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Introduction

The goal of this lecture is to study the Dirichlet problem in bounded
domains of Cn for the complex Monge-Ampère operator. If Ω ⊂⊂ Cn is
such a domain and Φ : Ω → R are continuous boundary values, the goal
is to find a plurisubharmonic function u : Ω → R solution of the following
nonlinear PDE with prescribed boundary values,

DirMA(Ω,Φ) :=
{

(ddcu)n = 0 in Ω
u|∂Ω = Φ

and to study regularity properties of u in terms of those of Φ. Here d = ∂+∂
and dc = 1

2iπ (∂ − ∂) are real operators so that

(ddcu)n = cdet
(

∂2u

∂zj∂zk

)
dV,

when u ∈ C2(Ω), for some normalizing constant c > 0 and dV denotes the
Lebesgue volume form in Cn.

The complex Monge-Ampère operator (ddcu)n still makes sense when u is
poorly regular, as we shall explain in section 4.1. The property ”u|∂Ω = Φ”
has to be understood as

lim
Ω3z→ζ

u(z) = Φ(ζ), for all ζ ∈ ∂Ω.

Whether it holds depends both on the continuity properties of Φ and on
the geometry of ∂Ω. We shall usually assume Ω is smooth and strictly
pseudoconvex, a notion recalled in 2.1.

Nota Bene. These notes are written by Vincent Guedj and Ahmed Zeriahi
after the lecture delivered by Ahmed Zeriahi in Marseille, march 2009. There
is no claim for any originality, all the material presented here being quite
classical. As the audience consisted of non specialists, we have tried to make
these lecture notes accessible with only few prerequisites.

1. The classical Dirichlet problem in C

In dimension one, the Monge-Ampère operator coincides with the Lapla-
cian. It is thus much easier to study. We briefly recall here how to solve
the Dirichlet problem in this case, first in the unit disk by using the Poisson
representation formula -a tool not available in higher dimension-, then in
general bounded domains of C using the method of barriers which can be
adapted in higher dimension.
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1.1. Unit disk. We study here DirMA(D,Φ) where D = {ζ ∈ C / |ζ| < 1}
is the unit disk. It admits a unique solution uΦ which can be expressed by
averaging against the Poisson kernel.

Proposition 1.1. Assume Φ ∈ C0(∂D). Then

uΦ(z) :=
∫ 1

0

1− |z|2

|z − e2iπθ|2
Φ(e2iπθ)dθ

is the unique solution to DirMA(D,Φ). It is harmonic (hence real-analytic)
in D and continuous up to the boundary.

Proof. Observe that the Poisson kernel is the real part of a holomorphic
function in D,

1− |z|2

|z − e2iπθ|2
= <

(
e2iπθ − z
z − e2iπθ

)
.

This shows that uΦ is harmonic in D, as an average of harmonic functions.
We now establish the continuity up to the boundary. Fix ζ = e2iπθ0 ∈ ∂D

and ε > 0. Since Φ is assumed to be continuous at ζ, we can find δ > 0 such
that |Φ(e2iπθ)− Φ(ζ)| < ε/2 whenever |e2iπθ − ζ| < δ. Observing that∫ 1

0

1− |z|2

|z − e2iπθ|2
dθ ≡ 1,

we infer

|uΦ(z)− Φ(ζ)| ≤ ε/2 + 2M
∫
|e2iπθ−ζ|≥δ

1− |z|2

|z − e2iπθ|2
dθ,

where M = supS1 |Φ|. Note that |z − e2iπθ| ≥ δ/2 if z is close enough to ζ
and |e2iπθ − ζ| ≥ δ. The latter integral is therefore bounded from above by
4(1− |z|2)/δ2 hence converges to zero as z approaches the unit circle. �

It is clear from the proof above that one can control the modulus of
continuity of uΦ on D in terms of that of Φ. For instance if Φ is hölder
continuous, then so is uΦ. Let us denote by

Lipα(K) := {u : K → R / ∃C > 0, ∀x, y ∈ K, |u(x)− u(y)| ≤ C|x− y|α}

the set of α-Hölder continuous functions on a Borel set K, 0 < α ≤ 1.

Exercise 1.2.
1) Show that Φ ∈ Lipα(∂D)⇒ uΦ ∈ Lipα(D) when 0 < α < 1.
2) By considering Φ(e2iπθ) = | sin θ|, show that the result does not hold

with α = 1.

Beware that the exercise is trickier than it perhaps seems at first glance:
following the proof of the previous proposition, you should be able to obtain
uΦ ∈ Lipβ(D) with β = α/(α + 2). Proving that uΦ is actually α-Hölder is
slightly more subtle, give it a try !

The fact that the class Lip1 does not behave well for the Dirichlet problem
is a classical fact in the study of elliptic PDE’s. Note that one can similarly
show (see [GT83]) that

Φ ∈ Ck,α(∂D)⇒ uΦ ∈ Ck,α(D)
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for all k ∈ N and 0 < α < 1. In particular

Φ ∈ C∞(∂D)⇒ uΦ ∈ C∞(D).

We will soon see that this is far from being true in higher dimension.

1.2. Perron envelopes. We now consider DirMA(Ω,Φ), the Dirichlet prob-
lem corresponding to a bounded domain Ω ⊂⊂ C. Here Φ : ∂Ω → R is a
fixed continuous function on the boundary of Ω.

