω is Kähler in Uj . Thus

dω = −dfj
fj

∧ ω = d(− log fj) ∧ ω

and these glue together into a globally well defined closed 1-form θ such that dω =
θ ∧ ω.

The Lee form θ is unique and defines a conformal invariant, in particular it
vanishes if and only if (a conformal multiple of) the metric ω is Kähler. We refer
the reader to [DO98] for an introduction to lcK geometry, and to [OV11, OV20,
Baz18,OV] for a more recent account.

Definition 3.9. One says that a compact hermitian manifold (X,ω) is locally
conformally Kähler with potential if there exists a smooth positive plurisubharmonic

function ϕ : X̃ → R∗
+ on the universal cover X̃ of X such that π∗ω = ddcϕ

ϕ and
ϕ◦f
ϕ = cf is constant for all deck transformations f .

The manifold (X,ω) is Vaisman if ∇θ = 0, where ∇ denotes the Levi-Civita
connection associated to ω. Vaisman manifolds are lck with potential.

The 1-form θ decomposes as θ = α+α where α is a (1, 0)-form which is ∂-closed
and such that ∂α = −∂α. Thus

dω ∧ dcω = iα ∧ α ∧ ω2 ≥ 0.

When n = dimC X ≥ 3, we observe moreover that this (3, 3)-form is non-zero if
α �= 0, which is the case if X is not Kähler.

Since dω ∧ dcω ≥ 0 does not vanish, we have observed after Theorem 1.9 that
ddcω cannot be positive. We therefore investigate whether ω is plurinegative.

Proposition 3.10. Let (X,ω) be a compact hermitian manifold which is lcK with

potential. Let ϕ : X̃ → R∗
+ be a smooth positive plurisubharmonic function on the

universal cover of X such that π∗ω = ddcϕ
ϕ .

If (X,ω) is Vaisman then ψ = logϕ is plurisubharmonic and for all k ≥ 1

ddcωk = −k(ddcψ)k+1 ≤ 0.

In particular ddcω ≤ 0 and

• v−(X,ω) > 0 if dimC X = 3;
• there is no pluripositive hermitian metric ω̃ on X.

Conversely if ψ = logϕ is plurisubharmonic then (X,ω) is Vaisman.
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The last statement of this proposition is due to Ornea-Verbitsky [OV20, Corol-
lary 2.4].

Proof. Slightly abusing notation we identify ω with the invariant form π∗ω. We set
ψ = logϕ and observe that

ddcψ =
ddcϕ

ϕ
− dϕ ∧ dcϕ

ϕ2
and dψ ∧ dcψ =

dϕ ∧ dcϕ

ϕ2

hence ω = ddcψ + dψ ∧ dcψ. Observe that dψ ∧ dcψ has rank 1, while ω has rank
n, so the rank of ddcψ is at least n− 1.

Since dψ ∧ dcψ has rank 1, we obtain

ωk = (ddcψ)k + k(ddcψ)k−1 ∧ dψ ∧ dcψ

and

(3.1) ddcωk = k(ddcψ)k−1 ∧ ddc(dψ ∧ dcψ) = −k(ddcψ)k+1 ≤ 0

if ψ = logϕ is psh. For k = 1 we obtain ddcω ≤ 0, so it follows from Theorem 3.3
that v−(ω) > 0 when dimC X = 3.

Assume now that ω̃ is a hermitian metric on X such that ddcω̃ ≥ 0. It follows
from Stokes theorem that

0 ≤
∫
X

ddcω̃ ∧ ωn−2 =

∫
X

ω̃ ∧ ddcωn−2 ≤ 0,

hence ω̃ is pluriclosed and −ddcωn−2 = (ddcψ)n−1 ≡ 0. The latter equality implies
that ddcψ has rank ≤ n− 2, a contradiction.

It remains to understand when ψ = logϕ is plurisubharmonic. Recall that
dω = θ ∧ω with θ = −dψ. Set θc := 1

2i (α−α) = −dcψ so that dcω = θc ∧ ω. Thus

β := ddcψ = −dθc = ω − θ ∧ θc

is a real (1, 1)-form whose eigenvalues with respect to ω are 1, with multiplicity
(n− 1), and λ = 1− |θ|2ω, since βn = ωn − nωn−1 ∧ θ ∧ θc =

[
1− |θ|2ω

]
ωn. Thus ψ

is psh if and only if |θ|2ω ≤ 1.
When X is Vaisman then |θ|2ω is constant and there exists a unique conformal

choice of ω such that |θ|2ω ≡ 1 (see [Vai82, Remark p232]). In this case ψ is psh
hence β ≥ 0 and βn ≡ 0. Conversely it follows from (3.1) that

βn = (ddcψ)n = − 1

n− 1
ddcωn−1.

