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Abstract. Neural field equations model population dynamics of large-scale networks of neu-
rons. Wave propagation in neural fields is often studied by constructing traveling wave solutions
in the wave coordinate frame. Nonequilibrium dynamics are more challenging to study, due to the
nonlinearity and nonlocality of neural fields, whose interactions are described by the kernel of an
integral term. Here, we leverage interface methods to describe the threshold of wave initiation away
from equilibrium. In particular, we focus on traveling front initiation in an excitatory neural field.
In a neural field with a Heaviside firing rate, neural activity can be described by the dynamics of the
interfaces, where the neural activity is at the firing threshold. This allows us to derive conditions for
the portion of the neural field that must be activated for traveling fronts to be initiated. Explicit
equations are possible for a single active (superthreshold) region, and special cases of multiple discon-
nected active regions. The dynamic spreading speed of the excited region can also be approximated
asymptotically. We also discuss extensions to the problem of finding the critical spatiotemporal input
needed to initiate waves.
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1. Introduction. Traveling waves are ubiquitous in nature, arising in a wide
variety of biological processes, including epidemics [26], actin polymerization [1], and
evolution [38]. These processes are usually modeled by nonlinear partial differential
equations (PDE) that combine nonlinear local interactions and spatial dynamics like
diffusion [35]. Such continuum equations can yield traveling wave solutions in closed
form, so the effect of model parameters on wave dynamics can be quantified in detail.
For instance, neural field models describe large-scale dynamics of nonlocally connected
networks of neurons, and their constituent functions can be tuned to produce a multi-
tude of spatiotemporal solutions [7]. Such results can be connected to coherent neural
activity patterns observed in cortical slice and in vivo experiments [28,29,37].

Large-scale neural activity imaged using voltage sensitive dye exhibits myriad
forms of propagating neural activity in different regions of the brain [41, 43]. For
instance, sensory inputs can nucleate traveling waves in olfactory [16] and visual cor-
tices [27]. Waves may propagate radially outward from the site of nucleation [23], with
constant direction as plane waves [44], or rotationally as spiral waves [29]. Sufficiently
large amplitude sensory stimuli can initiate traveling waves of neural activity, but the
threshold for initiation is difficult to identify [39]. A recent study has shown that if
two visual stimuli are presented sufficiently close together in time, only a single wave
is generated [25]. This suggests there is an internal state-dependent threshold that
shapes the time and stimulus-amplitude necessary for wave initiation. In this work,
we analyze a neural field model to understand how such propagation thresholds can
be defined in a large-scale network of neurons.

Neural field equations provide a tractable model of coherent neural activity, which
can be used to relate features of a network to the activity patterns it generates [7,9].
The building blocks of a neural field are excitatory neurons, which activate their neigh-
bors, and inhibitory neurons, which inactivate their neighbors. Wilson and Cowan
showed that a localized stimulus to an excitatory/inhibitory neural field can pro-
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duce outward propagating traveling waves [42], and Amari constructed such solutions
assuming a high gain firing rate function [2]. Following this seminal work, Ermen-
trout and McLeod used a continuation argument to prove the existence of traveling
fronts in a purely excitatory neural field [19]. Subsequent studies of neural fields have
built on this work by incorporating propagation delays or spatial heterogeneity and
by adding variables representing slow processes like adaptation [20, 21, 30, 31, 36]. A
wide variety of spatiotemporal patterns emerge including Turing patterns [8], travel-
ing pulses [12,22,36], breathers [24], and self-sustained oscillations [31,40]. However,
most previous work focuses on construction of solutions and local dynamics near equi-
libria, addressed via linear stability or perturbation theory [13,30,34]. Nonequilibrium
dynamics are less tractable in these infinite-dimensional systems, and so there are few
results exploring the outermost bounds of equilibrium solutions’ basins of attraction.

In the present study, we characterize the basins of attraction of the stationary
solutions of an excitatory neural field. We focus on a scalar neural field model that
supports traveling front solutions [19,36]:{

∂tu(x, t) = −u(x, t) +
∫
R w(x− y)H(u(y, t)− κ)dy + I(x, t), t > 0, x ∈ R,

u(x, 0) = u0(x), x ∈ R,
(1)

where u(x, t) is the total synaptic input at location x ∈ R and time t > 0 and w(x−y)
is a kernel describing synaptic connections from neurons at location y to those at x.
Our results can be extended to the case x ∈ R2, as we will show in a subsequent
paper. We assume the kernel w(x) is even, w(x) = w(−x); decreasing in |x| > 0;
positive, w(x) > 0; and has a bounded integral,

∫
R w(x)dx < ∞. For simplicity, we

consider a normalized kernel
∫
R w(x)dx = 1, but this is not necessary. To calculate

explicit results, we consider the exponential kernel [6, 36]

w(x) =
1

2
e−|x|. (2)

Nonlinearity in Eq. (1) arises due to the Heaviside firing rate function [13,19]

H(u− κ) =

{
1, u ≥ κ,
0, u < κ,

allowing us to determine dynamics of Eq. (1) by the threshold crossings u(xj(t), t) = κ,
yielding interface equations [10,15]. Note, the analysis presented herein relies strongly
on the assumption of a step nonlinearity, but see [14] for methods of approximating
wave solutions in neural fields with steep sigmoid nonlinearities, which could be ex-
tended to the derive interface equations.