It follows from the maximum principle for harmonic functions that if a
solution exists, it is unique. More generally if u, v are subharmonic functions
on Ω such that ∆u ≤ ∆v in the weak sense of measures on Ω and (u−v)∗ ≥ 0
on ∂Ω (i.e. u ≥ v on ∂Ω), then u ≥ v in Ω. Indeed, v−u is subharmonic on
Ω and (v−u)∗ ≤ 0 on ∂Ω, so that v−u ≤ 0 in Ω by the maximum principle
for subharmonic functions.

This shows that if u is the solution of the Dirichlet problem DirMA(Ω,Φ),
then any ”subsolution” v ∈ SH(Ω) such that v∗ ≤ Φ on ∂Ω satisfies v ≤ u
on Ω. Therefore

uΦ := sup{v / v ∈ SH(Ω), v∗ ≤ Φ on ∂Ω} ≤ u.
Oberve that u itself is a subsolution so that actually u = uΦ. In other
words, if the Dirichlet problem DirMA(Ω,Φ) admits a solution, then it is
the ”Perron envelope” uΦ defined above [Per23].

One can easily show, by ”balayage” (using a max construction together
with solutions of the Dirichlet problem in small disks) that uΦ is harmonic
in Ω. The problem is therefore reduced to checking whether uΦ has the right
boundary values. This depends on the geometry of ∂Ω.

Definition 1.3. A barrier at the point ζ0 ∈ ∂Ω is a subharmonic function
b ∈ SH(Ω) such that b(ζ0) = 0 and b∗ < 0 in Ω \ {ζ0}.

The interest in this notion lies in the following

Lemma 1.4. If there exists a barrier at a boundary point ζ0 ∈ ∂Ω, then

lim
z→ζ0

uΦ(z) = Φ(ζ0).

Proof. Fix ε > 0. Since Φ is continuous we can find δ > 0 such that

Φ(ζ0)− ε ≤ Φ(ζ) ≤ Φ(ζ0) + ε for ζ ∈ ∂Ω with |ζ − ζ0| ≤ δ.
Since b∗ < 0 on the compact subset ∂Ω \ D(ζ0, δ), it follows from upper

semi-continuity of b∗ that for A > 1 large enough, Ab∗ + Φ(ζ0) − ε ≤ Φ on
∂Ω. Thus Ab+ Φ(ζ0)− ε is a subsolution, hence

Ab(z) + Φ(ζ0)− ε ≤ uΦ(z), ∀z ∈ Ω.

Letting z → ζ0 and then ε→ 0 shows that Φ(ζ0) ≤ lim infz→ζ0 uΦ(z).
Consider now the Dirichlet problem DirMA(Ω,−Φ). It follows from the

maximum principle that uΦ + u−Φ ≤ 0 in Ω, hence uΦ ≤ −u−Φ. Previous
reasoning thus yields

Φ(ζ0) ≥ −(−Φ(ζ0)) ≥ − lim inf
z→ζ0

u−Φ(z) ≥ lim sup
z→ζ0

uΦ(z),

hence finally limz→ζ0 u(z) = Φ(ζ0). �
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Constructing barriers is thus the final step towards a solution of the
Dirichlet problem. It turns out that they always exist when the bound-
ary ∂Ω is Lipschitz. Note that some hypothesis on ∂Ω has to be made: the
problem DirMA(D∗,Φ) has no solution when Ω = D∗ is the unit disk minus
the origin and Φ is zero on the unit circle and 1 at the origin: in this case
uΦ is the constant function zero, hence it does not have the right boundary
value at the origin.

2. Maximal plurisubharmonic functions

We now start to consider similar questions in higher dimension. Observe
that some further constraints have to be put either on the geometry of ∂Ω
or on the behavior of the boundary values Φ: if f(D) ⊂ ∂Ω is a holomor-
phic disk (image of the unit disk by a holomorphic map) lying within the
boundary, then Φ has to be subharmonic along f(D) if the Dirichlet problem
DirMA(Ω,Φ) ever has a solution. In order to avoid difficulties related to such
questions, we restrict ourselves to considering smooth strictly pseudoconvex
domains Ω.

2.1. Strictly pseudoconvex domains. Although it makes sense to study
the Dirichlet problem for the complex Monge-Ampère operator on a general
domain Ω ⊂ Cn, we will restrict ourselves and consider only domains that
are bounded, with smooth boundary and such that the latter has a certain
convexity property:

Definition 2.1. A bounded domain Ω b Cn is strictly pseudoconvex
if there exists a smooth strictly plurisubharmonic function ρ on some open
neighborhood Ω′ of Ω such that Ω := {z ∈ Ω′ / ρ(z) < 0}.

A classical result asserts that a bounded domain is strictly pseudoconvex if
and only if it is locally biholomorphic to a strictly convex domain. Slightly
more general are weakly pseudoconvex domains and hyperconvex domains.
The former coincide with domains of holomorphy (this is the famous Levi
problem), while the latter are still defined as {ρ < 0} but for a function that
is only weakly (i.e. not necessarily strictly) plurisubharmonic.

There do exist some interesting results concerning the Dirichlet problem
on these more general domains, as well as on non pseudoconvex ones (see
e.g. [Sad82], [Bl00], [Guan02]). These are technically more involved and
beyond the scope of this lecture.