Stokes theorem ensures that
∫
X
βn = 0. Thus either |θ|2ω ≡ 1, then X is Vaisman

and ω is a Gauduchon metric [OV20, Corollary 2.4], or λ changes signs and ψ is
not plurisubharmonic. �

Remark 3.11. The existence of plurinegative metrics on Vaisman manifolds can also
be deduced from the Ornea-Verbitsky Embedding theorem for Vaisman manifolds
[OV10] and Example 3.12 below. More generally, manifolds admitting locally con-
formally Kähler metrics with potential (this class includes Vaisman manifolds too)
can be holomorphically embedded into linear Hopf manifolds [OV10]. Therefore
the problem concerning the existence of plurinegative hermitian metrics on locally
conformally Kähler manifolds with potential is reduced to study linear Hopf mani-
folds (which are Vaisman if and only if the generator of the fundamental group is
diagonalizable, see e.g. [OV, Theorem 16.3]).
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Example 3.12. Let X be a diagonal Hopf manifold X = Cn \ {0}/ ∼, where we
identify z and Az in Cn \ {0}, for some diagonal matrix A = Diag(λ1, . . . , λn) with

entries λj ∈ D∗. We choose αi :=
log 2

2(− log |λi|) and set

ϕ(z) =

n∑
i=1

|zi|2αi , so that ψ = logϕ ∈ PSH(Cn).

Then ϕ ◦ A(z) = 1
2ϕ(z) hence ω(z) := ddcϕ(z)

ϕ(z) = ddcψ(z) + dψ ∧ dcψ(z) defines a

hermitian form on X such that ddcω ≤ 0.

3.4.2. The classical Hopf 3-fold. We consider here X = C3 \ {0}/ ∼, where we
identify z and λz in C

3 \ {0}, for some λ ∈ D
∗ = {ζ ∈ C, 0 < |ζ| < 1}. There is a

natural holomorphic map f : X → P2 with elliptic fibers.
Set η =

∑n
j=1 zjdzj = ∂|z|2. The invariant (1, 1)-form |z|−4iη ∧ η compensates

the lack of positivity of f∗ωFS so that the invariant (1, 1) form

ω = f∗ωFS + |z|−2iη ∧ η =

∑n
j=1 idzj ∧ dzj

|z|2 =
ddcϕ

ϕ

induces a hermitian form on X that we still denote by ω. Since logϕ = log |z| ∈
PSH(C3 \ {0}), it follows from Proposition 3.10 that ddcω ≤ 0.

We would like to test the finiteness of v+(ω). It follows from the proof of Theorem
3.3.1 that there exists C > 0 such that for any u ∈ PSH(X,ω) normalized by
supX u = 0, we have

3

∫
X

(−ddcω) ∧ du ∧ dcu− C ≤
∫
X

(ω + ddcu)3 ≤ 3

∫
X

(−ddcω) ∧ du ∧ dcu+ C.

It is thus tempting to think that one can reach v+(ω) = +∞ by constructing
ω-psh functions whose gradient does not belong to L2. There are several functions
v ∈ PSH(P2, ωFS) whose gradient does not belong to L2; they induce functions

u = v ◦ f ∈ PSH(X, f∗ωFS) ⊂ PSH(X,ω)

with gradient ∇u /∈ L2(X). However dv ◦ f is proportional to η, hence∫
X

(−ddcω) ∧ d(v ◦ f) ∧ dc(v ◦ f) = 0.

One can construct singular ω-psh functions that do not come from P
2 as follows:

the function ρ = log distω(·, p) is psh near p ∈ X and smooth off p. We multiply
it by a cut-off function χ which is identically equal to 1 near p. For ε > 0 small,
the function ϕ = εχρ belong to PSH(X,ω) and it has a logarithmic singularity at
p. However ∇ϕ ∈ L2(X) as the singularity of ϕ is isolated. One could consider
a convergent series of such functions, this would produce examples with a discrete
set of logarithmic singularities (and possibly an uncountable polar set (ϕ = −∞)),
but their global gradient would still belong to L2.

Question 3.13. Does one have v+(ω) < +∞?

We tend to expect a positive answer to this problem, but a negative one would
be quite interesting as well!
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4. Homogeneous examples

We finally study several classes of compact (locally) homogeneous manifolds.

4.1. Complex parallelizable manifolds. LetX be a compact complex manifolds
of dimension n that is complex parallelizable, i.e. such that the holomorphic tangent
bundle T 1,0X is holomorphically trivial. It has been shown by Wang [Wan54]
that X = Γ\G is the quotient of a connected and simply connected complex Lie
group G by a discrete subgroup Γ, and that complex tori (for which G = C

n) are
the only ones that are Kähler. On the other side, they always admits balanced
metrics by [AG86, Proposition 3.1] and they cannot admit pluriclosed metrics, see
[FGV19, page 7110].

Proposition 4.1. A compact complex parallelizable manifold X admits a hermitian
metric ω such that ddcωk ≥ 0 for all k ≥ 1.

In particular, v+(X,ω) < +∞ when dimC X = 3. Moreover X does not admit
any plurinegative hermitian metric unless it is a complex torus.

Complex parallelizable manifolds that arise as quotients of complex semisimple
Lie groups (e.g. compact quotients of SL(2;C) by a lattice) have been studied
in [Yac98]. For a classification of compact complex parallelizable solvmanifolds in
complex dimension 3 as well as a partial classification in dimension 4 and 5, we
refer the reader to [Nak75, Theorem 1 and Section 6].

Proof. By definition there exist ϕ1, . . . , ϕn ∈ H0(X,Ω1
X) holomorphic 1-forms that

are linearly independent at each point. We set

ω :=
n∑

j=1

iϕj ∧ ϕj .

This is a hermitian (1, 1)-form such that

ddcω = i∂∂ω =

n∑
j=1

i2∂∂(ϕj ∧ ϕj).

Since ∂ϕj = 0 and ∂ϕj = 0 we obtain, setting ηj = ∂ϕj ,

ddcω =

n∑
j=1

−i2ηj ∧ ηj ≥ 0.