Our analysis focuses on the case of Eq. (1) for which traveling fronts propagate
outward, so active regions (u(x, t) ≥ κ) invade inactive regions (u(x, t) < κ). As
a consequence, throughout the manuscript we assume κ ∈ (0, 1/2). We derive this
condition explicitly in Section 2. The central focus of our work is to examine how the
long term dynamics of Eq. (1) are determined by the initial condition u(x, t) = u0(x).
For simplicity, we restrict 0 ≤ u0(x) ≤ 1, ∀x ∈ R. We also examine the impact of
external inputs I(x, t), determining how they shape the long term behavior of Eq. (1).

Several previous studies have shown that traveling front solutions to Eq. (1) can
be constructed [6,19,36]. Importantly they coexist with the two stable homogeneous
states, u ≡ 0 and u ≡ 1. Thus, some initial conditions u0(x) will decay (u→ 0), but
others will propagate (u→ 1) as t→∞. Our work addresses the following question:
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What conditions on u0(x) and Eq. (1) determine limt→∞ u(x, t)? Note, in Section
2, we explicitly construct a family of unstable intermediate stationary solutions, in-
cluding single bumps and periodic patterns. While it is tempting to consider these
solutions separatrices between the quiescent state (u ≡ 0) and the emergence of two
counter-propagating fronts, this picture of the full dynamics of Eq. (1) is incomplete.
One can easily construct initial conditions u0(x) whose long term dynamics cannot
be resolved by simply examining properties of these intermediate solutions. A related
point is that intuition gained from analyzing the equivalent problem in nonlinear PDE
models (whose interactions are local) [17, 45] does not readily extend to the analysis
of neural fields (which are nonlocal). To distinguish cases that lead to decay ver-
sus propagation, we project the neural field Eq. (1) dynamics to equations for the
interfaces xj(t) where u(xj(t), t) = κ.

Our paper proceeds as follows. In Section 2, we summarize the classes of entire
solutions to Eq. (1), which are relevant for our analysis, noting there are (i) homo-
geneous states, u(x, t) ≡ ū ∈ {0, 1}; (ii) a family of unstable stationary solutions,
u(x, t) = UL(x) with period L; and (iii) traveling waves, u(x, t) = Uf (x − ct). Next,
in Section 3, we analyze the nonequilibrium dynamics of Eq. (1) using interface equa-
tions for the case in which u0(x) ≥ κ on a single active region x ∈ [x1, x2], which
allows us to classify the threshold between propagation (u→ 1) and failure (u→ 0).
Our reduced interface equations also allow us to calculate the timescale of the tran-
sient dynamics as they approach equilibrium. In addition, we discuss requirements
on an external stimulus I(x, t) necessary to activate a traveling wave. In Section 4,
we derive interface equations for Eq. (1) for multiple (N > 1) active regions u0(x)
for x ∈ ∪Nn=1[x2n−1, x2n]. Some explicit results are possible in the cases N →∞ and
N = 2, showing interactions between active regions impact the propagation threshold.
Our analysis provides a tool for linking initial conditions of spatially-extended neural
field equations away from equilibrium to their eventual equilibrium state.

2. Entire solutions of the excitatory neural field. We begin by summariz-
ing the relevant entire solutions of the neural field Eq. (1) for I(x, t) ≡ 0. By entire
solutions, we mean solutions of Eq. (1) which are defined for all time t ∈ R, which
includes traveling waves and three types of stationary solutions:

(i) the two homogeneous states u = 0 and u = 1, which are both locally stable;
(ii) an unstable symmetric one bump solution Ub;
(iii) a family of periodic solutions UL which are all unstable.

Homogeneous states (i) are locally stable, attracting almost all initial conditions
(Fig. 1A,B), whereas the other stationary states separate some initial conditions (ii,iii)
into those that propagate and those that decay (Fig. 1B). However, multimodal ini-
tial conditions cannot be characterized using local analysis (Fig. 1C). Our analysis
in Sections 3 and 4 will emphasize the nonequilibrium dynamics away from entire
solutions, exploring conditions necessary for attraction to one of the two homoge-
neous states. Traveling waves and stationary solutions have been characterized in
detail in previous works, so we will simply state key formulas rather than carrying
out derivations [2, 5, 7, 9, 11,18,24,32].

2.1. Bump solution. Stationary bumps u(x, t) = Ub(x), with a single active
region Ub(x) ≥ κ for x ∈ [x1, x2], centered at x = 0, so x ∈ [−b, b] take the form

Ub(x) =

∫ b

−b
w(x− y)dy = W (x+ b)−W (x− b), (3)
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Fig. 1. Long term behavior of initial conditions u0(x) for Eq. (1) in 1D. (A) Entirely sub-
threshold (superthreshold) initial conditions decay (grow). If u0(x) < κ, ∀x, then u → 0 as t → ∞
(u<), whereas if u0(x) ≥ κ, ∀x, then u → 1 as t → ∞. (B) Initial conditions below (above) the
unstable bump Ub(x) decay (grow). If u0(x) < Ub(x), ∀x, then u → 0 as t → ∞ (u<), whereas
if u0(x) > Ub(x), ∀x, then u → 1 as t → ∞. (C) Characterization of limt→∞ u(x, t) is less
straightforward for multimodal initial conditions. Even though each active region (A1 and A2,
where u0(x) ≥ κ) is narrower than the unstable bump Ub(x), this initial condition could lead to
propagation due to nonlocal interactions.

where we have defined the antiderivative of the weight kernel

W (x) =

∫ x

0

w(y)dy. (4)

The threshold condition Ub(±b) = W (2b) = κ can be solved to identify the unique
bump half-width b: b0(κ) = W−1(κ)/2 for any κ ∈ (0, 1/2). Local stability analysis
can be used to show Ub is linearly unstable [2, 24].