2.2. Perron-Bremermann envelope. Following the one variable solution
to the Dirichlet problem, it is natural to consider

uΦ := sup{v / v ∈ B(Ω,Φ)}

where

B(Ω,Φ) := {v ∈ PSH(Ω); v∗(ζ) := lim sup
z→ζ

v(z) ≤ Φ(ζ), ∀ζ ∈ ∂Ω},

is the family of subsolutions for the boundary data Φ.
The function uΦ is called the Perron-Bremermann envelope associated to

the boundary data Φ. Bremermann [Bre59] has shown that the function uΦ
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is a plurisubharmonic function in Ω with boundary values Φ, Walsh [Wa68]
further showed that uΦ is continuous in Ω:

Theorem 2.2. Let Ω ⊂ Cn be a smoothly bounded strictly pseudoconvex sub-
set of Cn. The upper envelope uΦ is a continuous plurisubharmonic function
on Ω with boundary values Φ i.e.

lim
z→ζ

uΦ(z) = Φ(ζ) for all ζ ∈ ∂Ω.

Proof. Let ρ be a stricly plurisubharmonic defining function of Ω = {ρ < 0}.
Observe that the family B(Ω,Φ) is not empty: for A >> 1 large enough,
the function A(ρ − 1) is one of its members (recall that Φ is continuous
hence bounded from below on ∂Ω). Note also that B(Ω,Φ) is locally uni-
formly bounded from above in Ω: the constant function sup Φ dominates all
members of B(Ω,Φ).

It follows that the upper semi-continuous regularization UΦ := u∗Φ is
plurisubharmonic in Ω. We are going to prove that UΦ has boundary values
Φ. This will imply that UΦ ∈ B(Ω,Φ), so that uΦ = UΦ in Ω.

As in one variable, we plan to construct a plurisubharmonic barrier func-
tion at each point ζ ∈ ∂Ω. Since ρ is strictly plurisubharmonic in a neigh-
borhood of Ω, we can choose A > 1 large enough so that the function
b0 := Aρ(z) − |z − ζ0|2 is a plurisubharmonic barrier at the point ζ0 i.e.
b0 is plurisubharmonic in Ω, continuous up to the boundary and such that
b0(ζ0) = 0 with b0 < 0 in the complement Ω \ {ζ0}.

Fix ε > 0 and take η > 0 such that Φ(ζ0) − ε ≤ Φ(ζ) for ζ ∈ ∂Ω and
|ζ − ζ0| ≤ η. Choose C > 1 big enough so that Cb0 + Φ(ζ0)− ε ≤ Φ on ∂Ω.
This implies that the function v(z) := Cb0 + Φ(ζ0)− ε is plurisubharmonic
in a neighborhood of Ω and such that v ≤ Φ on ∂Ω. Thus we have v ≤ uΦ

on Ω, which implies that Φ(ζ0)− ε ≤ lim infz→ζ0 uΦ(z). We infer

(2.1) lim inf
z→ζ

UΦ(z) ≥ lim inf
z→ζ

uΦ(z) ≥ Φ(ζ)

for all ζ ∈ ∂Ω.
In the same way, we can construct a plurisubharmonic subsolution w

for the boundary data −Φ such that limz→ζ0 w(z) = −Φ(ζ0) − ε. By the
maximum principle, for any v ∈ B(Ω,Φ), we have v + w ≤ 0 in Ω, hence
uΦ +w ≤ 0 on Ω. By upper regularization we infer UΦ +w ≤ 0 in Ω, which
implies

lim sup
z→ζ0

UΦ(z) ≤ − lim inf
z→ζ0

w(z) = Φ(ζ0) + ε.

Therefore we have proved that

(2.2) lim sup
z→ζ

UΦ(z) ≤ Φ(ζ),∀ζ ∈ ∂Ω.

This shows that UΦ ∈ B(Ω,Φ) hence UΦ ≤ uΦ in Ω so that UΦ ≡ uΦ.
Inequalities (2.1), (2.2) show that the envelope uΦ has boundary values Φ.

It remains to prove that u = uΦ is lower semi-continuous in Ω. Fix ε > 0.
Since ∂Ω is compact, we can choose η > 0 so small that

(2.3) z ∈ Ω, ζ ∈ ∂Ω, |z − ζ| ≤ η =⇒ |u(z)− Φ(ζ)| ≤ ε.
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Fix a ∈ Cn with ||a|| < η and set Ω̃ := Ω− a. Then u(ζ + a) ≤ Φ(ζ) + ε

if ζ ∈ Ω̃ ∩ ∂Ω and u∗(z + a) ≤ Φ(z + a) + ε ≤ u(z) + 2ε if z ∈ Ω ∩ ∂Ω̃. It
follows that the function

v(z) :=
{

sup{u(z), u(z + a)} for z ∈ Ω ∩ Ω̃
u(z) for z ∈ Ω \ Ω̃

is plurisubharmonic in Ω and satisfies the condition v∗ ≤ Φ on ∂Ω. Therefore
v ≤ uΦ = u in Ω, in particular

u(z + a)− 2ε ≤ u(z) for z ∈ Ω and a ∈ Cn, ||a|| < η.

This shows that u = uΦ is lower semi-continuous in Ω. �

2.3. Maximal plurisubharmonic functions. Recall that harmonic func-
tions are ”above” sub-harmonic ones. This property actually characterizes
harmonicity and was illustrated in section 1 by the fact that we could recover
the harmonic solution to the Dirichlet problem as an upper envelope.

It is therefore natural to consider, among all plurisubharmonic functions,
those which are maximal, a notion introduced by A.Sadullaev [Sad81].

Definition 2.3. A plurisubharmonic function u : Ω −→ [−∞,+∞[ is said
to be maximal in Ω if for any plurisubharmonic function v defined on a
subdomain D b Ω, v ≤ u on ∂D implies v ≤ u in D.