Recall indeed that if η is a (2, 0)-form then −i2η ∧ η = i4η ∧ η is a weakly positive
(2, 2)-form (that is strongly positive if η = α1 ∧ α2 is decomposable).

For k ≥ 1, we decompose

ωk =
n∑

j1,...,jk=1

iϕj1 ∧ ϕj1 ∧ · · · ∧ iϕjk ∧ ϕjk =
∑

J=(j1,...,jk)

ik
2

αJ ∧ αJ ,

where αJ = ϕj1 ∧ · · · ∧ ϕjk is a holomorphic k-form. Thus

i∂∂ωk =
∑

J=(j1,...,jk)

i1+k2

(−1)kβJ ∧ βJ ,

with βJ = ∂αJ . Since i1+k2

(−1)k = i(k+1)2 , we conclude that ddcωk ≥ 0.
Observe that ddcω �= 0 unless ω is Kähler, in which case X is a complex torus.

It follows therefore from Theorem 3.3 and Theorem 3.5 that v+(X,ω) < +∞ when
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dimC X = 3, and X does not admit a plurinegative hermitian metric unless it is a
torus. �

In dimension higher than 3, the conditions needed to control v+ as in Theorem 2.2
are not trivially satisfied. For example, take the complex parallelizable manifold
of complex dimension n = 4 characterized by a coframe of holomorphic 1-forms
(ϕj)j∈{1,2,3,4}) with structure equations

dϕ1 = dϕ2 = dϕ3 = 0, dϕ4 = −ϕ2 ∧ ϕ3,

see [Nak75, Type IV.2, page 108]. The metric ω =
∑4

j=1

√
−1ϕj ∧ ϕ̄j satisfies:

ddcω =
√
−1ϕ2 ∧ ϕ̄2 ∧

√
−1ϕ3 ∧ ϕ̄3 ≥ 0,

ddcω2 = 2
√
−1ϕ1 ∧ ϕ̄1 ∧

√
−1ϕ2 ∧ ϕ̄2 ∧

√
−1ϕ3 ∧ ϕ̄3 ≥ 0,

but

ddcω2 − εddcω ∧ ω = (2− ε)
√
−1ϕ1 ∧ ϕ̄1 ∧

√
−1ϕ2 ∧ ϕ̄2 ∧

√
−1ϕ3 ∧ ϕ̄3

− ε
√
−1ϕ2 ∧ ϕ̄2 ∧

√
−1ϕ3 ∧ ϕ̄3 ∧

√
−1ϕ4 ∧ ϕ̄4

is never semi-positive for ε > 0.
The following is an example of a complex parallelizable manifold admitting met-

rics with the property of Theorem 2.2: if a lattice can be provided for the Lie group,
then we would get a compact manifold with v+ < ∞.

Example 4.2. Consider the complex parallelizable solvmanifold of complex dimen-
sion n = 4 of type IV.5 in [Nak75, page 108], which is characterized by a coframe
of holomorphic 1-forms with structure equations

dϕ1 = 0, dϕ2 = ϕ1 ∧ ϕ2,

dϕ3 = αϕ1 ∧ ϕ3, dϕ4 = −(1 + α)ϕ1 ∧ ϕ4,

depending on a parameter α ∈ R \ {−1, 0}. It is not known whether it admits
lattices, see [Nak75, page 110]. Consider the left-invariant metric

ω = a1
√
−1ϕ1 ∧ ϕ̄1 + a2

√
−1ϕ2 ∧ ϕ̄2 + a3

√
−1ϕ3 ∧ ϕ̄3 + a4

√
−1ϕ4 ∧ ϕ̄4,

where a1, a2, a3, a4 > 0. A straightforward computation yields

ddcω = a2
√
−1ϕ1 ∧ ϕ̄1 ∧

√
−1ϕ2 ∧ ϕ̄2 + a3|α|2

√
−1ϕ1 ∧ ϕ̄1 ∧

√
−1ϕ3 ∧ ϕ̄3

+ a4|α+ 1|2
√
−1ϕ1 ∧ ϕ̄1 ∧

√
−1ϕ4 ∧ ϕ̄4 ≥ 0,

ddcω2 = 2 a2a3|α+ 1|2
√
−1ϕ1 ∧ ϕ̄1 ∧

√
−1ϕ2 ∧ ϕ̄2 ∧

√
−1ϕ3 ∧ ϕ̄3

+ 2 a2a4|α|2
√
−1ϕ1 ∧ ϕ̄1 ∧

√
−1ϕ2 ∧ ϕ̄2 ∧

√
−1ϕ4 ∧ ϕ̄4

+ 2 a3a4
√
−1ϕ1 ∧ ϕ̄1 ∧

√
−1ϕ3 ∧ ϕ̄3 ∧

√
−1ϕ4 ∧ ϕ̄4 ≥ 0.

Therefore

ddcω2 − εω ∧ ddcω

=
(
−|α|2ε+ 2|α+ 1|2 − ε

)
a2a3

√
−1ϕ1 ∧ ϕ̄1 ∧

√
−1ϕ2 ∧ ϕ̄2 ∧

√
−1ϕ3 ∧ ϕ̄3

+
(
−|α+ 1|2ε+ 2|α|2 − ε

)
a2a4

√
−1ϕ1 ∧ ϕ̄1 ∧

√
−1ϕ2 ∧ ϕ̄2 ∧

√
−1ϕ4 ∧ ϕ̄4

+
(
−|α+ 1|2ε− |α|2ε+ 2

)
a3a4

√
−1ϕ1 ∧ ϕ̄1 ∧

√
−1ϕ3 ∧ ϕ̄3 ∧

√
−1ϕ4 ∧ ϕ̄4.
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Therefore, if we take

0 < ε ≤ min

{
2|α+ 1|2
1 + |α|2 ,

2|α|2
1 + |α+ 1|2 ,

2

|α|2 + |1 + α|2

}
,

we obtain ddcω2 − εω ∧ ddcω ≥ 0.