2.2. Periodic solutions. There are also L-periodic stationary solutions UL(x)
with an infinite number of superthreshold regions ∪∞n=−∞[−b+nL, b+nL], under the
restriction 2b < L, which take the form [32]

UL(x) =
∑
n∈Z

∫ b+nL

−b+nL
w(x− y)dy =

∑
n∈Z

(W (x+ b+ nL)−W (x− b+ nL)) . (5)

Applying any threshold condition, UL(±b+ nL) = κ, we obtain an implicit equation
for the region half-widths b given by

κ =
∑
n∈Z

(W (2b+ nL)−W (nL)) := WL(b), (6)

which can be inverted for κ ∈ (0, 1) and L > 0, to obtain the unique solution

bL(κ) = W−1
L (κ) ∈ (0, L/2) .

A local analysis can be used to show that UL is linearly unstable [32].

2.3. An illustrative example: exponential weight kernel. For an expo-
nential weight kernel, Eq. (2), the Fourier transform of w is ŵ(k) = 1/(1 + k2) for
k ∈ R, so convolution by w corresponds to the operator (I−∂xx)−1. As a consequence,
any stationary solutions of Eq. (1) are solutions of the piecewise-smooth second order
differential equation, U(x)− U ′′(x) = H(U(x)− κ), which can be written as{

U ′(x) = V (x),

V ′(x) = U(x)−H(U(x)− κ).
(7)

The complete phase portrait of Eq. (7) is given in Fig. 2 from which we recover the
existence of a unique symmetric bump solution and a family of periodic solutions.
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Fig. 2. Phase portrait of Eq. (7), describing stationary solutions of Eq. (1) with an exponential
kernel, Eq. (2) with κ ∈ (0, 1/2). Solid black and blue lines are nullclines of U and U ′, respectively.
Homogeneous states Ū = 0, 1 occur at their intersection. Homoclinic orbits arise about the point
(U,U ′) = (κ, 0), crossing the threshold κ twice. The single bump Ub (red trajectory) forms a separa-
trix, bounding all other nontrivial stationary solutions. There exists an infinite number of periodic
solutions UL inside (e.g., green trajectories), whose orbits shrink as L is decreased from infinity.

2.4. Traveling fronts. To construct traveling wave solutions, we introduce the
traveling wave coordinate ξ = x− ct, where c denotes the wave speed, and integrate
the corresponding equation to yield [6, 13,36]

Uf (ξ) = eξ/c

[
κ− 1

c

∫ ξ

0

e−y/c(W∞ −W (y))dy

]
.

Assuming c > 0 (for κ ∈ (0, 1/2)) and requiring boundedness implies

κ =
1

c

∫ ∞
0

e−y/c(W∞ −W (y))dy, (8)

and so the traveling front solution will be of the form

Uf (ξ) =
1

c

∫ ∞
0

e−y/c(W∞ −W (y + ξ))dy. (9)

Eq. (8) relates the wavespeed c to the threshold κ and kernel w(x), and can be
rearranged along with integration by parts to yield a simpler implicit equation for c,∫ ∞

0

e−y/cw(y)dy = W∞ − κ. (10)

Since W∞ = 1/2, Eq. (10) will only have a solution with corresponding c ∈ (0,∞)
if κ ∈ (0, 1/2), since the integral on the left hand side is positive and bounded from
above by W∞. Local stability has been studied previously [13], demonstrating the
wave solution Uf is marginally stable to perturbations that shift its location.

This concludes our analysis of entire solutions to Eq. (1) in the case I ≡ 0. Guided
by the fact that the homogeneous solutions ū ≡ 0, 1 are stable, and the intermediate
bump Ub(x) and periodic solutions UL(x) are unstable, we generally expect initial
conditions u0(x) to either be attracted to ū ≡ 0 or ū ≡ 1 as t → ∞. In the next
section, we demonstrate a means of determining the fate of unimodal initial conditions
using interface equations.
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3. Nonequilibrium dynamics of a single active region. In this section, we
identify conditions on u0(x) with a single active region (u0(x) ≥ κ for x ∈ [x1, x2]),
so the solution to Eq. (1) propagates (assuming I(x, t) ≡ 0). In what follows, we
assume 0 ≤ u0(x) ≤ 1 is unimodal, u′0(x0) = 0 and u′0(x) ≷ 0 for x ≶ x0, ensuring
there are no more than two interfaces for t > 0. First, we derive results for even
u0(x) = u0(−x), and then extend to asymmetric u0(x). Initial conditions can be
separated into subthreshold ones that lead to decay and superthreshold ones that
lead to propagation. Lastly, we identify conditions on the external input I(x, t) to
Eq. (1) that ensure propagation when u0(x) ≡ 0.

