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Abstract. We study localised activity patterns in neural field equations posed on the Euclidean
plane; such models are commonly used to describe the coarse-grained activity of large ensembles of
cortical neurons in a spatially continuous way. We employ matrix-free Newton-Krylov solvers and
perform numerical continuation of localised patterns directly on the integral form of the equation.
This opens up the possibility to study systems whose synaptic kernel does not lead to an equivalent
PDE formulation. We present a numerical bifurcation study of localised states and show that the
proposed models support patterns of activity with varying spatial extent through the mechanism of
homoclinic snaking. The regular organisation of these patterns is due to spatial interactions at a
specific scale associated with the separation of excitation peaks in the chosen connectivity function.
The results presented form a basis for the general study of localised cortical activity with inputs and,
more specifically, for investigating the localised spread of orientation selective activity that has been
observed in the primary visual cortex with local visual input.
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furcation
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1. Introduction. One of the most challenging research questions in neuroscience
is understanding the relationship between spatially-structured cortical states and the
underlying neural circuitry that supports them. A popular approach for analysing
coarse-grained activity of large ensembles of neurons in the cortex is to model corti-
cal space as a continuum. Since the pioneering work of Wilson and Cowan [59, 60]
and Amari [1,2], continuous neural field models have become a popular and effective
tool in neuroscience. In such models, the large-scale activity of spatially-extended
networks of neurons is described in terms of nonlinear integro-differential equations,
whose associated integral kernels represent the spatial distribution of neuronal synap-
tic connections. The canonical Wilson-Cowan-Amari neural field equation [2, 60]

∂

∂t
u(r, t) = −u(r, t) +

∫
Ω

w(r, r′)S
(
u(r′, t)

)
dm(r′) (1.1)

describes the evolution of the average membrane voltage potential of a neuronal pop-
ulation u(r, t), at a position r ∈ Ω on the cortex and time t. The nonlinear function
S represents the neural firing rate, whereas the connectivity function w(r, r′) models
how a population of neurons at position r on the cortex interacts with a population
at position r′. Frequently-used firing rate functions S include the Heaviside step
function, piecewise-linear functions or smooth sigmoidal functions. Various choices
are also possible for the connectivity function, which is often assumed to be transla-
tion invariant (that is, dependent on the Euclidean distance ‖r − r′‖) and localised
in space. The cortical domain Ω is usually a subset of Rd, with d = 1 or, in more
realistic models, d = 2. For a recent review on neural fields modeling, we refer to
Bressloff [8].

Unlike spiking neural network models, continuous field models have the advan-
tage that analytic techniques for partial differential equations (PDEs) can be adapted
to study the formation of patterns and their dependence upon control parameters.
Various types of coherent structures have been observed in neural field models, rang-
ing from spatially and temporally periodic patterns to travelling waves and spiral
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waves [19, 27, 43]. Neural field equations have also successfully been used to model a
wide range of neurobiological phenomena such as visual hallucinations [9, 28], mech-
anisms for short term memory [45] and feature selectivity in the visual cortex [6,35].

A common strategy to derive analytical and numerical results for the nonlo-
cal Eq. (1.1) is to assume translation invariance and exploit the freedom in the choice
of the connectivity function w: if the Fourier Transform of w is a rational function, it
is possible to derive a PDE formulation that is equivalent to the integral model [43].
Coherent structures supported by the original model can then be conveniently con-
structed and analyzed in the PDE framework. Indeed, previous studies have been
carried out in cases where the synaptic kernel led to an equivalent PDE formula-
tion [44, 45]. To the best of the author’s knowledge, there has been no attempt to
propose efficient path-following methods for general connectivity functions w. This
paper is motivated by the desire to develop numerical algorithms for Eq. (1.1) without
relying on an equivalent PDE formulation. More precisely, we discuss how to solve
Eq. (1.1) when Ω = R2, S is a smooth function of sigmoidal type and w has a generic
Fourier Transform.

The main tools for our investigation are time simulation and numerical continu-
ation. When a PDE model is available, we use standard techniques for both tasks, in
line with what is typically done in several other works in this field [42–44]. However
we show that, when the integral of Eq. (1.1) can be written as a convolution, it is
convenient to employ a fast Fourier transform (FFT) for both time stepping and nu-
merical continuation. Direct numerical simulations of Eq. (1.1) using FFTs have been
performed before on full integral models [23, 31]. In the present paper, we combine
FFTs with Newton-Krylov solvers [39,40], thus opening up the possibility to perform
numerical continuation directly on the integral model.

We concentrate our effort on the emergence and bifurcation structure of stationary
localised patterns in planar neural field models of the form Eq. (1.1). Indeed, this
type of solutions is of great interest in models of prefrontal cortex, where localised
states are believed to characterise working memory, that is, the ability to remember
information over a time-scale of a few seconds: experiments on primates [18, 32, 49]
reveal that when the animal recalls some aspects of an object or event, then spatially-
localised regions of neurons with high activity form in the prefrontal cortex. Recently,
localised regions of activity have been observed in the cat primary visual cortex [17]
when the animal is presented with localised-oriented input. Moreover, some reported
drug-induced visual hallucinations have also been found to be spatially localised [55]
indicating the existence of spatially localised regions of activity in the human primary
visual cortex.

Localised states have been observed in a wide variety of nonlinear media [41]. The
bifurcation structure of localised solutions has been studied extensively in the Swift–
Hohenberg equation posed on the real line [11, 12, 16, 25, 61] and on the plane [3, 5,
37,46–48,53]. In this context, a well-known mechanism for the formation of localised
states is homoclinic snaking : solutions with one or more bumps at the core emerge
from the trivial homogeneous state and undergo a series of saddle-node bifurcations,
giving rise to a hierarchy of states with an increasing number of bumps. This sce-
nario seems to be a common footprint of localised patterns, extending far beyond the
prototypical Swift–Hohenberg equation [36, 54] and have also been found in nonlocal
equations such as neural fields [21,33,44,45].