4.2. Six-dimensional nilmanifolds. In this section, we consider nilmanifolds,
namely, compact quotients Γ\G of connected simply-connected nilpotent Lie groups
G by co-compact discrete subgroups Γ. We recall that a Lie group G is called
nilpotent if its associated Lie algebra g satisfies that the lower central series {gj :=
[g, gj−1]}j∈N, with g0 := g, eventually vanishes. In dimension 6, according to
[Mor58, Mag86], there are only 34 isomorphism classes of nilpotent Lie algebras
over R, and 10 of them are reducible.

We consider left-invariant complex structures on Γ\G, i.e. complex structures
that are induced by complex structures on G being invariant under left-translations.
Equivalently, left-invariant complex structures correspond to linear complex struc-
tures on the corresponding Lie algebra satisfying an integrability condition. Ac-
cording to [Sal01], only 18 of the above 34 nilpotent Lie algebras admit left-invariant
complex structures. We notice that the existence of lattices in nilpotent Lie groups
is well-understood thanks to [Mal45], more precisely it corresponds to having ra-
tional constant structures, a condition that is satisfied in all the above considered
cases.

Among the latter, only four may admit a hermitian metric ω which is pluriclosed,
as shown by Fino-Parton-Salamon in [FPS04]. We show in this section that the
remaining 14 classes all admit a pluripositive hermitian metric, and we also analyze
whether there exists a balanced metric, i.e. a hermitian metric ω such that dω2 = 0.

Left-invariant complex structures on six-dimensional nilmanifolds are gathered
in four families in [ABD11, Uga07, UV14, COUV16], some of them depending on
continuous parameters, up to linear equivalence. These families are described by a
coframe of left-invariant (1, 0)-forms (ϕ1, ϕ2, ϕ3) with structure equations as follows

(we use the short-hands ϕ12̄ := ϕ1 ∧ ϕ̄2, etc.).

(Np): dϕ1 = dϕ2 = 0, dϕ3 = ρϕ12 where ρ ∈ {0, 1}; these are the complex
parallelizable structures [Wan54,Nak75]. The manifold is a compact quo-
tient of a complex Lie group by a discrete subgroup; ρ = 0 corresponds
to the complex torus, while ρ = 1 corresponds to the Iwasawa manifold
[FG86].

(Ni): dϕ1 = dϕ2 = 0, dϕ3 = ρϕ12 + ϕ11̄ + λϕ12̄ + Dϕ22̄ where ρ ∈ {0, 1},
λ ∈ R

≥0, D ∈ C with �D ≥ 0; this class (and the following) contains
nilpotent complex structures: the ascending series {aj(J) := {X ∈ g :
[X, g]+[JX, g] ⊆ aj−1}}j∈N, with a0(J) := 0, eventually equals g. The case
ρ = 0 corresponds to Abelian complex structures, namely, the subalgebra
of left-invariant (1, 0)-vector fields is Abelian.

(Nii): dϕ1 = 0, dϕ2 = ϕ11̄, dϕ3 = ρϕ12 + B ϕ12̄ + c ϕ21̄ where ρ ∈ {0, 1},
B ∈ C, c ∈ R≥0 with (ρ,B, c) �= (0, 0, 0).

(Niii): dϕ1 = 0, dϕ2 = ϕ13 + ϕ13̄, dϕ3 =
√
−1ρϕ11̄ ±

√
−1(ϕ12̄ −ϕ21̄) where

ρ ∈ {0, 1}; this class contains non-nilpotent complex structures.

We refer to [ABD11, Uga07, UV14, COUV16] and [AOUV, Table 1] for more
details on the underlying Lie algebras.
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We can restrict to study left-invariant hermitian structures on Γ\G, namely, her-
mitian structures on G being invariant by the whole action of G by left-translations.
Such structures correspond to linear hermitian structures on the associated Lie alge-
bra. Indeed Belgun Symmetrization Trick [Bel00, Theorem 7] (see also [FG04, The-
orem 2.1]) provides the following.

Lemma 4.3 ([Uga07, Proposition 3.6]). Let Γ\G be a compact quotient of a Lie
group G endowed with a left-invariant complex structure. If it admits a plurisigned
hermitian metric, then it admits a left-invariant plurisigned hermitian metric.

Proof. The case of pluriclosed metrics is [Uga07, Proposition 3.6]. The same argu-
ment applies here; we include a proof for the readers’ convenience.

Since G admits a compact quotient, it is unimodular [Mil76, Lemma 6.2], namely
its left-invariant Haar measure μ is also right-invariant. We consider the sym-
metrization map

μ : ∧• (Γ\G) → ∧•
g
∗,

μ(α)(X1, . . . , Xk) :=

∫
Γ\G

α(m)(X1(m), . . . , Xk(m))μ(m),

where ∧•g∗ is identified with the subspace of left-invariant forms. It is clear that
μ|∧•g∗ = id and that d ◦ μ = μ ◦ d. Since J is left-invariant, we have μ ◦ J = J ◦ μ.
Therefore, there hold also ∂ ◦ μ = μ ◦ ∂ and ∂ ◦ μ = μ ◦ ∂.