3.1. Interface equations and criticality: even symmetric case. Symmetry
of Eq. (1) with I ≡ 0 ensures solutions with even initial conditions are always even, so
the active region A(t) = {x ∈ R | u(x, t) ≥ κ} is symmetric for t > 0. The dynamics
of the symmetric active region A(t) = [−a(t), a(t)] can be described with interface
equations for the two points x = ±a(t) (See [2,15]). We start by rewriting Eq. (1) as

∂tu(x, t) = −u(x, t) +

∫
A(t)

w(x− y)dy, (11)

which can be further simplified:

∂tu(x, t) = −u(x, t) +W (x+ a(t))−W (x− a(t)).

Eq. (11) remains well defined even in the case where a(t) vanishes. We can describe
the dynamics of the two interfaces by the implicit equations

u(±a(t), t) = κ. (12)

Differentiating Eq. (12) with respect to t, we find the total derivative is:

±α(t)a′(t) + ∂tu(±a(t), t) = 0, (13)

where we define a′(t) = da(t)
dt and ±α(t) = ∂xu(±a(t), t). The symmetry of Eq. (13)

allows us to reduce to a single differential equation for the dynamics of a(t):

a′(t) = − 1

α(t)
[W (2a(t))− κ] , (14)

where we have substituted Eq. (11) at a(t) for ∂tu(a(t), t). Eq. (14) is not well-defined
for α(t) = 0, but we will show how to circumvent this difficulty. Furthermore, we can
obtain a formula for α(t) by defining z(x, t) := ∂xu(x, t) and differentiating Eq. (11)
with respect to x to find [15]

∂tz(x, t) = −z(x, t) + w(x+ a(t))− w(x− a(t)),

which we can integrate and evaluate at a(t) to find

α(t) = u′0(a(t))e−t + e−t
∫ t

0

es [w(a(t) + a(s))− w(a(t)− a(s))] ds. (15)

Thus, we have a closed system describing the evolution of the right interface a(t) of
the active region A(t), given by Eqs. (14) and (15), along with the initial conditions
a(0) = ` and α(0) = u′0(`) < 0, as long as α(t) < 0. Criticality occurs for initial
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Fig. 3. Long term behavior of u(x, t) depends only on how the initial interface location
a(0) = ` compares to the bump half-width, b = W−1(κ)/2. (A) If ` > b, propagation occurs
and limt→∞ u(x, t) ≡ 1, ∀x ∈ K = [−k, k] for k < ∞. This follows from the fact that for any K,
we can find a time t∗ for which u(x, t∗) > κ, ∀x ∈ K. (B) If ` < b, eventually u(x, t) < κ, right
after the time t0 when u(0, t0) = κ, and so limt→∞ u(x, t) ≡ 0. (C) If ` = b, stagnation occurs and
limt→∞ u(x, t) = Ub(x).

conditions such that a′(t) = 0, which means W (2`) = κ, i.e. for ` = b = W−1(κ)/2,
so the critical ` is precisely the half-width of the unstable stationary bump solution
Ub(x) defined in Eq. (3).

Propagation. If ` > W−1(κ)/2 then a′(t) > 0 and, due to the monotonicity of w
and Eq. (15), α(t) < 0 for all time t > 0 so limt→∞ a(t) = ∞, and the active region
A(t) expands indefinitely. As a consequence, for any compact set K = [−k, k] with
k > 0 given and any ε > 0, we can find t∗ > 0 large enough such that K ⊂ A(t∗) and

|W (x+ a(t∗))−W (x− a(t∗))− 1| ≤ ε, ∀x ∈ K,

so that for any equal or later time s ≥ t∗ we have

|W (x+ a(s))−W (x− a(s))− 1| ≤ ε, ∀x ∈ K.

We can solve for u(x, t) starting for time t∗ to obtain

u(x, t) = u(x, t∗)e
t∗−t + e−t

∫ t

t∗

es (W (x+ a(s))−W (x− a(s))) ds.

Using the fact that any solution is continuous, we have that |u(x, t∗)| ≤ M for all
x ∈ K. As a consequence, we get that ∀x ∈ K,

|u(x, t)− 1| =
∣∣∣∣(u(x, t∗)− 1)et∗−t + e−t

∫ t

t∗

es (W (x+ a(s))−W (x− a(s))− 1) ds

∣∣∣∣
≤ (1 +M)et∗−t + ε.

This implies that limt→∞ |u(x, t) − 1| = 0, ∀x ∈ K. As a consequence, the solutions
of Eq. (1) locally uniformly converge to the homogeneous state u ≡ 1 as t→∞ (Fig.
3A). Thus, we have propagation of u ≡ 1 into u ≡ 0 as time evolves.