An example of homoclinic snaking is given in Fig. 1.1, where we show a bifurcation
diagram for the integral model (1.1) posed on the real line with

w(x, x′) := w(|x− x′|) = e−b|x−x
′|(b sin |x− x′|+ cos(x− x′)), (1.2)

S(u) =
1

1 + e−µu+θ
− 1

1 + eθ
, (1.3)

where b and µ control the decay of the synaptic kernel and the slope of the sigmoidal
firing rate respectively, while θ is a threshold value. As µ varies, the trivial steady
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Fig. 1.1. Bifurcation diagram showing snaking behavior for the 1D neural field equation us-
ing Eqs. (1.2)–(1.3) with θ = 3.5 and b = 0.4, where stable (unstable) branch segments are rep-
resented with solid (dashed) lines. Two branches of solutions bifurcate from the trivial states at
a Reversible Hopf bifurcation RH, namely a branch of periodic solutions (grey) and a branch of
localised solutions (black). The periodic branch is stable above the fold Lp. The localised branch
undergoes a series of fold bifurcations giving rise to stable branch segments with increasing numbers
of bumps. Several examples of solutions are shown in the insets (a)–(d). Stable localised states exist
for µ ∈ [µ1, µ2].

state u = 0 bifurcates at a subcritical Reversible Hopf bifurcation, from which a
branch of periodic solutions and a branch of localised states originate. Beyond the
fold Lp on the periodic branch, a stable periodic state, shown in the inset (a), coexists
with the trivial state. The branch of localised states features solutions with an odd
number of bumps and snakes for µ ∈ [µ1, µ2]; in this interval, localised solutions
with different spatial extent coexist and are stable (see insets (b)–(d)). We note the
existence of a counterpart even-numbered-bump solution branch along with so-called
ladder branches connecting the odd and even branches (not shown). For the same
connectivity function used here, snaking has been shown to occur in terms of the
parameter b [45]. Elsewhere, Elvin et al. [26] used the Hamiltonian structure of the
steady states of the model (1.1) with (1.2)–(1.3) and developed numerical techniques
to find homoclinic orbits of the system. Snaking has also been shown to occur with a
Mexican-hat connectivity function [21] and for a wizard-hat connectivity function [33].
In the latter study, normal form theory for a Reversible Hopf bifurcation was applied
to prove the existence of localised solutions and a comprehensive parameter study was
carried out with numerical continuation in terms of two parameters controlling the
nonlinearity and a third controlling the shape of the connectivity function.

For the neural field equation posed on the Euclidean plane, various types of
spatially localised two-dimensional states have been found including radially sym-
metric solutions [10, 29, 31, 44, 45, 56, 58], rings [23, 52], hexagonal patches [29, 44]
along with more complex breathing and travelling states [22, 30, 52]. When working
in the Euclidean plane, it is still possible to derive an equivalent PDE for suitable
choices of the connectivity function w or of its Fourier transform ŵ [44]. Following
this approach, normal form theory has recently been applied to prove the existence
of localised solution branches in both the Euclidean plane and on the Hyperbolic
disk with a wizard-hat connectivity function [29]. When these solutions were path-
followed using numerical continuation, it was found that the branches do not undergo
snaking-type behaviour. However, for the connectivity (1.2), snaking was shown to
occur for branches of radially-symmetric solutions [44]. Furthermore, the existence of
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Fig. 1.2. Steady states of the integral model (1.1) posed on the plane, with radially-symmetric
connectivity function and sigmoidal firing rate function given by Eq. (1.2); in all simulations θ = 5.6,
b = 0.4. (a)–(c): Convergence of a small bump of activity, given by Eq. (A.1), to a spot solution
with µ = 3.4; time as indicated in panels. (d)–(f): Convergence of a hexagonal pattern, given by
Eq. (A.2), to a stable D6-symmetric localised state with µ = 3.2. (g)–(i) With the same initial
condition as (d), divergence away from a localised state to a periodic state with µ = 3.4.

D6-symmetric and D3-symmetric localised states were found at isolated parameter
values.

In Fig. 1.2 we show time simulations of the nonlocal Eq. (1.1) posed on the plane,
with radially-symmetric connectivity function

w(r, r′) := w(‖r− r′‖) = e−b‖r−r′‖(b sin ‖r− r′‖+ cos ‖r− r′‖), (1.4)

and sigmoidal firing rate function given by Eq. (1.3); various combination of initial
conditions and control parameters lead to three different steady states. We note that
this models supports localised states, such as the radially-symmetric spot of panel
(c) or the hexagon of panel (f). Furthermore, changes in the slope of the sigmoidal
firing rate affect the stability properties of the solutions, leading to other localised
states or to domain-covering patterns such as the one in panel (i). In the present
paper we will focus on localised planar patterns (with various symmetry properties)
that coexist with the trivial state u = 0 and fully periodic states, similarly to what is
shown in Fig. 1.1 for the 1D case.

A key result of the present paper is that homoclinic snaking occurs in planar
neural field models for non-radial patterns and that the choice of the connectivity
function has a considerable impact on the snaking structure, as well as on the stability
properties and the selection of the localised states. In two spatial dimensions, periodic
and localised solution branches bifurcate from the trivial state at a Turing instability
(as opposed to a Reversible Hopf in 1D) and snake irregularly, in a similar fashion to
what is found for the planar Swift–Hohenberg equation [47].

The outline of the paper is as follows. In Sec. 2, we present the different models
that we study, and then, in Sec. 3, we describe the numerical methods that are used to
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Fig. 2.1. Firing rate function and connectivity function for the integral model. (a): Sigmoidal
nonlinearity given by Eq. (2.2) plotted here with θ = 5.6 and µ = 3. (b): Radially-symmetric
connectivity kernel given by Eq. (2.3) plotted on the Euclidean plane with b = 0.4. (c): Its Fourier
transform plotted on the (kx, ky)-plane. (d): Radial cross section of panel (b). (e): Radial cross
section of panel (c).

analyze each model. Our homoclinic snaking results of localised states are presented
in Sec. 4.

2. Models. In this section, we introduce several neural field models used in the
paper: our starting points are the models introduced by Laing et al. [43,44], in which
the cortical space Ω is assumed to be the Euclidean plane R2.

2.1. Integral model. The first model that we will consider is obtained from
Eq. (1.1) assuming a translation-invariant, radially-symmetric kernel

∂

∂t
u(r, t) = −u(r, t) +

∫
R2
w(‖r− r′‖) S(u(r′, t)

)
dr′ + g(r) (2.1)

with sigmoidal firing rate (shown in Fig. 2.1(a))

S(u) =
1

1 + e−µu+θ
− 1

1 + eθ
, µ, θ > 0, (2.2)

radial connectivity function

w (r) = e−br(b sin r + cos r), r = ‖r‖, b > 0 (2.3)

and external inhomogeneous input

g(r) = G0 exp

(
− αx2 + βy2

σ2

)
, G0, σ ∈ R, α, β > 0. (2.4)

In the visual cortex regions of activation have been shown to have a Gaussian spread
for radially-symmetric visual inputs [17]. The connectivity function is plotted in
Fig. 2.1(b) on the Euclidean plane and as a radial cross section in Fig. 2.1(d). An
analytical expression for the Fourier transform of w cannot be obtained; we show