Of course a pluriharmonic function is maximal (and smooth, as it is locally
the real part of holomorphic function). However, in contrast to the one
variable case, maximal plurisubharmonic functions need not be continuous:
any (discontinuous) subharmonic function in the unit disk D gives rise to
a maximal plurisubharmonic in D2 when considered as a function of two
complex variables. This is a particular case of the following criterion of
maximality.

Lemma 2.4. Let u : Ω −→ [−∞,+∞[ be a plurisubharmonic function in
Ω. If for any z0 ∈ Ω there is a complex curve Z ⊂ Ω containing z0 such that
u|Z is harmonic on Z ∩ Ω, then u is maximal in Ω.

We leave the easy proof as an exercise. One may wonder whether maxi-
mality can always be explained by the existence of ”harmonic disks”. This
is indeed true if the function is regular enough (by Theorem 4.6 below and
Frobenius theorem), however there are less regular maximal psh functions
with no harmonic disk: this is the topic of the lecture by Dujardin [DG09].

As one can guess, the Perron-Bremermann envelope is maximal:

Proposition 2.5. Let Ω b Cn be a bounded stricly pseudoconvex domain
in Cn and Φ ∈ C0(∂Ω) a continuous function on ∂Ω. Then uΦ is the unique
maximal plurisubharmonic function on Ω with boundary values Φ.

Proof. We first show that uΦ is maximal on Ω. Let v be a plurisubharmonic
function in some subdomain D b Ω such that v ≤ uΦ on ∂D. Then the
function

w :=
{

sup{uΦ, v} in D
uΦ in Ω \D

is plurisubharmonic in Ω and satisfies w∗ ≤ Φ on ∂Ω. Therefore w ≤ uΦ in
Ω hence v ≤ w ≤ uΦ in D, which proves our claim.



DIRICHLET PROBLEM FOR THE COMPLEX MONGE-AMPÈRE OPERATOR 7

We now prove uniqueness. Let v a maximal plurisubharmonic function in
Ω such that limz→ζ v(z) = Φ(ζ) for any ζ ∈ ∂Ω. It follows that v ≤ uΦ in Ω
while for any fixed ε > 0, the set {v + ε < uΦ} b Ω is relatively compact in
Ω. Let D b Ω be any domain such that {v + ε < uΦ} b D. Then v + ε is a
maximal plurisubharmonic function satisfying v+ ε ≥ uΦ on ∂D. Therefore
v + ε ≥ uΦ in D. Letting ε decrease to zero and D increase to Ω we infer
uΦ ≤ v in Ω. �

In dimension one the upper envelope uΦ is harmonic on Ω, hence it is
smooth and satisfies the partial differential equation ∆uΦ = 0 on Ω. It
is natural to wonder whether a similar result holds in higher dimension
as well. We study the regularity question in the next section. The PDE
characterization is postponed to the last section.

3. Regularity of Perron-Bremermann envelopes

In this section we study the propagation of regularity from Φ to uΦ. We
start by explaining the fundamental result of Bedford and Taylor [BT76],
following a simplified proof due to Demailly [Dem93]. We then list various
results, open questions and examples that illustrate some of the difficulties
encountered with DirMA(Ω,Φ) when n ≥ 2.

3.1. Unit ball. Our goal here is to prove the following result due to Bedford
and Taylor [BT76].

Theorem 3.1. Let B denote the unit ball in Cn.
If Φ ∈ C1,1(∂B,R) then uΦ is a C1,1-function in B.

Recall that a function f : M −→ R defined on a smooth real submanifold
is C1,1 if f is differentiable and df is a Lipschitz 1-form on M . Observe
that a C1,1-function has locally bounded second order derivatives almost
everywhere.

Proof. We will show in Proposition 3.3 below that u = uΦ is Lipschitz
continuous up to the boundary. We focus here on the second order estimates.
By Lemma 3.2 below, it suffices to prove that for any z ∈ Ω and h ∈ Cn

with |h| << 1 we have

u(z + h) + u(z − h)− 2u(z) ≤ C2||h||2.

The idea is to study the boundary behavior of the plurisubharmonic func-
tion z 7−→ 1

2(u(z + h) + u(z − h)) in order to compare it with the function
u in Ω. This does not make sense since the translations do not preserve
the boundary. We are instead going to move point z by automorphisms of
the unit ball: the group of holomorphic automorphisms of the latter acts
transitively on it and this is the main reason why we prove this result for
the unit ball rather than for a general strictly pseudoconvex domain (which
has generically few such automorphisms).

Fix a point a ∈ B \ {0} and consider the mapping

Fa(z) :=
Pa(z)− a+ (1− ‖a‖2)1/2(z − Pa(z))

1− 〈z, a〉
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where Pa(z) := ‖a‖−2〈z, a〉a is the orthogonal projection on the complex
line C · a. Here 〈z, a〉 =

∑n
i=1 ziai denotes the hermitian scalar product of z

and a. We let the reader check that Fa is an holomorphic automorphism of
the unit ball B which sends a to the origin. The interested reader will find
further information on these automorphisms in [Ru80].

An elementary computation yields

Fa(z) =
z − a+O(|a|2)

1− 〈z, a〉
= z − a+ 〈z, a〉z +O(‖a‖2) = z − h+O(‖a‖2),

where h := a− 〈z, a〉z and O(‖a‖2) is uniform with respect to z ∈ B.
Observe that the mapping a 7→ h is a local diffeomorphism in a neighbor-

hood of the origin as long as ||z|| < 1. An easy computation shows that the
inverse map h 7→ a has norm ≤ (1− ||z||2)−1.