Extinction. If ` < W−1(κ)/2, then a′(t) < 0 and 0 < a(t) < ` on t ∈ (0, t0). By
continuity, there exists a finite t0 > 0 such that a(t0) = 0, at which point the interface
dynamics, Eq. (14) and (15), breaks down. We know this because W (2a(t))− κ < 0
and decreases as a(t) decreases. Note also that for t ∈ (0, t0) we consistently have
α(t) < 0. Inspecting Eq. (15) shows that limt→t−0 α(t) = 0 since u′0(0) = 0. Thus,

at time t = t0, we have 0 ≤ u(x, t0) ≤ κ, and for t ≥ t0, ∂tu(x, t) = −u(x, t), so
u(x, t) = et0−tu(x, t0) for t ≥ t0, and limt→∞ u(x, t) ≡ 0, uniformly on x ∈ R (Fig.
3B).
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Stagnation. If ` = W−1(κ)/2, then a′(t) = 0 for all time assuming α(t) < 0, implying
a(t) ≡ `. Plugging into Eq. (15) yields α(t) = (w(2b)−w(0))(1− e−t) + u′0(`)e−t < 0
for t > 0. As a consequence, a(t) = ` for all time and limt→∞ α(t) = w(2b) − w(0).
Furthermore, we can explicitly solve for

u(x, t) = W (x+ b)−W (x− b) + e−t [u0(x)−W (x+ b) +W (x− b)] ,

so limt→∞ u(x, t) ≡ Ub(x), uniformly on R. We call this case stagnation as the active
region remains fixed for t > 0 (Fig. 3C).

To summarize, we have shown the following result.

Starting with smooth unimodal even initial conditions, u0(x) = u0(−x), with a
single active region, u0(x) ≥ κ for |x| ≤ ` and u0(x) < κ elsewhere, ` > 0 satisfying
u′0(x) ≷ 0 for x ≶ 0, the fate of the solutions u(x, t) to the Cauchy problem, Eq (1),
falls into three cases:

(i) If ` > W−1(κ)/2, then u→ 1 locally uniformly on R as t→ +∞;
(ii) If ` < W−1(κ)/2, then u→ 0 uniformly on R as t→ +∞;
(iii) If ` = W−1(κ)/2, then u→ Ub uniformly on R as t→ +∞.

3.2. Interface equations and criticality: asymmetric case. We can extend
our analysis to unimodal but asymmetric initial conditions, u0(x) 6= u0(−x). Condi-
tions can be stated in terms of the active region of the initial condition A(0) = [x̄1, x̄2],
where u0(x) ≥ κ. The active region of u(x, t) is now defined A(t) = [x1(t), x2(t)] with
associated spatial gradients αj(t) = ∂xu(xj(t), t) for j = 1, 2. Carrying out a deriva-
tion of the interface dynamics then yields [15,33]

x′j(t) = − 1

αj(t)
[W (x2(t)− x1(t))− κ] , (16a)

αj(t) = u′0(xj(t))e
−t + e−t

∫ t

0

es [w(xj(t)− x1(s))− w(xj(t)− x2(s))] ds, (16b)

along with initial conditions xj(t) = x̄j and αj(0) = u′0(x̄j) for j = 1, 2, now requiring
α1(t) > 0 and α2(t) < 0. Criticality occurs for initial conditions such that x′j(t) = 0,

which means W (x̄2 − x̄1) = κ, so the critical width 2b := W−1(κ) is precisely the
width of the stationary bump Ub(x). Similar to our findings in the symmetric case, we
can show: (i) propagation occurs if x̄2−x̄1 > 2b; (ii) extinction occurs for x̄2−x̄1 < 2b;
and (iii) stagnation occurs for x̄2 − x̄1 = 2b.

3.3. Asymptotic results. As demonstrated, we can predict the long term dy-
namics of Eq. (1) based on the initial condition u0(x) and a subsequent analysis of
the interface dynamics. The interface equations also allow us to derive convenient
asymptotic approximations to the speed of propagating solutions and the time to ex-
tinction of decaying solutions. To do so, we truncate the interface system, Eq. (14)
and (15), to leading order in the symmetric case.

Long term propagation speed. For propagating solutions, we know limt→∞ a(t) =
+∞. Assuming the interface propagates at constant speed a(t) ∼ ct+ a0 in the limit
t→∞, self-consistency is enforced by plugging into Eq. (15) and evaluating

lim
t→∞

α(t) = lim
t→∞

[
u′0(a(t))e−t +

∫ t

0

e−(t−s) [w(c(t+ s) + 2a0)− w(c(t− s))] ds

]
= − lim

t→∞

∫ t

0

e−(t−s)w(c(t− s))ds = −1

c

∫ ∞
0

e−y/cw(y)dy := ᾱ.
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Differentiating Eq. (9) for Uf (ξ) and plugging in ξ = 0, we obtain the same formula,
so ᾱ = U ′f (0), the gradient of the traveling front solution at the threshold κ. Plugging
into Eq. (14) along with our assumption a(t) = ct+ a0, we find an implicit equation
for c,

∫∞
0

e−y/cw(y)dy = W∞ − κ, which matches Eq. (10).