5



the Fourier transform of Eq. (2.3) as computed numerically in the k = (kx, ky)-plane
in Fig. 2.1(c) and as a radial cross section in Fig. 2.1(e), where we have posed k = ‖k‖.
The connectivity function (2.3) was proposed in models of working memory as a de-
scription of synaptic connections in the prefrontal cortex [34, 45]. The connectivity
describes local excitation and longer-range connections that alternate between inhi-
bition (w(r) < 0) and excitation (w(r) > 0). We argue that this type of connectivity
pattern is also relevant to the study of patterns of activity in early visual areas like
V1 where there is a characteristic length scale associated with the average orientation
hypercolumn width. It has been shown in anatomical studies that the number of
lateral connections decay with distance, that the number of excitatory connections
peak each hypercolumn width and the number of inhibitory connections peak each
half-hypercolumn width [13]. The net effect is alternating bands of inhibition and
excitation that decay with distance. This is also consistent with auto-correlations
computed for the orientation selectivity map [51] given that connections tend to
be excitatory between neurons with similar orientation preference. Henceforth the
model (2.1)–(2.3) will be referred to as the integral model (IM).

2.2. Fourth-order PDE approximation. In the cases when the Fourier trans-
form of the synaptic kernel is a rational function, it is possible to derive an equivalent
PDE formulation of Eq. (2.1) [43]. For simplicity, we will consider models without an
external input g(r). If ŵ(k) = P (k)/Q(k) with P and Q even functions in k where
k = ‖k‖ for k ∈ R2, then the Fourier transform of Eq. (2.1) gives

Q(k)
[
∂

∂t
û(k, t) + û(k, t)

]
= P (k)(̂S ◦ u)(k, t).

An inverse Fourier transform of the equation above leads to the desired PDE

LQ
[
∂

∂t
u(r, t) + u(r, t)

]
= LPS

[
u(r, t)

]
,

where LP and LQ are linear operators containing spatial derivatives of even order.
Since the Fourier transform of the connectivity function (2.3) does not have an

analytic expression, the integral model does not admit an equivalent PDE. However,
we can approximate w with a function whose Fourier transform is rational and then
derive an approximate PDE for the integral model. We specify the approximate
connectivity function w4(r) through its Hankel Transform

w4(r) =
1

2π

∫ ∞
0

s ŵ4(s)J0(rs) ds,

where ŵ4(k) ≈ ŵ(k) is given by

ŵ4(k) =
A

B + (k2 −M)2
, (2.5)

the coefficients A, B, M are determined using a least-squares best fit algorithm (see
Sec. 3.4.3 for further details).

We compare the approximation with the original connectivity function in the
physical and Fourier domains in Fig. 2.2(a) and (b). In physical space the two func-
tions appear to be similar. The key qualitative difference is that in Fourier space
ŵ4(0) > 0, which is not consistent with the IM connectivity function, for which
ŵ(0) < 0. Biologically this means that w4 represents a globally excitatory connectiv-
ity function, where as w represents a globally inhibitory connectivity function. We
will see in Sec. 4.2.2 that it is necessary to increase the order of the polynomials in
the numerator and denominator of Eq. (2.5) in order to accurately capture the sign
at k = 0.
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||w||2 = 2.38 || bw||2 = 14.93
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Fig. 2.2. Comparison of the PDE connectivity functions with w(r) given by Eq. (2.3) and its
Fourier transform bw(r) as computed numerically. Panels (a) and (b) show the 4th-order approxima-
tion defined by Eq. (2.5) in the real and Fourier domains, respectively. Similarly, for the 8th-order
approximation given by Eq. (2.7) in panels (c) and (d). For reference, we indicate the L2-norm of
w, w − w4, w − w8 and of their Fourier transforms.

Starting from the expression for ŵ4, we derive the corresponding PDE, containing
spatial derivatives up to the fourth order

[
B + (M + ∆)2

][ ∂
∂t
u(r, t) + u(r, t)

]
= AS

(
u(r, t)

)
, (2.6)

where the sigmoidal firing rate function is identical to the integral model case (2.2).
In Eq. (2.6) we have denoted by ∆ the standard Euclidean Laplacian. Henceforth,
this model will be referred to as PDE4.

2.3. Eight-order PDE approximation. In order to obtain a more accurate
representation of the connectivity function (2.3), we repeat the steps outlined in
Sec. 2.2 with the following approximation

ŵ8(k) =
−A(k2 − C)(k2 −D)

B + (k2 −M)4
, (2.7)

where the values of A, B, C, D and M are determined using a least-squares best fit
algorithm; see Sec. 3.4.3 for further details. We compare this approximation with the
original connectivity function in the physical and Fourier domains in Fig. 2.2(c) and
(d). With the higher-order polynomials used here the approximation is more accu-
rate and ŵ8(0) > 0, consistently with IM (compare the 8th-order approximation as
shown in Fig. 2.2(c) and (d) with the 4th-order approximation as shown in Fig. 2.2(a)
and (b)). The synaptic function w8 leads to the following PDE, containing spatial
derivatives up to the eight order

[
B + (M + ∆)4

][ ∂
∂t
u(r, t) + u(r, t)

]
= −[(∆ + C)(∆ +D)

]
S
(
u(r, t)

)
, (2.8)

where the sigmoidal firing rate function is identical to the integral model case. Hence-
forth this model will be denoted as PDE8.

3. Numerical methods. In this section, we review the numerical methods em-
ployed for the computation of localised states in IM, PDE4 and PDE8.

3.1. Integral model. Numerical computations of the IM (2.1)–(2.3) are per-
formed discretizing a large but finite domain Ω = [−L,L]2 with N evenly-distributed
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grid points in each spatial direction and imposing periodic boundary conditions. We
approximate u on a grid ΩN = { (xi, yj) }Ni,j=1 and collect the corresponding values of
u in a vector u

uij ≈ u(xi, yj), u = {uij }Ni,j=1 ∈ RN
2
.

Similarly, we form vectors w, S(u), g ∈ RN2
for the approximations to w,S(u) and

g, respectively. Further, we introduce the discrete convolution,

(u ∗ v)ij ≈ F−1
(F(u)F(v)

)
(xi, yj), u ∗ v = { (u ∗ v)ij }Ni,j=1 ∈ RN

2
, (3.1)

where we have denoted by F and F−1 the 2D Fourier Transform and its inverse,
respectively. In summary, the discrete version of the evolution equation (2.1) is given
by

u̇ = −u + w ∗ S(u) + g. (3.2)

This type of discretization has been applied before in direct numerical simulations
of neural models (see, for instance [23, 31]) even though it has not been used for
numerical continuation. For smooth firing rate functions, the right-hand side can
be evaluated accurately and efficiently using a Fast Fourier Transform (FFT) and
its inverse (IFFT). In passing, we note that since the FFT of w can be performed
and stored at the beginning of the computation, one function evaluation of the right-
hand side requires just one FFT and one IFFT. Furthermore, standard de-aliasing
techniques can be applied to the convolution operator if required [14].