Consider the function v(z) := u◦Fa(z)+u◦F−a(z). It is plurisubharmonic
in B and has boundary values equal to

g(z) := Φ(Fa(z)) + Φ(F−a(z))

since Fa preserves ∂B. We can extend Φ as a C1,1-smooth function so that
Φ(F±a(z)) ≤ Φ(z ∓ h) + C1‖a‖2 and

Φ(z + h) + Φ(z − h)− 2Φ(z) ≤ A‖h‖2

whenever z ∈ B and ‖h‖ ≤ δ. Altogether this yields

g(z) ≤ Φ(z + h) + Φ(z − h) + 2C1‖a‖2 ≤ 2Φ(z) +A‖h‖2 + 2C1‖a‖2

for z ∈ ∂B. We infer v(z) ≤ 2u(z) + C2‖h‖2 when z ∈ B, for some constant
C2 > 0, which proves the required estimates. �

Let us stress that we haven’t proved that uΦ is C1,1 up to the boundary of
the unit ball. This would require further regularity of the boundary values
(see paragraph 3.3.2). In other words the constant C2 in the proof above
depends on dist(z, ∂B).

It remains to prove the following criterion.

Lemma 3.2. Let u be a plurisubharmonic function in a domain Ω b Cn.
Assume that there exists constants A, δ > 0 such that

u(z + h) + u(z − h)− 2u(z) ≤ A‖h‖2, ∀0 < ‖h‖ < δ

and for all z ∈ Ω,dist(z, ∂Ω) > δ. Then u is C1,1-smooth and its second
derivatives, which exist almost everywhere, satisfy ‖D2u‖L∞(Ω) ≤ A.

Moreover the Monge-Ampère measure (ddcu)n is absolutely continuous
wrt the Lebesgue measure dV in Ω, with

(ddcu)n = cn det
(

∂2u

∂zj∂z̄k

)
dV.

Proof. Let uε := u ? ρε denote the standard regularization of u defined in
Ωε := {z ∈ Ω / dist(z, ∂Ω) > ε} for 0 < ε << 1. Fix δ > 0 small enough and
0 < ε < δ/2. Then for ‖h‖ < δ/2, we have

uε(z + h) + u(z − h)− 2uε(z) ≤ A‖h‖2.
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It follows from Taylor’s formula that if z ∈ Ωδ,

d2

dt2
uε(z + th)|t=0 = lim

t→0+

uε(z + th) + u(z − th)− 2uε(z)
t2

,

therefore D2uε(z).h2 ≤ A‖h‖2 for all z ∈ Ωε and h ∈ Cn. Now for z ∈ Ωε,

D2uε(z).h2 =
n∑

j,k=1

(
∂2uε
∂zj∂zk

hjhk + 2
∂2uε
∂zj∂z̄k

hj h̄k +
∂2uε
∂z̄j∂z̄k

h̄j h̄k

)
.

Recall that uε is plurisubharmonic in Ωε, hence

D2uε(z).h2 +D2uε(z).[ih]2 =
n∑

j,k=1

4
∂2uε
∂zj∂z̄k

hj h̄k ≥ 0.

The above upper-bound therefore also yields a lower-bound,

D2uε(z).h2 ≥ −D2uε(z).[ih]2 ≥ −A‖h‖2,
for any z ∈ Ωε and h ∈ Cn. This implies that ‖D2uε(z)‖L∞(Ωε) ≤ A.

We have thus shown that Duε is uniformly Lipschitz in Ωε. We infer
that Du is Lipschitz in Ω and Duε → Du uniformly on compact subsets of
Ω. Since the dual of L1 is L∞, it follows from the Alaoglu-Banach theorem
that, up to extracting a subsequence, there exists a bounded function V
such that D2uε → V weakly in L∞. Now D2uε → D2u in the sense of
distributions hence V = D2u. Therefore u is C1,1-smooth in Ω, its second
order derivatives exist almost everywhere with ‖D2u(z)‖L∞ ≤ A.

Recall that if f ∈ Lnloc(Ω) then fε := f ? ρε → f in Lnloc(Ω). In particular

∂2uε
∂zj∂z̄k

−→ ∂2u

∂zj∂z̄k
in Lnloc(Ω) ⊃ L∞(Ω).

Using generalized Hölder’s inequality, we infer det
(

∂2uε
∂zj∂z̄k

)
→ det

(
∂2u

∂zj∂z̄k

)
in L1

loc(Ω). On the other hand (ddcuε)n → (ddcu)n in the weak sense of

measures, since uε decreases to u, thus (ddcu)n = cndet
(

∂2u
∂zj∂z̄k

)
dV . �

3.2. Strictly pseudoconvex domains. We now consider the more general
case of a smoothly bounded strictly pseudoconvex domain Ω ⊂ Cn.

We show here that the upper envelope uΦ is Lipschitz up to the boundary
as soon as the boundary value Φ is C1,1.

Proposition 3.3. Let Ω ⊂ Cn be a smoothly bounded strictly pseudoconvex
set. If Φ ∈ C1,1(∂Ω,R) then the envelope uΦ is Lipschitz continuous on Ω.

Proof. Let ρ be a smooth defining function of Ω which is strictly psh in a
neighborhood Ω′ of Ω.

We can find a C1,1-extension F of Φ with compact support in Cn such
that ‖F‖C1,1(Cn) ≤ C‖Φ‖C1,1(∂Ω). Replacing F by F +Aρ, with A >> 1, we
can further assume that F is plurisubharmonic in a neighborhood Ω′ of Ω.