In particular, if ω is a hermitian structure, then μ(ω) is a left-invariant (1, 1)-
form. It is straightforward to check that μ(ω) > 0 is still a hermitian structure. We
also have: ∂∂(μ(ω)) = μ(∂∂ω). In particular if ω is pluripositive (resp. plurineg-
ative), then μ(ω) is pluripositive (resp. plurinegative). Indeed, assume that ω is
pluripositive. Then, for any (1, 0)-form η

ddcω ∧
√
−1η ∧ η̄ = c

√
−1ϕ11̄ ∧

√
−1ϕ22̄ ∧

√
−1ϕ33̄

for c ≥ 0. We can restrict to left-invariant (1, 0)-forms η, since positivity is a
pointwise notion. Then, thanks to [AK17, Lemma 2.5], μ(ω) ∧ η = μ(ω ∧ η) =

μ(c)
√
−1ϕ11̄ ∧

√
−1ϕ22̄ ∧

√
−1ϕ33̄ where μ(c) ≥ 0. �

We therefore only consider left-invariant hermitian structures. With respect to
a chosen coframe, it is straighforward to check that they are of the form

2ω =
√
−1r2 ϕ11̄ +

√
−1s2 ϕ22̄ +

√
−1t2 ϕ33̄(4.1)

+ uϕ12̄ − ū ϕ21̄ + v ϕ23̄ − v̄ ϕ32̄ + z ϕ13̄ − z̄ ϕ31̄

where r, s, t ∈ R, u, v, z ∈ C satisfy

r2 > 0, s2 > 0, t2 > 0,

r2s2 > |u|2, r2t2 > |z|2, s2t2 > |v|2,
r2s2t2 + 2�(

√
−1 ūzv̄) > t2|u|2 + r2|v|2 + s2|z|2,

in order for the metric to be positive-definite.
We compute

√
−1∂∂ω for the above families. Note that positivity and strong

positivity are equivalent for (2, 2)-forms in dimension 3 (see [Mic82, p. 279–280]),
and that it is enough to test positivity pairing with left-invariant forms, since it
is a pointwise notion. Recall that, by [BG88,Has89], Kähler metrics do not exist
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on non-tori nilmanifolds (even with complex structures that are possibly non-left-
invariant).

(Np): For complex paralellizable type, ω is always balanced and

√
−1∂∂ω =

1

2
ρ2t2

√
−1ϕ11̄ ∧

√
−1ϕ22̄

is always strongly-positive. More precisely, any left-invariant hermitian
metric on the torus is pluriclosed (in fact, Kähler), and any left-invariant
hermitian metric on the Iwasawa manifold is pluripositive, balanced, non-
pluriclosed. The underlying Lie algebras are respectively h1 and h5, in the
notation of [Sal01], to which we refer for more details.

(Ni): For nilpotent type in Family I, the balanced condition is equivalent to

s2t2 +
(
r2t2 − |z|2

)
D +

(
−
√
−1 t2u+ vz

)
λ− |v|2 = 0

(it is satisfied on h2, h3, h4, h5, h6 for metrics such that r2 = 1, v = z = 0,
and s2 +D =

√
−1 ū λ) and

√
−1∂∂ω =

t2

2

(
λ2 + ρ2 − 2�D

)√
−1ϕ11̄ ∧

√
−1ϕ22̄.

Any hermitian metric is either
• pluripositive non-pluriclosed (when 2�D < λ2+ρ2, which happens on
Lie algebras h2, h3, h4, h5, h6),

• or pluriclosed (when 2�D = λ2 + ρ2, which happens on Lie algebras
h2, h4, h5, h8),

• or plurinegative non-pluriclosed (when 2�D > λ2+ρ2, which happens
on Lie algebras h2, h3, h4, h5).

(Nii): for the complex structures of nilpotent type in Family II, the balanced
condition is never satisfied, and

√
−1∂∂ω =

t2

2

(
c2 + ρ2 + |B|2

)√
−1ϕ11̄ ∧

√
−1ϕ22̄

is always strongly-positive, and never zero. The underlying Lie algebras
are h7, h9, h10, h11, h12, h13, h14, h15, h16.

(Niii): For the complex structures of nilpotent type in Family II, the balanced
condition is equivalent to⎧⎪⎨

⎪⎩
t2�u+ �(zv) = 0√
−1 s2z + uv = 0

ρ = 0

(it is satisfied on h
−
19 for metrics such that u = z = 0) and

√
−1∂∂ω = t2

√
−1ϕ11̄ ∧

√
−1ϕ22̄ + s2

√
−1ϕ11̄ ∧

√
−1ϕ33̄

is always strongly-positive, and never zero. The underlying Lie algebras
are h

−
19, h

+
26.

Compare the above computations with the results in [LUV17, Proposition 2.7],
where the authors study the sign of the Fu-Wang-Wu constant [FWW13] for six-
dimensional nilmanifolds with left-invariant Hermitian structures: the sign of ddcω
determines the sign of the Fu-Wang-Wu constant.

