Contrôle de Modèles et algorithmes stochastiques 1 et 2

Durée 2h00

Les documents (autres que les notes de cours), les calculatrices et les téléphones portables sont interdits. Le barème est approximatif.

Exercice 1 (Approximation récursive de la CV@R) (12 points)

Soit X une variable aléatoire intégrable quantifiant la perte de valeur d'un portefeuille entre un temps t et un temps $t+\Delta_t$. On appelle alors "Value At Risk" et on note $V@R_{\alpha}(X)$ la quantité définie par :

$$V@R_{\alpha}(X) = \inf\{t \in \mathbb{R}, \mathbb{P}(X \le t) \ge \alpha\}.$$

Il s'agit donc du quantile d'ordre α associé à la variable X (α est dans la pratique proche de 1 : 95 %, 99 %,...). On suppose dans la suite que X est une variable aléatoire intégrable admettant une densité f_X continue et strictement positive sur \mathbb{R} .

On définit alors la "Conditional Value At Risk" associée à $V@R_{\alpha}(X)$ par :

$$CV@R_{\alpha}(X) = \mathbb{E}[X|X \geq V@R_{\alpha}(X)].$$

 $V@R_{\alpha}(X)$ et $CV@R_{\alpha}(X)$ sont des indicateurs pour évaluer le risque du marché. On les appelle mesures de risque. On désire dans cet exercice de construire un algorithme pour approcher simultanément V@R et CV@R.

Partie 1.

- 1. Donner une interprétation (rapide) de la V@R et de la CV@R.
- 2. On pose $f(\theta) = \mathbb{E}[(X \theta)_+] = \mathbb{E}[\max(X \theta, 0)]$. Montrer que pour tout $\theta \in \mathbb{R}, h \geq 0$,

$$f(\theta + h) - f(\theta) = -h\mathbb{P}(X > \theta + h) - \mathbb{E}[(X - \theta)1_{\{\theta < X < \theta + h\}}].$$

En déduire que f est dérivable sur \mathbb{R} et que $f'(\theta) = -\mathbb{P}(X > \theta)$.

3. On pose

$$\psi(\theta) = \theta + \frac{1}{1 - \alpha} \mathbb{E}[(X - \theta)_{+}].$$

Montrer que ψ est de classe \mathcal{C}^2 sur \mathbb{R} et donner ψ' et ψ'' .

4. Montrer que

$$\frac{\psi(\theta)}{\theta} \to \begin{cases} -\frac{\alpha}{1-\alpha} & \text{lorsque } \theta \to -\infty \\ 1 & \text{lorsque } \theta \to +\infty. \end{cases}$$

- 5. Montrer que ψ est strictement convexe et admet un unique minimum θ^* . Montrer que $\theta^* = V@R_{\alpha}(X)$.
- 6. Montrer que $\psi(\theta^*) = CV@R_{\alpha}$.

Partie 2.

1. On considère l'algorithme stochastique $(\theta_n)_{n>0}$ défini par

$$\theta_{n+1} = \theta_n - \frac{1}{n+1} \left(1 - \frac{1}{1-\alpha} \mathbf{1}_{\{X_{n+1} > \theta_n\}} \right)$$

où (X_n) est une suite de variables aléatoires i.i.d. de même loi que X. Ecrire l'algorithme sous la forme $\theta_{n+1} = \theta_n - \gamma_{n+1} h(X_n) + \gamma_{n+1} \Delta M_{n+1}$ en précisant γ_{n+1} , h et ΔM_{n+1} (On pourra vérifier que $h = \psi'$).

2. Montrer que $\theta_n \to \theta^*$ p.s (On pourra utiliser la fonction ψ comme fonction de Lyapounov).

3. On note $(X_k)_{k\geq 1}$ une suite de variables aléatoires i.i.d. de même loi que X et on définit C_n par

$$C_n = \frac{1}{n} \sum_{k=1}^n v(\theta_{k-1}, X_k)$$
 où $v(\theta, y) = \theta + \frac{1}{1 - \alpha} (y - \theta)_+.$

En utilisant la loi des grands nombres, montrer que (C_n) converge p.s. vers $CV@R_{\alpha}(X)$ (On pourra admettre que la fonction $x \mapsto \max(x,0)$ est Lipschitzienne).

Exercice 2 (Modèle d'Ehrenfest perturbé) (8 points (+ 1,5 points pour la question Bonus))

On considère la variante suivante du modèle d'Ehrenfest. Soit 0 . On répartit initialement <math>2N boules dans deux urnes A et B. À chaque pas de temps, on choisit de façon équiprobable une boule parmi les 2N. Une fois la boule choisie, on la change d'urne avec probabilité p, et avec probabilité 1-p on la laisse dans l'urne dans laquelle elle se trouvait. Pour tout $n \ge 0$ on note X_n le nombre de boules dans l'urne A à l'étape n.

Notons que le modèle d'Ehrenfest classique s'obtient comme cas particulier pour p = 1.

- 1. Donner la matrice de transition Q_p de la chaîne de Markov $(X_n)_{n\geq 0}$.
- 2. Montrer que la chaîne $(X_n)_n$ est irréductible pour tout 0 .
- 3. Montrer que la chaîne $(X_n)_n$ est apériodique si 0 .
- 4. Montrer que la matrice de transition Q_p est réversible par rapport à une mesure de probabilité que l'on précisera.
- 5. Montrer que, pour n'importe quelle loi initiale $\mathcal{L}(X_0)$, la chaîne $(X_n)_n$ converge en loi quand $n \to \infty$. Donner la loi limite μ .
- 6. Pour k, m = 0, ..., 2N, on note $T_m = \inf\{n \ge 1 : X_n = m\}$ et $t_k(m) = \mathbb{E}_k(T_m)$. Donner $t_m(m)$ pour m = 0, ..., 2N. Déterminer ensuite une relation de récurrence reliant $t_k(m), t_{k-1}(m)$ et $t_{k+1}(m)$, pour $1 \le k < m-1$. Traiter aussi les cas k = 0 et k = m-1.

N.B. Il ne vous est pas demandé de résoudre les relations de récurrence obtenues.

7. Soit $\beta_p = 1 - \frac{p}{N}$. Montrer que pour tout $n \ge 0$ on a

$$\mathbb{E}(X_n) = N + (\mathbb{E}(X_0) - N)\beta_n^n.$$

8. (Bonus) On admettra le fait que β_p est la deuxième plus grande valeur propre de Q_p en valeur absolue, i.e. $\beta_p = \max\{|\lambda| : \lambda \in \operatorname{Sp}(Q_p), \ \lambda < 1\}$. Montrer que la chaîne $(X_n)_n$ converge en loi vers μ à vitesse exponentielle, dans le sens où pour tout $n \geq 0$:

$$d_{VT}(\mathcal{L}(X_n), \mu) \leq C\beta_n^n$$

où d_{VT} dénote la distance en variation totale et $C = C(\mu, \mathcal{L}(X_0))$ est une constante, dépendant de μ et de $\mathcal{L}(X_0)$, qu'il faudra préciser.

Rappel: Si ν et μ sont deux mesures de probabilité sur un espace fini E, alors

$$d_{VT}(\nu,\mu) = \frac{1}{2} \sum_{j \in E} |\nu_j - \mu_j|.$$