Time to extinction. To approximate the extinction time t0 when a(t0) = 0 in the
case ` < W−1(κ)/2, we work in the limit 0 < ` � 1. As 0 < a(t) < ` for time
t ∈ (0, t0), a Taylor expansion of Eqs. (14) and (15) in 0 < a(t)� 1 implies α(t) and
t0 are small too. In this case, we can approximate α(t) ≈ u′′0(0)`, using the leading
order term in Eq. (15), so plugging into Eq. (14) and integrating we can estimate

`

κ
≈ t0
`|u′′0(0)| ⇒ t0 ≈ `2|u′′0(0)|/κ as `→ 0. (17)

3.4. Critical stimulus for activation. We now consider the impact of spa-
tiotemporal inputs I(x, t) on the long term dynamics of Eq. (1) when u0(x) ≡ 0.
This may be more biologically realistic than assuming arbitrary initial conditions,
as waves are often initiated experimentally in cortical tissue by applying an exter-
nal stimulus [16, 23, 44]. To provide intuition, we first construct stationary solutions
assuming I(x, t) ≡ I(x) is unimodal (I ′(0) = 0 and I ′(x) ≷ 0 for x ≶ 0), positive
I(x) > 0, and even I(x) = I(−x). When maxx∈R I(x) = I(0) > κ, we show that
if there are any stationary bump solutions, the one with minimal half-width bmin is
linearly stable. Subsequently, we derive conditions for a brief stimulus lasting a time
t1, I(x, t) = I(x)χ[0,t1] (χ[0,t1] = 1, t ∈ [0, t1]; 0 otherwise), that ensure propagation
of solutions for times t > t1. We show that: (i) there must be no stationary bump
solutions to Eq. (1) with I(x, t) = I(x); and (ii) the active region at t = t1 must be
wider than that of the critical bump Ub(x) of the input-free system.

Stationary bump solutions to Eq. (1) for I(x, t) ≡ I(x) with a single active region
have the form Ub(x) = W (x+ b)−W (x− b) + I(x). The threshold condition

Ub(±b) = W (2b) + I(b) = G(b) = κ (18)

defines an implicit equation for the half-width b. An algebraic argument can be used
to show that if there are solutions b to Eq. (18), they will all be less than the solution
to the input-free case I ≡ 0: b < b0 = W−1(κ)/2. See Fig. 4A for illustration. Local
analysis can be used to show that the sign of G(b) determines the stability of a bump
of half-width b (G(b) < 0: stable; G(b) > 0: unstable), and if there are any solutions
to Eq. (18), the minimal one bmin will be stable or marginally stable [24].

We now demonstrate that for a spatiotemporal input, I(x, t) = I(x)χ[0,t1], to
generate propagation, (i) Eq. (18) must have no solutions, and (ii) t1 must be large
enough so the active region A(t) = [−a(t), a(t)] satisfies a(t1) > b0, where b0 solves
Eq. (18) for I ≡ 0. Starting from u0(x) ≡ 0, we know initially, the dynamics obeys
∂tu(x, t) = −u(x, t) + I(x, t), so u(x, t) = I(x)(1 − e−t) during this phase. This
formula determines the lower bound on the stimulus time t0 < t1 needed to generate
a nontrivial active region, A(t) 6= ∅. This time is given by solving

max
x∈R

u(x, t0) = I(0)(1− e−t0) = κ ⇒ t0 = ln

[
I(0)

I(0)− κ

]
.

If t1 ≤ t0, then the long term dynamics of the solution is u(x, t) = I(x)(1−e−t1)e−(t−t1)

for t > t1, and limt→∞ u(x, t) ≡ 0. Note if I(0) < κ, then u(x, t) < κ for all t > 0.
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if G(b) = W (2b) + I(b) = κ has no solutions, which occurs for sufficiently wide I(x) (note inset).
If solutions to Eq. (18) exist, the minimal one will be linearly (bs) or marginally (bm) stable.
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For I(x) such that G(bs) = κ for some bs, u(x, t1) ≈ Ubs (x) for large enough t1 with active region
[−a1, a1] for a1 := a(t1) < b0, so limt→∞ u(x, t) ≡ 0. (C) Here, I(x) is chosen such that G(b) = κ
has no solutions. Taking te such that ue = u(x, te) satisfies u(±ae, te) = κ with ae < b0, then
limt→∞ u(x, t) ≡ 0. On the other hand, for tp such that up = u(x, tp) satisfies u(±ap, tp) = κ with
ap > b0, then u(x, t) propagates as t→∞.

If t1 > t0, then for t0 < t < t1, we can derive the interface equations for
u(±a(t), t) = κ, which are

a′(t) = − 1

α(t)
[W (2a(t))− κ+ I(a(t))] , (19a)

α(t) = e−t
∫ t

t0

es [w(a(t) + a(s))− w(a(t)− a(s)) + I ′(a(s))] ds, (19b)

with initial conditions a(t0) = 0 and α(t0) = 0, so a′(t0) diverges. Despite the
singularity, we can show that a′(t) is integrable for |t−t0| � 1 and a(t), α(t) ∝ √t− t0.

We desingularize Eq. (19) with the change of variables τ = −
∫ t
t0

ds
α(s) [3, 4], so the

differential equation for ã(τ) in the new coordinate frame is

dã

dτ
(τ) = W (2ã(τ))− κ+ I(ã(τ)), (20)

with ã(0) = 0. Since we know α(t) < 0 for t > t0, then τ will be an increasing function
of t, so we refer now to τ1 := τ(t1) and note 0 = τ(t0). Because I(0) − κ > 0 by
assumption, we have dã

dτ (τ) > 0 for all τ where it is defined.