The following statement summarizes the previous discussion, it can be seen as
an extension of [FPS04] to plurisigned metrics.
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Theorem 4.4. Consider a six-dimensional nilmanifold X endowed with a left-
invariant complex structure and assume X is not a complex torus. Then, there is
always a plurisigned metric. More precisely:

• either X belongs to one of the families (Np), (Nii) and (Niii) then any
left-invariant hermitian metric is pluripositive but not pluriclosed.

• or X belongs to (Ni) and depending on the complex structure, every left-
invariant hermitian metric is either pluriclosed, or pluripositive but not
pluriclosed, or else plurinegative but not pluriclosed.

By Corollary 3.7 the latter three conditions are mutually exclusive.

4.3. Higher dimensional nilmanifolds. As noticed in [FPS04], the pluriclosed
condition for left-invariant metrics on six-dimensional nilmanifolds depends only
on the complex structure, and we noticed the same behavior for the plurisigned
condition in Theorem 4.4.

This is no longer true in higher dimension for the pluriclosed condition [EFV12,
Remark 4.1]. More precisely, 8-dimensional nilmanifolds with left-invariant complex
structures admitting pluriclosed metrics are classified into two families in [EFV12,
Section 4]. For the second family, the pluriclosed condition only depends on the
complex structure, while for the first family it also involves the parameters of the
metric. We make a similar observation for the plurisigned condition.

Example 4.5. We consider here the eight-dimensional nilmanifold with left-invari-
ant complex structure characterized by the structure equations

dϕ1 = 0, dϕ2 = 0, dϕ3 = ϕ1 ∧ ϕ̄1 +
1

2
ϕ2 ∧ ϕ̄2, dϕ4 = −ϕ1 ∧ ϕ̄2,

with respect to a left-invariant coframe {ϕ1, ϕ2, ϕ3, ϕ4} of (1, 0)-forms. It belongs to
the first family in the above mentioned classification, more precisely, it corresponds
to parameters B4 = 1, C4 = 1

2 , F5 = −1, the others zero, in the notation of
[EFV12]. We consider a Hermitian metric of the diagonal form

ω =
√
−1 a1ϕ

1 ∧ ϕ̄1 +
√
−1 a2ϕ

2 ∧ ϕ̄2 +
√
−1 a3ϕ

3 ∧ ϕ̄3 +
√
−1 a4ϕ

4 ∧ ϕ̄4,

where a1, a2, a3, a4 > 0. Observe that

ddcω = (−a3 + a4)
√
−1ϕ1 ∧ ϕ̄1 ∧

√
−1ϕ2 ∧ ϕ̄2,

showing that they can be either pluripositive, or pluriclosed, or plurinegative, de-
pending on the value of a3/a4.

Note that this example does not satisfy the condition of Theorem 2.2. Indeed,

ddcω2 − εddcω ∧ ω

= (−εa3(a4 − a3) + 2a3a4)
√
−1ϕ1 ∧ ϕ̄1 ∧

√
−1ϕ2 ∧ ϕ̄2 ∧

√
−1ϕ3 ∧ ϕ̄3

+ (−εa4(a4 − a3)− 2a3a4)
√
−1ϕ1 ∧ ϕ̄1 ∧

√
−1ϕ2 ∧ ϕ̄2 ∧

√
−1ϕ4 ∧ ϕ̄4

is not positive.

We now provide an 8-dimensional example which satisfies the curvature condi-
tions of Theorem 2.2.

Example 4.6. We consider again an example among the eight-dimensional nil-
manifolds in the first family of [EFV12]. More precisely, take parameters B1 = 1,
G3 = 1, the others zero, that is consider the structure equations

dϕ1 = 0, dϕ2 = 0, dϕ3 = ϕ1 ∧ ϕ2, dϕ4 = ϕ2 ∧ ϕ̄1.
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Take the diagonal metric

ω =
√
−1 a1ϕ

1 ∧ ϕ̄1 +
√
−1 a2ϕ

2 ∧ ϕ̄2 +
√
−1 a3ϕ

3 ∧ ϕ̄3 +
√
−1 a4ϕ

4 ∧ ϕ̄4,

where a1, a2, a3, a4 > 0. We compute

ddcω = (a3 + a4)
√
−1ϕ1 ∧ ϕ̄1 ∧

√
−1ϕ2 ∧ ϕ̄2 ≥ 0,

ddcω2 = 2 a3a4
√
−1ϕ1 ∧ ϕ̄1 ∧

√
−1ϕ2 ∧ ϕ̄2 ∧

√
−1ϕ3 ∧ ϕ̄3

+ 2 a3a4
√
−1ϕ1 ∧ ϕ̄1 ∧

√
−1ϕ2 ∧ ϕ̄2 ∧

√
−1ϕ4 ∧ ϕ̄4,

hence

ddcω2 − εddcω ∧ ω

= a3(−εa3 + (2− ε)a4)
√
−1ϕ1 ∧ ϕ̄1 ∧

√
−1ϕ2 ∧ ϕ̄2 ∧

√
−1ϕ3 ∧ ϕ̄3

+ a4((2− ε)a3 − εa4)
√
−1ϕ1 ∧ ϕ̄1 ∧

√
−1ϕ2 ∧ ϕ̄2 ∧

√
−1ϕ4 ∧ ϕ̄4,

which is non-negative for suitable choices of a3, a4, ε (take e.g. a3 = a4 = 1, ε ≤ 1
2 ).

In particular, v+(ω) < +∞.