Once a stable steady-state of Eq. (3.2) is found via direct numerical simulation,
it is possible to continue it in one of the control parameters using standard numeri-
cal continuation techniques. In previous studies of neural field equations, numerical
continuation was performed on an equivalent PDE formulation of the integral system.
A key observation is that path following can be applied directly to IM (or to similar
models), employing FFTs and Newton-Krylov solvers [39, 40]. Such methods do not
require the formation of a Jacobian matrix, but rely only on Jacobian-vector multi-
plications: for IM, this is conveniently done using just a single application of FFT
and IFFT. Even though Newton-Krylov methods are designed for sparse systems, the
performance of FFTs and IFFTs makes them a favourable choice also for IM, even
though the system is full.

For numerical continuation of steady states of IM, we solve the system of algebraic
equations

F(u) = −u + w ∗ S(u) + g = 0, (3.3)

whose associated Jacobian-vector product is given by

J(u)v = −v + w ∗ (S′(u)v
)
, u,v ∈ RN

2
, (3.4)

where S′(u) = diag(S′(u11), . . . , S′(uNN )) ∈ RN2×N2
. We solve the system (3.3)

using a Newton-GMRES solver implemented in Matlab and continue the solution
with a secant method. Eigenvalue computations can also be performed using the
Jacobian-vector products (3.4). Details of the numerical implementation and of the
numerical parameters can be found in Sec. 3.4.1.

Remark 3.1. The external input g guarantees that the system of algebraic equa-
tions (3.3) is not translation invariant, even when the problem is complemented with
periodic boundary conditions. Unless otherwise stated, we will use a negligible external
input for the IM, so that Newton iterations can be applied directly to Eq. (3.3). We
point out that a similar result can be obtained without imposing any external input,
by perturbing the right-hand side with a term containing one extra unknown and then
closing the system with a suitable phase condition [3,15,47].
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3.2. Fourth-order PDE approximation. In order to continue stationary lo-
calised solutions to PDE4 with D6 symmetry, we use polar coordinates and pose a
boundary-value problem on the sector Ω1/6 = { (r, θ) ∈ R2 | 0 < r < R, 0 < θ < π/3 }
with Neumann boundary conditions

0 =
[
B + (M + ∆)2

]
u−AS(u), (r, θ) ∈ Ω1/6

0 =∇u · n (r, θ) ∈ ∂Ω1/6

(3.5)

where the Laplacian operator ∆ is expressed in polar coordinates. We discretise
the system above using finite differences in r and a Fourier collocation method in θ,
with Nr and Nθ evenly spaced points, respectively, leading to a system of nonlinear
algebraic equations of the form

0 =
[
BI + (MI + L)2

]
u−AS(u) u ∈ RNrNθ , I,L ∈ RNrNθ×NrNθ (3.6)

where I is the identity matrix. The Laplacian matrix L is formed explicitly, starting
from differentiation matrices Dr, Drr, Dθθ for spatial derivatives with Neumann
boundary conditions and then combining them with Kronecker products [3, 47,57]

L = Drr ⊗ Iθ + (R−1Dr)⊗ Iθ + R−2 ⊗Dθθ,

where R = diag(1, r2, . . . , rNr ) and Iθ is the Nθ-by-Nθ identity matrix. For purely
radial patterns, we adapt the boundary-value problem so as to contain only the radial
direction r and impose Neumann boundary conditions. Numerical continuation of
the system (3.6) is performed with a secant method. Further details on the numerical
implementation can be found in Sec. 3.4.2.

3.3. Eight-order PDE approximation. For localised solutions of PDE8, we
follow a similar approach to what was done for PDE4. In order to avoid the discretisa-
tion of 8th-order differential operators, we recast PDE8 as a system of two 4th-order
PDEs and seek solutions to the following boundary-value problem

0 =(M + ∆)2u− v, (r, θ) ∈ Ω1/6,

0 =(M + ∆)2v +Bu+A(∆ + C)(∆ +D)S(u), (r, θ) ∈ Ω1/6,

0 =∇u · n, (r, θ) ∈ ∂Ω1/6,

0 =∇v · n, (r, θ) ∈ ∂Ω1/6.

(3.7)

The discretisation of this system proceeds in a similar way to what was done for PDE4,
with finite-differences in r and Fourier spectral collocation in θ. The example above
shows also that, as we approximate w more accurately, the order of the underlying
PDE increases and its numerical continuation becomes more demanding. A more
convenient approach would be to use directly the integral form for the model, with
connectivity function w8 and proceed with a Newton-GMRES, solver. In this way,
the computational cost would be the same than the IM.

3.4. Implementation and numerical parameters.

3.4.1. Integral model. Time simulations are carried out using a standard 4th
order Runge–Kutta method with fixed step size. At each time step, the right-hand
side of Eq. (3.2) is evaluated four times using an Nvidia Graphic Processing Unit
(Tesla C2070). To compute the Discrete Fourier Transform we use the CUFFT library
provided by Nvidia as part of its CUDA framework [50]. This software library allows
us to easily exploit the parallelism of a GPU to obtain a fast implementation. The
vector u is kept in the GPU global memory throughout a time step in order to avoid
memory transfers and it is updated in parallel once the four stages of the Runge–
Kutta scheme have been computed. Transfers between CPU and GPU memory only
occur when the result of a time step needs to be saved to a file. Time simulations are
done on a grid of 103 × 103 points and with a stepsize of 0.5.
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Numerical continuation for IM is done in Matlab using a in-house secant continu-
ation code which employs a Newton-GMRES method for the nonlinear solves. Unless
otherwise stated, we used a grid of 210 × 210 points and fixed an absolute tolerance
of 10−3 for the nonlinear iterations. The Newton-GMRES solver uses the MATLAB
in-built function gmres without preconditioners and with parameters restart = 20,
tol = 10−3 and maxit = 10. Initial guesses are obtained directly from the Runge–
Kutta time stepper. Stability computations are performed with Arnoldi iterations via
MATLAB’s function eigs, passing the Jacobian-vector product (3.4) and computing
(with the default tolerance) the first 20 eigenvalues with the largest real part. Com-
putations are performed on a MacPro with a 3 GHz Quad-Core Intel Xeon processor
employing exclusively the CPU.