There are three remaining cases now, which depend on the existence of solutions
to Eq. (18) and the time τ1 > 0: (I) Eq. (18) has at least one solution, and propagation
does not occur; (II) Eq. (18) has no solutions, but τ1 ≤ τc, the time at which ã(τc) = b0
for I(x, τ) ≡ I(x), and propagation does not occur; (III) Eq. (18) has no solutions,
and τ1 > τc, so propagation occurs. We now treat these three cases in detail.

Case I: minx∈RG(x) ≤ κ. Here, Eq. (18) possesses at least one solution. By our
assumption I(0) > κ, this solution bmin is linearly or marginally stable, as mentioned.
Eq. (20) implies dã

dτ > 0 for all τ < τ1, but dã
dτ vanishes at ã = bmin, so ã(τ) < bmin < b0

for all τ < τ1. Thus, once τ = τ1, the dynamics is described by the extinction case
detailed in Section 3.1, and limt→∞ u(x, t) ≡ 0 (Fig. 4B).

Case II: minx∈RG(x) > κ and τ1 ≤ τc. Here Eq. (18) has no solutions, but ã(τ) will
not grow large enough for propagation to occur once the input I(x, τ) is terminated.
This is due to the condition τ1 ≤ τc, where we can define the critical time τc as the

10



time when ã(τc) = b0 = W−1(κ)/2 as∫ W−1(κ)/2

0

da

W (2a)− κ+ I(a)
= −

∫ tc

t0

dt

α(t)
:= τc. (21)

By definition ã(τ1) ≤ b0, so once τ = τ1, the dynamics is described by (a) the
extinction case in Section 3.1 if τ1 < τc, so limt→∞ u(x, t) ≡ 0, or (b) the stagnation
case in Section 3.1 if τ1 = τc, so limt→∞ u(x, t) ≡ Ub(x) (Fig. 4C).

Case III: minx∈RG(x) > κ and τ1 > τc. Finally, we describe the case ensuring
propagation for t → ∞. Requiring τ1 > τc with Eq. (21), we have that ã(τ1) > b0.
After τ = τ1, the dynamics is described by the propagation case in Section 3.1, so the
homogeneous state u ≡ 1 is locally uniformly propagating as t→∞ (Fig. 4C).

3.5. Explicit results for exponential kernel. Lastly, we demonstrate the
results derived above using the exponential kernel, Eq. (2). The form of the interface
equations for symmetric initial conditions and I ≡ 0 are

a′(t) = − 1

2α(t)

[
1− e−2a(t) − 2κ

]
, (22a)

α(t) = u′0(a(t))e−t − e−t−a(t)
∫ t

0

es sinh(a(s))ds. (22b)

First, note the critical half-width b0 is given by when a′(t) = 0, which here is b0 =
− 1

2 ln [1− 2κ], so if a(0) > b0, propagation occurs. We demonstrate the accuracy
of this boundary in predicting long-term dynamics by comparing with numerically
computed boundaries in Fig. 5A. Note, in the case of propagation, in the limit t� 1,
we can approximate a(t) ≈ ct+ a0, and the asymptotic approximation in Section 3.3
yields c

2(c+1) = 1
2 − κ, which we rearrange to yield [6, 19,36]

c =
1

2κ
[1− 2κ] , ᾱ = − 2κ

1− 2κ
· 1− 2κ

2
= −κ.

To quantify the timescale of approach to the asymptotic dynamics, we study the
evolution of perturbations to the long term wavespeed c, a(t) = ct + a0 + φ(t) and
assuming α(t) ≈ −κ. Plugging into Eq. (22), and truncating assuming φ(t) and e−2a0

are of similar order, we find

2κφ′(t) = e−2(ct+a0) ⇒ φ(t) = −e−2a0

4κc
e−2ct,

and a(t) approaches the propagation speed c at rate 2c. We compare this result to our
findings from numerical simulations in Fig. 5B. We save a higher order asymptotic
analysis for future work. In addition, we can compute the asymptotic extinction time
for the case in which u0(x) = Ue−x

2/(2σ2), so |u′′0(0)| = U/σ2 and κ = u0(`) implies

` = σ
√

2
√

ln(U/κ) ⇒ t0 ≈ `2e`
2/(2σ2)/σ2,

which agrees with numerical simulations for small enough ` (Fig. 5C).
The critical stimulus for activation was determined in for a general weight kernel

in Section 3.4. Note, the main conditions are that Eq. (18) has no solutions, and that
the stimulus remains on for a time t > tc, where tc is defined by the relation in Eq. (21).
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b0 for which stagnation occurs (u0(b0) = κ). Results are consistent whether choosing u0(x) =

U · Ub(x),Ue−x
2
, or

[
U(1− x2)

]
+

. (B) Instantaneous speed of interface a′(t) → c(κ) in numerical
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estimate a′(t) ≈ c − c1e−2ct (solid line) for best fit c1. (C) Extinction time t0 ≈ `e`
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time τc (in rescaled coordinate τ = −
∫ t
t0

ds
α(s)

) the input Ĩ(x, τ) = I0χ[0,τ1]e
−5|x| must be on for

propagation to occur, computed from Eq. (21) by integrating in a using quadrature (solid line) or
computing Eq. (1) and numerically computing the integral in t (circles). As I0 → I∗0 (σ), the minimal
τ for propagation, τc, blows up.