4.4. Six-dimensional solvmanifolds with trivial canonical bundle. We now
consider solvmanifolds i.e. compact quotients of a connected solvable Lie group by
a closed subgroup of real dimension 6 admitting a left-invariant complex structure
with holomorphically trivial canonical bundle.

According to [FOU15] such complex structures are either nilmanifolds as above
(see [Sal01, Theorem 1.3] and [BDV09, Theorem 2.7]) or belong to one of the classes
below. We fix a coframe {ϕ1, ϕ2, ϕ3} of left-invariant (1, 0)-forms and use the same
notations as in the previous section.

(Si): dϕ1 = Aϕ13 + Aϕ13̄, dϕ2 = −Aϕ23 − Aϕ23̄, dϕ3 = 0, where A =
cos θ +

√
−1 sin θ, θ ∈ [0, π). The complex structures in this family are of

splitting type in the sense of [Kas13, Assumption 1], see [AOUV17].

(Sii): dϕ1 = 0, dϕ2 = − 1
2ϕ

13 −
(
1
2 +

√
−1x

)
ϕ13̄ +

√
−1xϕ31̄, and dϕ3 =

1
2ϕ

12 +
(
1
2 −

√
−1
4x

)
ϕ12̄ +

√
−1
4x ϕ21̄, where x ∈ R>0.

(Siii1): dϕ1 =
√
−1(ϕ13 + ϕ13̄), dϕ2 = −

√
−1(ϕ23 + ϕ23̄), dϕ3 = ±ϕ11̄.

(Siii2): dϕ1 = ϕ13 + ϕ13̄, dϕ2 = −ϕ23 − ϕ23̄, dϕ3 = ϕ12̄ + ϕ21̄.

(Siii3): dϕ1 =
√
−1(ϕ13 + ϕ13̄), dϕ2 = −

√
−1(ϕ23 + ϕ23̄), dϕ3 = ϕ11̄ + ϕ22̄.

(Siii4): dϕ1 =
√
−1(ϕ13+ϕ13̄), dϕ2 = −

√
−1(ϕ23+ϕ23̄), dϕ3 = ±(ϕ11̄−ϕ22̄).

(Siv1): dϕ1 = −ϕ13, dϕ2 = ϕ23, dϕ3 = 0. This case corresponds to the
holomorphically-parallelizable Nakamura manifold [Nak75]. This and the
next two following cases are complex structures of splitting type in the sense
of [Kas13, Assumption 1], see [AOUV17].

(Siv2): dϕ1 = 2
√
−1ϕ13 + ϕ33̄, dϕ2 = −2

√
−1ϕ23 + xϕ33̄, dϕ3 = 0, where

x ∈ {0, 1}.
(Siv3): dϕ1 = Aϕ13 −ϕ13̄, dϕ2 = −Aϕ23 +ϕ23̄, dϕ3 = 0, where A ∈ C with

|A| �= 1.

(Sv): dϕ1 = −ϕ33̄, dϕ2 =
√
−1
2 ϕ12+ 1

2ϕ
13̄−

√
−1
2 ϕ21̄, dϕ3 =

√
−1
2 (−ϕ13+ϕ31̄).

We refer the reader to [Ota14,FOU15] and [AOUV, Table 2] for more details.
Thanks to Lemma 4.3, we can focus our attention to left-invariant hermitian

structures, which are of the form (4.1). We compute
√
−1∂∂ω case by case (Com-

pare [FOU15, Theorem 4.3] which studies the sign of the Fu-Wang-Wu function).
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Si:
√
−1∂∂ω = 2(−1)

(
(�A)2r2ϕ11̄ +

√
−1(�A)2uϕ12̄ −

√
−1(�A)2uϕ21̄ +

(�A)2s2ϕ22̄
)
∧ ϕ33̄. When (cos θ)4 ≥ (sin θ)4, any metric is pluripositive;

otherwise, there are pluripositive metrics (taking |u|2 ≤ cos θ
sin θ r

2s2). When
cos θ = 0, there exist pluriclosed metrics (for u = 0) and Kähler metrics
(for u = v = z = 0, see [Ota14, Theorem 5.1.3]). Plurinegative metrics
never exists, while balanced metrics always exist (when v = z = 0).

Sii:
√
−1∂∂ω =

(
4 t2x2+t2

16 x2

)
(−1)ϕ11̄∧ϕ22̄+

(
s2x2 + 1

4 s
2
)
(−1)ϕ11̄∧ϕ33̄. Any

metric is pluripositive. There is neither pluriclosed metrics, nor plurineg-
ative metrics, nor Kähler metrics. Balanced metrics always exist (take
u = v = z = 0).

Siii1:
√
−1∂∂ω = 2

(√
−1u

√
−1ϕ12̄−

√
−1u

√
−1ϕ21̄

)
∧
√
−1ϕ33̄. There exist

pluriclosed metrics (take u = 0), but neither Kähler metrics nor balanced
metrics.

Siii2:
√
−1∂∂ω = t2(−1)ϕ11̄∧ϕ22̄+2 r2(−1)ϕ11̄∧ϕ33̄+2 s2(−1)ϕ22̄∧ϕ33̄. Ev-

ery metric is pluripositive. There is neither pluriclosed, nor plurinegative,
nor Kähler metrics. Balanced metrics exist (take u ∈ R and v = z = 0).

Siii3:
√
−1∂∂ω = −t2(−1)ϕ11̄ ∧ϕ22̄ +2(−1)

√
−1

(
uϕ12̄ − uϕ21̄

)
∧ϕ33̄. There

are neither pluripositive, nor pluriclosed metrics. There exists plurinegative
metrics (take u = 0), but neither Kähler nor balanced metrics.