Applying the same process to the boundary data −Φ we choose a C1,1 psh
function G in Ω′ such that G = −Φ on ∂Ω. Observe that F is a subsolution
while the function −G is a supersolution, hence F ≤ u ≤ −G in Ω.

Since F ≤ u in Ω, the envelope u can be extended as a psh function in
Ω′ by setting u = F in Ω′ \ Ω. Fix δ > 0 so small that z + h ∈ Ω′ whenever
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z ∈ Ω and ‖h‖ < δ. Fix h ∈ Cn such that ‖h‖ < δ. Recall that F and G are
Lipschitz, thus

|F (z + h)− F (z)| ≤ C1‖h‖ and |G(z + h)−G(z)| ≤ C1‖h‖
for any z ∈ Ω.

Observe that the function v(z) := u(z + h) − C1‖h‖ is well defined and
psh in the open set Ω. If z ∈ ∂Ω and z ∈ Ωh (i.e. z + h ∈ Ω), then

v(z) = u(z + h)− C1‖h‖ ≤ −G(z + h)− C1‖h‖ ≤ −G(z) = Φ(z) = u(z).

This shows that the function w defined by

w(z) :=
{

max{v(z), u(z)} if z ∈ Ω ∩ Ωh

w(z) := u(z) if z ∈ Ω \ Ωh

is plurisubharmonic in Ω. Since w ≤ Φ on ∂Ω we get w ≤ u in Ω, hence
v ≤ u in Ω. We have thus shown that

u(z + h)− u(z) ≤ C1‖h‖
whenever z ∈ Ω ∩ Ωh, ‖h‖ ≤ δ and z ∈ Ωh. Replacing h by −h shows that
|u(z + h)− u(z)| ≤ C1‖h‖, which proves that u is Lipschitz on Ω. �

The C1,1-regularity in Ω of uΦ has been established by Krylov [Kry89] by
a probabilistic approach based on controlled diffusion process, as advocated
by Gaveau [Gav77]. We refer the reader to the notes by F.Delarue [Del09]
for an introduction to this point of view.

3.3. Further results and counterexamples.

3.3.1. No more than C1,1. It is tempting to think that the envelope uΦ is
C∞-smooth when so is Φ, as it is the case in dimension one. This fails
when n ≥ 2. The following example of Gamelin and Sibony shows that the
envelope uΦ is not better than C1,1 even if Φ is real analytic.

Example 3.4. Let B ⊂ C2 be the open unit ball. For (z, w) ∈ ∂B, set

Φ(z, w) := (|z|2 − 1/2)2 = (|w|2 − 1/2)2.

Observe that Φ is real-analytic on ∂B. We claim that

uΦ(z, w) = max{ψ(z), ψ(w)}, (z, w) ∈ B,
where

ψ(z) :=
(
max{0, |z|2 − 1/2}

)2
, z ∈ C.

Indeed denote by u the right hand side of the above formula. It has the right
boundary values so we simply have to check that it is maximal. Now observe
that if (z, w) ∈ B then either |z|2 < 1/2 or |w|2 < 1/2. In each case u
depends only on one variable hence it is maximal. Therefore u = uΦ and
the reader will easily check that it is not C2-smooth.

It is perhaps worth mentioning that in the non degenerate case, the unique
solution of the Dirichlet problem MA(u) = dV (=volume form) with smooth
boundary values Φ is smooth, as was established by Cafarelli, Kohn, Niren-
berg and Spruck [CKNS85]. On the other hand when the domain is merely
weakly pseudoconvex, the regularity theory breaks down dramatically as
shown in [Co97], [Li04].
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3.3.2. Regularity up to the boundary. Looking carefully at the proof of The-
orem 3.1, the reader will convince himself that the C1,1-norm of uΦ does not
blow up faster than 1/dist(·, ∂Ω)2 as one approaches the boundary.

It is expected that uΦ is C1,1-smooth up to the boundary when Φ ∈
C3,1(∂Ω). This has been established by Cafarelli, Nirenberg and Spruck
[CNS86] for the real homogeneous Monge-Ampère equation. The complex
case seems to be still open.

The following example (adaptation of an example in [CNS86]) shows that
there is a necessary loss in the regularity up to the boundary:

Example 3.5. Consider u(z, w) = (1 + <(w))2α, where 0 < α < 1. This
is a plurisubharmonic function in the unit ball B ⊂ C2 which is smooth and
maximal, continuous up to the boundary B, hence it coincides with uΦ for
the boundary values

Φ(z, w) = (1 + <(w))2α ∈ Lip4α(∂B)

The only problematic point is of course (0,−1) ∈ ∂B.
Observe that u = uΦ is only in Lip2α(B): this can be seen by a radial

approach to the boundary point (0,−1), while the tangential (boundary) ap-
proach allows to gain a factor 2.

3.3.3. Hölder regularity. Let Ω be a smoothly bounded strictly pseudocon-
vex domain in Cn. We have given above the proof due to Bedford and Taylor
[BT76] that uΦ is Lipschitz on Ω whenever Φ is C1,1-smooth. In the same
vein, these authors have shown that uΦ ∈ Lipβ(Ω) is Hölder continuous on
Ω with exponent

β =
{

1+α
2 if Φ ∈ C1,α(∂Ω), 0 ≤ α ≤ 1
α
2 if Φ ∈ Lipα(∂Ω), 0 ≤ α ≤ 1

When Ω is merely weakly pseudoconvex, a similar result holds with a
weaker exponent β when Ω is of ”finite type” [Co97]. It has been moreover
proved by Coman that this propagation of Hölder regularity characterizes
finite type domains (see also [Li04]).