3.4.2. PDE4 and PDE8 models. Numerical continuation for the PDE models
have been carried out with a secant code similar to the one used for IM, but using
MATLAB’s in-built function fsolve for the nonlinear iterations. Unless otherwise
stated, we used 300 grid points in the radial directions and 20 in the angular direction.
We use the Levenberg–Marquardt algorithm implemented in fsolve and set TolFun =
10−6. The sparse Jacobians of these problems are formed and passed directly to the
solver. Initial guesses for the continuation have been obtained using the expressions
given in Eqs. (A.1) and (A.2). Computations are performed on a standard laptop on
a single core.

3.4.3. Least-squares data fitting. Before comparing the connectivity func-
tions w4(r) and w8(r) with w(r), it was necessary to tune the parameters in the
definitions of ŵ4 and ŵ4. In each case we performed a nonlinear least-squares opti-
mization of the parameters using the lsqcurvefit function in Matlab. For w4 the
objective was to minimize the L2-norm of the difference between ŵ4 and ŵ whilst
varying the parameters A, B and M in Eq. (2.5), where ŵ is computed numerically
using the Hankel transform at 300 points. Similarly, for w8, the L2-norm of the dif-
ference between ŵ8 and ŵ was minimised whilst varying the paramaters A, B, M , C,
D in Eq. (2.7). For reference, the L2-norms of w and ŵ are given above the panels in
Fig. 2.2; the norm of the difference between the two functions plotted in each panel is
also given. We note the largest Fourier mode of the connectivity dictates the location
of bifurcations in terms of the sigmoid parameters θ and µ. By minimising the dif-
ference between the connectivity functions in Fourier space, we expect to find similar
behaviour for each connectivity over the same parameter ranges. On the other hand,
if one minimises the difference between the connectivity functions in physical space
and the amplitudes of the largest Fourier modes are not matched, bifurcations occur
in different parameter ranges in each model and a direct comparison cannot be made.

4. Numerical results.

4.1. Convergence of the Newton-GMRES solver. Since Newton-GMRES
methods with pseudospectral evaluation of the right-hand side have not been used
before for integral neural field models, we report briefly on our solver. To test con-
vergence, we perturbed a localised steady state of IM to obtain an initial guess (panel
(b) of Fig. 4.1) and converge back to the original solution (panel (a) of Fig. 4.1) using
our Newton-GMRES solver. In panel (c) we plot the relative residuals of each itera-
tion, showing that we achieve convergence within a few nonlinear iterations. Similar
convergence plots (not shown) are obtained for the numerical continuation, albeit so-
lutions in that case are achieved with fewer iterations, owing to the more accurate
initial guess provided by the secant predictor scheme. The experiment is repeated for
various values of N : the convergence diagrams are indistinguishable from the one re-
ported in panel (c), whereas the wall time for the numerical experiment scales linearly
with the number of unknowns N2, as reported in panel (d). We remark that, even
without using any GPU acceleration and without enforcing explicit parallelisation in
the CPU, the Newton-GMRES solver finds a solution to a full problem with 1048576
unknowns in less than 40 seconds.
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Fig. 4.1. Convergence of the Newton-GMRES solver. A stationary localised solution u∗ of IM
is shown in panel (a). The solution is perturbed to obtain an initial guess u0 = u∗ + 0.8 sinx cos y,
shown in panel (b), and then the Newton-GMRES solver is used to converge back to u∗. Conver-
gence, is measured with the relative residual ‖F(uj)‖2/‖F(u0)‖2, where uj is the solution at the
jth iteration (panel (c)). The experiment is repeated for several values of N without any signifi-
cant change to the convergence diagram, whereas the wall time for the numerical experiment scales
linearly with the number of unknowns N2, as reported in panel (d). Parameters of IM: θ = 5.6,
µ = 2.5, b = 0.40, L = 60, G0 = 4.0, α = 1.0, β = 4.0, σ = 12.0.

4.2. Snaking behaviour of radial and D6 patterns. We now turn to the
numerical continuation of localised states in IM, PDE4 and PDE8. The continuation
parameter is the steepness µ of the sigmoidal firing rate, whereas the other parameters
are fixed as follows: for IM, we choose θ = 5.6, µ = 2.5, b = 0.40, L = 60, G0 = 10−4,
α = 1.0, β = 1.0, σ =

√
10; for the PDE4 model, we use θ = 5.6, R = 60, G0 = 0

with fitting parameters for the ŵ4 in Eq. (2.5) given by A = 1.225, B = 0.1398,
M = 1.2183; for the PDE4 model we use again θ = 5.6, R = 60, G0 = 0 with
fitting parameters for ŵ8 in Eq. (2.7) given by A = 0.8510, B = 0.6626, M = 0.6653,
C = 0.3 and D = 10. We remark that translation invariance is removed in the IM
by the negligible external input G0 while in PDE4 and PDE8 this is achieved by
the boundary conditions of the problems (3.5) and (3.7), so we choose G0 = 0. In
the present section we focus on the no- (or equivalent negligible-) input case which
should be well understood before the addition of an input. In Sec. 5.2 we will provide
examples of the model behaviour with input and discuss the implications.

The bifurcation points in the diagrams presented in this section will be labelled as
follows. F represents a fold bifurcation and P a spatial-symmetry-breaking bifurcation
from a radial state. Superscripts indicate the symmetry properties of the bifurcation,
where R represents a bifurcation on a branch with radially symmetric solutions and
D6 represents a bifurcation on a branch of D6-symmetric solutions The labels l and
r in the subscripts for fold bifurcations indicate whether the fold occurs on the left or
right of the snaking structure. The indices n in the subscripts of folds, for example
FRln, indicate the ordering moving up the snaking structure. On radial branches n
corresponds to the number of rings around a central spot solution, for example, on
the branch between FRl1 and FRr1 there is one ring around a central spot. On D6-
branches there are n(n + 1)/2 × 6 additional spots glued around a central spot, for
example, on the branch between FD6

l1 and FD6
r1 the solution has a total of 7 spots.
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Fig. 4.2. Snaking of radially- and D6-symmetric localised solutions in terms of µ for PDE4.
Radial branches are grey curves and D6 branches are black; stable segments are solid and unstable
segments are dashed. Bifurcations labelled F and P are discussed in the text. Panel (a) shows
an inset of panel (b). (a): Detail of radial branch; points labelled a1 and a2 correspond to planar
plots showing a stable spot solution and an unstable spot-with-ring solution, respectively. (b): Global
structure showing radial and D6 branches; points labelled b1, b2 and b3 correspond to planar plots
showing 7-spot, 19-spot and 37-spot solutions, respectively. Thin vertical lines discussed in text.
Parameters given at the beginning of Sec. 4.2.