Siii4:
√
−1∂∂ω = t2(−1)ϕ11̄ ∧ ϕ22̄ + 2(−1)

(√
−1uϕ12̄ −

√
−1uϕ21̄

)
∧ ϕ33̄.

Pluriclosed metrics and plurinegative metrics never exist. There are pluri-
positive metrics (take u = 0), but no Kähler metrics. There are balanced
metrics (characterized by parameters r2 = s2, v = z = 0).

Siv1:
√
−1∂∂ω = (−1)

2

(
r2ϕ11̄ +

√
−1uϕ12̄ −

√
−1uϕ21̄ + s2ϕ22̄

)
∧ ϕ33̄. Ev-

ery metric is pluripositive, there are neither pluriclosed nor plurinegative
metrics. There is no Kähler metric, and every metric is balanced.

Siv2:
√
−1∂∂ω = 2(−1)

(
r2ϕ11̄ +

√
−1uϕ12̄ −

√
−1uϕ21̄ + s2ϕ22̄

)
∧ ϕ33̄. Ev-

ery metric is pluripositive, there are neither pluriclosed nor plurinegative
metrics. There are no Kähler metrics and no balanced metrics.

Siv3:
√
−1∂∂ω = (−1)

2

(
|A−1|2r2ϕ11̄+

√
−1 |A+1|2uϕ12̄−

√
−1 |A+1|2uϕ21̄+

|A − 1|2s2ϕ22̄
)
∧ ϕ33̄. There are pluripositive metrics: when �A ≤ 0, any

metric is pluripositive; when �A > 0, pluripositive metrics are character-

ized by |u|2 ≤
∣∣∣A−1
A+1

∣∣∣4 r2s2. There are neither pluriclosed nor plurinegative,

nor Kähler metrics. Balanced metrics always exist (take v = z = 0).

Sv:
√
−1∂∂ω = (−1)

2 ϕ11̄∧
(√

−1 vϕ23̄−
√
−1 vϕ32̄+ 1

4 s
2ϕ33̄

)
. There are pluri-

positive metrics (take v = 0). There are neither pluriclosed, nor plurinega-
tive, nor Kähler, nor balanced metrics.

Notice that it is no longer true that the plurisigned property of left-invariant
metrics is completely determined by the complex structure.

We summarize the previous dicussion in the following:

Theorem 4.7. Let X be a non-Kähler six-dimensional solvmanifold endowed with a
left-invariant complex structure with holomorphically-trivial canonical bundle. Then
X admits a plurisigned hermitian metric. More precisely:

• either X belongs to the class (Siii1) and there are pluriclosed metrics;
• or X belongs to (Siii3) and there are plurinegative non-pluriclosed metrics;
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• or else X belongs to any of the remaining classes, and it admits a left-
invariant pluripositive hermitian metric that is not pluriclosed.

Recall that these three conditions are mutually exclusive by Corollary 3.7. The
only Kähler example in the above list corresponds to a special Lie algebra G =
A0,0,1

5,17 ⊕ R of splitting type (see [FOU15, Theorem 2.18]).

Remark 4.8. If a hermitian metric is both balanced and pluriclosed, then it is
Kähler [AI01, Remark 1]. It is conjectured [FV15, Problem 3] that a compact
complex manifold admitting both pluriclosed metrics and balanced metrics also
admits Kähler metrics. The conjecture is confirmed for the above nilmanifolds and
solvmanifolds by [FV15, Theorem 6.3 and Theorem 6.4]. We notice that these facts
fail when replacing pluriclosed with plurisigned: the Iwasawa manifold does not
admit any Kähler metric [FG86, BG88, Has89], but every left-invariant hermitian
metric on it is both balanced and pluripositive.
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[Chi16] Ionuţ Chiose, The Kähler rank of compact complex manifolds, J. Geom. Anal. 26
(2016), no. 1, 603–615, DOI 10.1007/s12220-015-9564-z. MR3441529

[Chi16b] I. Chiose, On the invariance of the total Monge-Ampère volume of hermitian metrics,
Preprint, arXiv:1609.05945.

[CGZ13] Dan Coman, Vincent Guedj, and Ahmed Zeriahi, Extension of plurisubharmonic
functions with growth control, J. Reine Angew. Math. 676 (2013), 33–49, DOI
10.1515/crelle.2011.185. MR3028754

[Dem92] Jean-Pierre Demailly, Regularization of closed positive currents and intersection the-
ory, J. Algebraic Geom. 1 (1992), no. 3, 361–409. MR1158622

[Dem] Jean-Pierre Demailly, Analytic methods in algebraic geometry, Surveys of Modern
Mathematics, vol. 1, International Press, Somerville, MA; Higher Education Press,
Beijing, 2012. MR2978333

[DP04] Jean-Pierre Demailly and Mihai Paun, Numerical characterization of the Kähler cone
of a compact Kähler manifold, Ann. of Math. (2) 159 (2004), no. 3, 1247–1274, DOI
10.4007/annals.2004.159.1247. MR2113021
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of solutions to complex Monge-Ampère equations on compact Hermitian manifolds
(English, with English and French summaries), Ann. Inst. Fourier (Grenoble) 71
(2021), no. 5, 2019–2045, DOI 10.5802/aif.3436. MR4398254
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