4. Dirichlet problem in domains of Cn

In this section we apply Bedford-Taylor’s result to show that the Perron-
Bremermann envelope uΦ solves the Dirichlet problem DirMA(Ω,Φ). Since
uΦ is not very regular, this requires to first extend the definition of the
complex Monge-Ampère operator.

4.1. Domain of definition of MA. Let ϕ ∈ PSH(Ω) be a plurisubhar-
monic function. When ϕ is smooth, the Monge-Ampère measure MA(ϕ) is
absolutely continuous with respect to the euclidean Lebesgue measure dV ,

MA(ϕ) = (ddcϕ)n := cdet
(

∂2ϕ

∂zj∂zk

)
dV,

for some normalizing constant c > 0. We would like to extend the definition
of this operator and apply it to non smooth functions ϕ.

It is known that one can not define the Monge-Ampère measure MA(ϕ)
for any such function: Kiselman gives in [Kis83] an elementary example of a
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function ϕ ∈ PSH(B) which is smooth but along some hyperplane H, hence
MA(ϕ) is well defined in B \H but it has locally infinite mass near H.

Following Bedford and Taylor [BT82], we say that ϕ belongs to the domain
of definition of the complex Monge-Ampère operator in Ω (ϕ ∈ DomMA(Ω))
if for every x ∈ Ω and for every sequence ϕj of smooth and psh functions
decreasing to ϕ in a neighborhood Vx of x, the sequence of positive measures
MA(ϕj) converges, in the weak sense of Radon measures, to a measure µϕ
independent of the sequence (ϕj). One then sets MA(ϕ) := µϕ.

Although this definition may seem cumbersome, this is precisely the way
one usually computes derivatives in the sense of distributions. It is more-
over motivated by the following result established by Bedford and Taylor in
[BT82].

Theorem 4.1. PSH ∩ L∞loc(Ω) ⊂ DomMA(Ω).

Thus the complex Monge-Ampère operator is well defined for psh func-
tions that are locally bounded, which is what we basically needs here since
uΦ is continuous. It follows straightforwardly from the definition that the
operator MA is continuous along decreasing sequences.

More involved is the continuity along increasing sequences which was also
established by Bedford and Taylor in [BT82]. Note however that MA is
discontinuous along non monotonic sequences. We propose one example as
an exercise for the reader.

Exercise 4.2. Set ϕj(z, w) = 1
2j log[1 + |zj + wj |2].

1) Verify that the functions ϕj are smooth, psh, with MA(ϕj) = 0 in C2.
2) Show that (ϕj) converges in L1

loc(C2) towards

ϕ(z, w) = log max(1, |z|, |w|) ∈ PSH ∩ L∞loc(C2)

and verify that MA(ϕ) is the Lebesgue measure on the real torus S1 × S1.

When n = 2, it was observed by Bedford and Taylor in [BT78] that one
can define MA(ϕ) as soon as ∇ϕ ∈ L2

loc(Ω). In this case dϕ ∧ dcϕ is well
defined hence so is the current ϕddcϕ (by integration by parts) and one can
thus set

MA(ϕ) := ddc(ϕddcϕ)
where the derivatives are taken in the sense of distributions (currents). It
turns out in this case that if ϕj is smooth, psh, and decreases to ϕ, then ϕj
converges to ϕ in the Sobolev norm W 1,2

loc . It was recently shown by Blocki
[Bl04] that one can not make sense of MA(ϕ) when n = 2 and∇ϕ /∈ L2

loc(Ω).
This is in sharp contrast with the real Monge-Ampère operator which is well
defined for all convex functions (which are more regular !).

4.2. The comparison principle. The comparison principle is one the
most effective tool in pluripotential theory. It is a non linear version of
the classical maximum principle. The central result, again due to Bedford
and Taylor [BT87] is the following:

Theorem 4.3. Let u, v be locally bounded psh functions in a domain Ω ⊂
Cn. Then

1{u>v}(dd
c max{u, v})n = 1{u>v}(dd

cu)n,
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in the sense of Borel measures in Ω.

Proof. Set D := {u > v}. Observe that if u is continuous then the set D is
an open subset of Ω and max{u, v} = u in D. Therefore we have

(ddc max{u, v})n = (ddcu)n,

weakly in the open set D, as desired.
The general case proceeds by approximation: one can approximate u

from above by a decreasing sequence of psh continuous functions (by local
convolutions) and it suffices to establish fine convergence results in order to
pass to the limit. These convergence results are of course the hard technical
part of the argument and will not be reproduced here. Let us simply mention
that the key properties for these to hold is that u is quasicontinuous, i.e.
it coincides with a continuous function on a set of arbitrary large size with
respect to the Monge-Ampère measures involved. �

We derive from this identity two corollaries which are often called ”max-
imum principle” in the literature.

Corollary 4.4. Let Ω b Cn be a bounded domain and let u, v be locally
bounded psh functions such that lim infz→∂Ω(u(z)− v(z)) ≥ 0. Then∫

{u<v}
(ddcv)n ≤

∫
{u<v}

(ddcu)n.

Proof. Since {u − ε < v} ↗ {u < v} as ε ↘ 0, we can assume that
lim infz→∂Ω(u(z)− v(z)) > ε > 0. We can thus fix a compact subset K ⊂ Ω
such that u(z)− v(z) > ε on Ω \K. Therefore max{u, v} = u on Ω \K.