4.2.1. PDE4 results and comparison with IM. We discuss both radially-
and D6-symmetric localised solutions of PDE4 with connectivity function defined
via Eq. (2.5). Other solution branches with different symmetry properties do exist
but these are only discussed for IM in Sec. 4.3. An unstable radial spot solution
bifurcates from the trivial state u = 0 at µ = µc to the right of the µ-range shown in
the subsequent diagrams. It is this unstable radial spot branch that appears in the
bottom right of Fig. 4.2(a) and (b).

Figure 4.2(b) shows the snaking structure for radial and D6 branches. We first
focus on the radial branch, a detail of which is shown in panel (a). A radial spot branch
enters the diagram in the bottom-right-hand corner and undergoes a fold at FRl0 . The
radial spot solution existing on the branch segment between FRl0 and FRr0 is plotted in
panel (a1). This solution is stable between FRl0 and PD6. At PD6 on the radial a D6
instability occurs and a bifurcating branch of D6-symmetric solutions that leaves the
diagram in the bottom-left-hand corner. Beyond PD6 the radial branch is unstable
and undergoes a further fold FRr0. After another fold FRl1 a ring has formed around
the radial spot. The spot with ring solution existing on the branch segment between
FRl1 and FRr1 is shown in panel (a2). The branch remains unstable and undergoes a
series of further folds (FRl2 , FRr2, FRl3 , etc) adding additional rings as is shown in panel
(b).

The D6-symmetric branch that bifurcates from the radial branch at PD6 also
undergoes a series of fold bifurcations as shown in Fig. 4.2(b). In this case a series
of additional spots are added to the central spot in a configuration that preserves
the D6-symmetry. Planar plots in panels (b1), (b2) and (b3) show the stable 7-
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IM . (b): Detail of the D6 snaking structure. Parameters given at the beginning of Sec. 4.2.

spot, 19-spot and 37-spot solutions that exist on the branch segments between the
fold pairs (FD6

l1 , FD6
r1 ), (FD6

l2 , FD6
r2 ) and (FD6

l3 , FD6
r3 ), respectively. There are further

intermediate stable branch segments between pairs of fold bifurcations that have not
been labelled. On the stable segment that can be found between FD6

r1 and FD6
l2 , there

exists a 13-spot solution for which one spot has been glued on the long edge of each
of the six sides of the solution shown in panel (b1). Similarly, on the stable segment
that can be found between FD6

r2 and FD6
l3 , there exists a 25-spot solution for which

two spots have been glued on the long edge of each of the six sides of the solution
shown in panel (b2).

The same radially- and D6-symmetric branches shown in the previous section
have been computed for IM. Here we test the accuracy of PDE4 both qualitatively
in terms of the types of solutions produced and their bifurcations, and quantitatively
in terms of the parameter ranges for which the different solution types persist. We
are also interested to see whether the relative ranges of existence for different types
of solution is consistent between PDE4 and IM.

Figure 4.3(a) and (b) both show detail from Fig. 4.2(b) with the same curves
reproduced for PDE4 with the same line style and labelling conventions. Also plotted
are the equivalent curves computed for IM, where the equivalent of PD6 in IM is PD6

IM .
The first major point to make is that in terms of the types of solution encountered, the
series of bifurcations encountered and the stability of each branch segment, there is
an exact agreement between PDE4 and IM. Furthermore, the quantitative agreement
on the radial branch is good up until the fold point FRr1. Above FRr1, the radial branch
for PDE4 makes a large excursion away from the IM branch and the branches remain
well separated as the snaking continues; see panel (a). Similarly, for the D6 branch
the level of agreement is good up to FD6

r1 above which PDE4 branch deviates and
remains well separated from the IM branch; see panel (b). The range of existence
in µ for each stable branch segment on the D6 branch is greatly under estimated by
PDE4.
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IM . (c): Detail of the D6 snaking structure. Parameters given at the beginning of
Sec. 4.2.

We now highlight a key qualitative difference between the bifurcation diagrams
for PDE4 and IM. In IM, there is a range of µ ∈ [2.5, 3.0] for which the stable branch
segments corresponding to 7-spot, 19-spot and 37-spot all overlap. This is not the
case for PDE4, in particular, the branch segments corresponding to stable 7-spot and
37-spot solutions between the fold-pairs (FD6

l1 , FD6
r1 ) and (FD6

l3 , FD6
r3 ) do not overlap.

This can be seen by the fact that FD6
r3 occurs at a smaller µ-value (indicated by

the first thin vertical line in Fig. 4.2(b)) than FD6
l1 (indicated by the second thin

vertical line). This organisation of the solutions in parameter space is qualitatively
inconsistent with IM.

4.2.2. PDE8 results and comparison with IM. Figure 4.4(a) shows branches
of both radially- and D6-symmetric solutions of PDE8. Globally the bifurcation di-
agram is the same as that of PDE4 in terms of the types of solution observed and
the sequence of bifurcation encountered. There is an important difference between
PDE4 and PDE8 in terms of the organisation in parameter space of the solution
branches. For PDE4, there is no overlap in parameter ranges for which the 7- and
37-spot branches are stable; see the two vertical lines in Fig. 4.2 and note that FD6

r3

occurs before FD6
l1 in this case. In the PDE8 case, as shown in Fig. 4.4(a), there

is an overlap in the parameter ranges as indicated by the grey shaded region. This
organisation of the solution branches in parameter space is now consistent with the
full model as shown in panel (c). Indeed PDE8 provides better agreement with IM;
the branches remain close for both the radial and the D6 branches as we move up the
snaking structure as can be seen in panels (b) and (c). We note that when compared
with IM, the upper section of the radial branch occurs at larger values of µ for PDE4
and at smaller values of µ for PDE8; compare Fig. 4.2(a) with Fig. 4.4(b).

4.3. Snaking of D2, D3 and D4 patterns in IM. In this section we discuss
several patterns that possess neither radial nor D6 symmetry. For non-radial pat-
terns discussed so far in this article, see Fig. 4.2(b1)–(b3), the individual spots lie on
a regular hexagonal lattice. However, there exist an infinite number of stable config-
urations that conform to the same lattice spacing but without the full D6 symmetry;
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here we present two such examples. We also present one further example of a stable
configuration that does not conform to the regular hexagonal lattice.

4.3.1. Three-spot pattern (D3). Figure 4.5 shows the snaking of D3-symmetric
patterns about a three-spot solutions. The unstable branch that enters panel (a) in
the bottom-right-hand corner reconnects to the trivial state u = 0 at µ = µc. The
panels (a1)–(a5) show stable solutions on the first five full excursions in µ of the
snaking structure. The existence of three-spot (see panel (a1)) and twelve-spot (see
panel (a3)) solutions for PDE4 with connectivity given by Eq. (2.5) was shown in [44].
Here we have shown that these solutions exist in IM and that they form part of a
larger snaking structure.

4.3.2. Two-spot pattern (D2). Similarly, there is an unstable two-spot solu-
tion that connects to the trivial state u = 0 at µ = µc. Figure 4.6(a) shows that
this solution also undergoes a sequence of fold bifurcations giving rise to larger D2-
symmetric patterns. We note that the spacing between the spots in these patterns
still conforms to the regular hexagonal lattice. The panels (a1)–(a5) show solutions
on the first five stable branch segments moving up the snaking structure; we note that
the pattern (a3) is on an intermediate branch that does not make a full excursion in
µ.

4.3.3. Quincunx pattern (D4). Here we show in Fig. 4.7(a2) a stable con-
figuration that lies on a square lattice but with a spacing between the spot peaks
that is double that of the hexagonal-lattice solutions encountered thus far. The so-
lution is formed by five spots that interact at the first excitatory peak away from
0 in the connectivity function (2.3) as shown in Fig. 2.1(d). The configuration of
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four spots forming a square with an additional spot in the center is typically re-
ferred to as a quincunx pattern that is found, for example, on dice and dominoes.
As shown in Fig. 4.6(a) these solutions exist on an isola in parameter space where
other branches, see panels (a1) and (a3), are unstable. Although the pattern does
not undergo snaking-type behaviour it may be possible to construct larger patterns
on the double-spaced square lattice.

5. Discussion.

5.1. Summary. This paper explores patterns of localised activity in the neural
field equation posed on the Euclidean plane with a smooth firing rate function. The
choice of connectivity function is an important factor in determining whether, the
localised behaviour found is restricted to individual spots, or whether multiple inter-
acting spots can form coherent localised patterns. In [29] localised states were studied
in a model with a radially-symmetric wizard hat connectivity function describing local
excitation and lateral inhibitions in the Euclidean plane. When spot solutions were
tracked using numerical continuation no snaking behaviour was observed, i.e. the
only steady states found consisted of a single spot. The radially symmetric connec-
tivity function studied here and shown in Fig. 2.1(d)) features local excitation, lateral
inhibition and long-range bands of excitation that decay with distance. Indeed, the
distance between excitation peaks fixes a spatial scale that allows for regular spatial
interactions and the formation of larger patterns of activity. In [44] it was shown that
multiple-spot patterns could be obtained all with the common property of the peaks
lying on a regular hexagonal lattice with spacing determined by the connectivity func-
tion. One of the main aims in the present article was to show how these solutions are
connected in parameter space and how patterns with varying spatial extent grow via
the mechanism of homoclinic snaking.

The results presented in [44] relied on working with an approximated connec-
tivity function (see Fig. 2.2(a) and (b)) that allowed for solutions the full integral
neural field equation to be studied in an equivalent fourth-order PDE . The initial
parts of this paper are concerned with the relative agreement between solutions to
the integral model and equivalent PDE formulations with approximated connectivity
functions. We pursue the problem numerically by investigating the level of agreement
in terms of an entire bifurcation diagram rather than comparing individual solutions
at fixed parameter values. We compared both radially symmetric and D6-symmetric
solution branches and found that the qualitative difference of the zero-mode in the
Fourier domain for the approximated connectivity used in the fourth-order model
(see Fig. 2.2(b)) led to significant discrepancies in the existence ranges of solution
branches, in particular for solutions with a larger spatial extent. We demonstrated
that the improved approximation of the connectivity function shown in Fig. 2.2(c)
and (d), leading to an eighth-order PDE, provides a better agreement across the full
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Fig. 5.1. Model simulations with input given by Eq. (2.4) with α = β = 1. The simulations are
performed with µ = 2.4. (a) The Gaussian-bump input plotted with σ = 10 and G0 = 6 (G0 = 1.5
used in the simulations). (b): Case with σ = 9.0, the model converges to a 7s-spot solution that is
a modified version of the state shown in Fig. 4.2(b1) (c): Case with σ = 9.5, the model converges
to a 12s-spot solutions that is a modified version of the state shown in Fig. 4.5(a3) (d): Case with
σ = 10.0, the model converges to a 14s-spot solutions that is a modified version of the state shown
in Fig. 4.6(a5). Other model parameters given at the beginning of Sec. 4.2.

bifurcation diagram. In particular, the eigth-order model captures the key feature of
there being a specific parameter range in which multiple solutions coexist, each solu-
tion with a different spatial extent. It was not possible to capture this feature with
the fourth-order approximation. We conclude that, although equivalent PDE formu-
lations have proved to be a useful tool for the study of neural fields, it is important
to ensure close agreement between the connectivity functions in the Fourier domain.
Increasing the order of the PDEs used allows for improvements in this agreement. We
believe that, while converting the integral formulation to higher-order PDEs could
be useful in analytical studies, numerical calculations of these systems should be ap-
proached without resorting to PDE formulation where possible. In passing, we point
out that the methodology proposed here for the integral model is applicable to inho-
mogeneous synaptic kernels, provided that the convolution structure of the integral is
preserved. Furthermore, we point out that here we have used the standard Newton-
GMRES method mainly for its simplicity, but more sophisticated choices are also
possible [40].

Having investigated radial and D6 solutions with PDE formulations and com-
pared the results with the full integral model, we proceeded to give an account of
other types of solutions that, when path-followed with numerical continuation lead
to patterns with different underlying symmetry properties. We worked with the full
integral model and showed that patterns with D2 and D3 symmetry also give rise to
snaking behaviour, generating spatial patterns with variable spatial extent. All the
solutions of this type, including those shown earlier with D6-symmetry, have the com-
mon feature of the individual spots lying on a regular hexagonal lattice. Furthermore,
these solutions of variable spatial extent exist within roughly the same ranges of the
parameter µ. As the snaking diagram is ascended, new spots are glued to long edges
of the pattern in a regular fashion. We note the existence of an arbitrary number
of intermediate branches not shown in our bifurcation diagrams where symmetries
can be broken via the (simultaneous) addition or subtraction of one (or more spots).
We expect these solutions to lie on intermediate branches that are stable over ranges
smaller than the full excursions in the main snaking structure.