We infer the following ”mass conservation property”,∫
Ω

(ddc max{u, v})n =
∫

Ω
(ddcu)n.

Indeed set w := max{u, v} and observe that (ddcw)n − (ddcu)n = ddcS
weakly in the sense of currents on Ω, where S := w(ddcw)n−1−u(ddcu)n−1.
Since w = u on Ω \ K, it follows that S = 0 in the open set Ω \ K thus
the support of the current ddcS is contained in K. Taking a smooth test
function χ on Ω such that χ ≡ 1 in a neighborhood of K, we conclude that∫

Ω dd
cS =

∫
Ω χdd

cS =
∫

Ω S ∧ dd
cχ = 0, since ddcχ = 0 on the support of

current S.
The mass conservation property together with Theorem 4.3 yields∫

{u<v}
(ddcv)n =

∫
{u<v}

(ddc max{u, v})n

=
∫

Ω
(ddc max{u, v})n −

∫
{u≥v}

ddc max{u, v})n

≤
∫

Ω
(ddcu)n −

∫
{u>v}

(ddc max{u, v})n

=
∫

Ω
(ddcu)n −

∫
{u>v}

(ddcu)n =
∫
{u≤v}

(ddcu)n.

We have thus shown that
∫
{u<v}(dd

cv)n ≤
∫
{u≤v}(dd

cu)n. Replacing u by
u− ε and letting ε decrease to zero yields the desired inequality. �
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Corollary 4.5. Let u, v be locally bounded psh functions in a bounded do-
main Ω ⊂ Cn such that lim infz→∂Ω(u(z)− v(z)) ≥ 0. Then

(ddcu)n ≤ (ddcv)n =⇒ v ≤ u in Ω.

Proof. Define for ε > 0, vε := v + ερ, where ρ(z) := ||z||2 − R2 is chosen so
that ρ < 0 in Ω. Observe that {u < vε} ⊂ {u < v} b Ω. It follows therefore
from the previous corollary that∫

{u<vε}
(ddcvε)n ≤

∫
{u<vε}

(ddcu)n.

Since (ddcvε)n ≥ (ddcv)n+εn(ddcρ)n > (ddcu)n, we infer
∫
{u<vε}(dd

cρ)n = 0.
This means that the sets {u < vε} all have Lebesgue measure zero, ε > 0.
Since {u < v} =

⋃
j≥1{u < v1/j}, it follows that the set {u < v} also has

Lebesgue measure 0 so that v ≤ u in Ω by the submean value inequality. �

4.3. Characterization of maximal plurisubharmonic functions.

Theorem 4.6. A function u ∈ PSH ∩ L∞loc(Ω) is maximal if and only
if MA(u) = 0. In particular the Perron-Bremermann envelope uΦ satis-
fies MA(uΦ) = 0 hence it is the unique solution to the Dirichlet problem
DirMA(Ω,Φ).

Proof. If (ddcu)n = 0 on Ω, it follows from the comparison principle that u
is a maximal plurisubharmonic function on Ω.

Conversely assume that u is maximal on Ω and let B b Ω be an euclidean
ball. Let Φ be the restriction of u to the boundary ∂B. Since u is maximal,
it coincides with the Perron-Bremmerman envelope u = uΦ with respect to
the domain B.

Let (Φj) be a decreasing sequence of C2-smooth functions on ∂B which
converges to Φ on the boundary ∂B. We let the reader check that uj := uΦj

decreases to u = uΦ. By Bedford-Taylor’s result, uj is C1,1(B), hence it
satisfies (ddcuj)n = 0 on B by Lemma 4.7 below. Since the Monge-Ampère
operator is continuous along decreasing sequences we infer (ddcu)n = 0 in
B. Since B was arbitrary this yields (ddcu)n = 0 in all of Ω. �

It remains to check that regular maximal functions have zero Monge-
Ampère measure.

Lemma 4.7. Let u : Ω −→ R be a maximal plurisubharmonic function. If
u is C1,1-smooth then MA(u) = 0.

Proof. It follows from Lemma 3.2 that u admits second derivatives at al-
most every point and that its Monge-Ampère measure MA(u) is absolutely
continuous with respect to Lebesgue measure, with density defined almost
everywhere by det

(
∂2u

∂zj∂z̄k

)
. We are going to show that the latter is zero

whenever defined.
The second order Taylor expansion of u at z0 gives,

u(z0 + h) = <P (h) +
∑
j,k

∂2u

∂zj∂z̄k
(z0)hj h̄k + o(‖h‖2),
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where

P (h) := u(z0) + 2
∑
j

∂u

∂zj
(z0)hj +

∑
j,k

∂2u

∂zj∂zk
(z0)hjhk.

Assume that det
(

∂2u
∂zj∂z̄k

(z0)
)
> 0. Then there exists c > 0 and r > 0 small

enough such that for ‖h‖ = r, we have u(z0 +h) = <P (h)+ c‖h‖2 > <P (h).
Therefore the function v(z) := <P (z0 + z) is a plurisubharmonic function
such that v(z0) = u(z0) and v(z) < u(z) on the boundary of the ball B(z0, r),
which contradicts the fact that u is maximal on Ω. �

Remark 4.8. One can similarly show that a psh function Φ which belongs to
the domain of definition of the complex Monge-Ampère operator is maximal
if and only if MA(Φ) = 0 [Bl04].
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