5.2. Localised patterns with input. The numerical bifurcation analysis pre-
sented in this paper opens up the possibility to investigate the spread of cortical
activity at the presence of inputs. An important principle in studying the neural
field equation is that weak inputs to the equations should drive the system to states
that are already solutions to the underlying equations without input. The bifurcation
study presented here allows us to identify the types of solution that we may expect to
encounter for localised inputs and the relevant parameter regime in which they occur.
Two criteria need to be satisfied when identifying a suitable operating regime, 1) the
model should only produce the trivial homogeneous state u = 0 before an input is
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Fig. 5.2. Symmetry breaking of weakly unstable solution on a square lattice at µ = 3.2. (a):
Evolution of L2 norm. (b): Initial condition given by Eq. (A.3). (c): Weakly unstable solution.
(d): Stable solution. Parameters given at the beginning of Sec. 4.2.

introduced and 2) when an input is introduced, the model should be driven to one of
the underlying non-trivial solutions. We have shown that, for the full integral model,
there is an accumulation of fold bifurcations at around µ = 2.4 representing the first
point for which localised patterns can be observed. Both criteria are satisfied when
the model is operated just before these fold points. However, introducing a weak
input the system can be driven to states that have a spatial extent corresponding
to that of the input. Figure 5.1(a) shows the profile of the input used in a series of
simulations that were initiated with the u = 0 state plus a small perturbation across
the entire spatial domain. Figures 5.1(b), (c) and (d) show the result of three 150
time unit simulations, each with different spatial extent for the input. In each case,
the trivial state u = 0 is no longer stable and the system naturally selects one of
the solutions described in the early bifurcation analysis. As the spatial extent of the
input increases, the size of the pattern selected by the model increases and this is an
important consequence of the corresponding solutions existing as part of a snaking
structure. The computational framework presented in this article will allow for the
relationship between model inputs and spatially localised patterns to be investigated
in future work.

5.3. Non-D6 patterns and parametric forcing. The multi-spot solutions
described in this article all have the common feature of the activated peaks falling
onto a regular hexagonal lattice. Indeed, this has been found to be the default way for
the radial symmetry to be broken in pattern forming systems, notably the archety-
pal Swift-Hohenberg equation [47]. We also investigated whether it is possible to
find other states that do not conform to the regular hexagonal lattice. In Fig. 4.7
an example of a solution with D4 symmetry was shown that consists of five spots
interacting at double the standard separation between excitation peaks. We found
this solution to exist on an isola and not undergo snaking so as to find larger pat-
terns tiling the plane with the same spacing. We also attempted to converge solutions
with D4 symmetry that have the regular spacing between peaks. A suitable initial
condition to find such solutions is given by Eq. (A.3) chosen such that there is a
depression at (x, y) = (0, 0) and the surrounding square-lattice pattern decays away
from the origin, see Fig. 5.2(b). In an appropriate parameter range these states ap-
pear to converge to stable patterns. However, we found the patterns to be weakly
unstable, finally converging to a pattern on a hexagonal lattice after a long transient.
Figure 5.2(a) shows a time-course of the L2 norm from a simulations with the initial
condition shown in panel (b). The model reaches the apparently stable D4 config-
uration after approximately 30 time units (panel (c)) before finally converging after
230 time units to the D2-symmetric pattern (panel (d)) that was previously identi-
fied in Fig. 4.6(a2). It would be possible to stabilise such weakly unstable solutions
with the use of parametric forcing, by introducing small modulations that encourage
interactions on a fixed lattice in cortical space. In the neural field equations this
is typically referred to as inhomogeneous neural media; travelling waves, travelling
fronts, periodic patterns and pulsating fronts have been studied with such modula-
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tions [7, 20, 24]. The study of localised states in this context would be an interesting
future direction. Furthermore, stable quasi-periodic patterns have been obtained in
the Swift-Hohenberg equation through parametric forcing [38]. The question of intro-
ducing orientation-preference tilings on square and hexagonal lattices was addressed
in [4]. However, one is restricted in the number of orientations that can be equally
represented with such tilings, (two and three, respectively). Parametric forcing on a
quasi-periodic lattice is of particular interest in the neural field equations as this could
allow for near-continuous representations of features in a model without an abstracted
feature space.

6. Conclusions. The organisation in parameter space of localised structures
consisting of multiple spots has been revealed for the first time in planar neural field
equations. In order to find such behaviour, one must choose a connectivity function
with an excitatory peak away from the origin that fixes a regular spatial scale of inter-
actions between spots. As localised solutions are path-followed using numerical con-
tinuation we find that these structures grow in a series of fold bifurcations through the
mechanism of homoclinic snaking that has been well-studied in the Swift-Hohenberg
equation. A numerical strategy has been proposed to perform a numerical bifurcation
analysis without resorting to a PDE formulation, but taking advantage of matrix-free
Newton-Krylov nonlinear solvers combined with a pseudospectral evaluation of the
right-hand side. The novel application of these methods to the neural field equations
allowed for numerical continuation to applied to the full integral form of the model.
Previous studies in 2D have relied exclusively on PDE approximations of the con-
nectivity functions; here we demonstrated that these approximations can give a very
close agreement with the full integral model if a sufficiently high-order approximation
is taken. The numerical schemes presented here will allow for future studies of the
neural field equations to use connectivity functions defined either directly in the real
domain or the Fourier domain without recourse to PDE methods, provided that the
sigmoidal firing rate be smooth and that the integral formulation can be expressed as
a convolution (this extends also to inhomogeneous firing rates).

The neural field studied in the present paper can be considered as a model of
the visual cortex and the localised patterns studied without inputs can be related
to visual hallucinations that can be localised in the visual field [55]. Furthermore,
we have shown that the localised states computed in our bifurcation analysis are
exactly the types of solutions selected by the model in the presence of weak inputs.
The persistence of these localised structures in the presence of a model input is new.
This future direction will be of particular interest for the study of localised patterns
of activity that have been observed in the primary visual cortex [17] with localised
visual input.
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Appendix A. Analytic expressions for initial conditions. Figure 1.2(a)
shows the initial condition given by

u(x, y) = A exp
(
− x2 + y2

L

)
, (A.1)

with A = 6 and L = 5.77; subsequent panels (b) and (c) show a transient state after
1 time unit and the stable steady state after 15 time units. Figure 1.2(d) shows the
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initial condition given by

u(x, y) = A exp
(
− x2 + y2

L

)[
cos(x) + cos

(
1
2
x+
√

3
2
y

)
+ cos

(
−1

2
x+
√

3
2
y

)]
,

(A.2)
with A = 2 and L = 100; subsequent panels (e) and (f) show a transient state after 1
time unit and the stable steady state after 15 time units.

Figure 5.2(b) shows the initial condition given by

u(x, y) = 2 exp
(
− x2 + y2

L

)
(− cosx− sin y), (A.3)

with A = 2 and L = 65; subsequent panels (c) and (d) show transient states after
200 and 300 time units, respectively. The L2-norm is plotted over this time course in
panel (a).
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