For an exponential weight kernel, Eq. (2) and exponential input I(x) = I0e−|x|/σ (See
also [24]), Eq. (18) becomes κ = (1− e−2b)/2 + I0e−b/σ = G(b), so

G′(b) = e−2b − I0
σ

e−b/σ = 0 ⇒ b∗ = σ ln [I0/σ] /(1− 2σ)

and also limb→0+ G
′(b) = 1 − I0/σ. Therefore if the input is sufficiently wide, κ <

I0 < σ and 1/2 < σ, then initially G(b) increases until b∗ > 0, and then it decreases
to 1/2 for large b, so G(b) > κ for all b > 0 for sufficiently wide inputs with I0 > κ. In
addition, even for I0 > σ > 1/2, then b∗ < 0, and since we know limb→∞G(b) = 1/2,
then G(b) > 1/2 since it must be monotone decreasing for all b > 0. Thus, there
are no stable bump solutions to Eq. (18) for sufficiently wide and strong inputs. On
the other hand, if we wish to determine the critical curve I∗0 (σ) below which bump
solutions to Eq. (18) emerge (assuming I0 > κ), we simultaneously solve G(b) = κ
and G′(b) = 0 to find the saddle-node bifurcation point

I∗0 (σ) = σ
1− 2σ

1− 2κ
e(1−2σ)/(2σ).

Taking I0 ≤ I∗0 (σ) then ensures the existence of bumps (as in Fig. 4A). For I0 > I∗0 (σ),
we can also study the impact of the input on the time necessary to reach a(t) = b0,
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using the integral over a in Eq. (21). We evaluate this numerically in Fig. 5D,
showing it compares well with estimates we obtain by computing the critical time
tc numerically and then converting to τ coordinates using the change of variables in
Eq. (21). Note that as I0 → I∗0 (σ), then τc →∞.

4. Multiple active regions. We now turn our attention to the more general
case of multimodal initial conditions. Since this can now lead to multiple disjoint
active regions (where u0(x) ≥ κ), we must extend our analysis from Section 3 to track
more than two interfaces (See also [33]). While it is difficult to analyze the resulting
system of equations explicitly, we can gain insight by focusing on two specific cases
of u0(x): (a) periodic initial conditions with an infinite number of active regions and
(b) two symmetric active regions. We begin by deriving the interface equations in the
general case.

4.1. Interface equations: general case. When u0(x) ≥ κ for multiple disjoint
active regions, A(0) = ∪Nj=1 [aj(0), bj(0)], the time evolution of A(t) is implicitly
described by

u(aj(t), t) = u(bj(t), t) = κ, j = 1, ..., N, (23)

for an initial time 0 < t < t0. Differentiating Eq. (23) with respect to t, we find

αj(t)a
′
j(t) + ∂tu(aj(t), t) = 0, βj(t)b

′
j(t) + ∂tu(bj(t), t) = 0, j = 1, ..., N, (24)

where αj(t) = ∂xu(aj(t), t) and βj(t) = ∂xu(bj(t), t). Rearranging Eq. (24), apply-
ing Eq. (11) for ut, and solving for z = ux as before, we find the following system
describing the evolution of the interfaces (aj(t), bj(t)) and gradients (αj(t), βj(t)):

a′j(t) = − 1

αj(t)

[
N∑
k=1

(W (bk(t)− aj(t))−W (ak(t)− aj(t)))− κ
]
, (25a)

b′j(t) = − 1

βj(t)

[
N∑
k=1

(W (bk(t)− bj(t))−W (ak(t)− bj(t)))− κ
]
, (25b)

αj(t) = e−t
∫ t

0

es
N∑
k=1

[w(aj(t)− ak(s))− w(aj(t)− bk(s)))] ds+ u′0(aj(t))e
−t, (25c)

βj(t) = e−t
∫ t

0

es
N∑
k=1

[w(bj(t)− ak(s))− w(bj(t)− bk(s))] ds+ u′0(bj(t))e
−t, (25d)

for j = 1, ..., N . The initial conditions u0(aj(0)) = u0(bj(0)) = κ close the system.
We expect αj(t) ≥ 0 and βj(t) ≤ 0, since they are at the left and right boundaries of
each active region. For the system Eq. (25), there is no straightforward condition that
will ensure propagation in all cases (e.g., see Fig. 1C). For N = 1, Eq. (25) reduces
to Eq. (16), and recall we can explicitly compute the condition for propagation.

First note that one could solve Eq. (25) much faster numerically than Eq. (1),
allowing a computational route to identifying conditions on u0(x) that determine
propagation. We save such computations for future work. Here, we focus on two
special choices of initial conditions that admit explicit analysis: initial conditions
that are (a) periodic and (b) even symmetric with two active regions.
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4.2. Periodic initial conditions. We can leverage results on periodic station-
ary solutions derived in Section 2.2 along with the analysis for single active regions
in Section 3.1 to derive conditions for saturation (u→ 1) when initial conditions are
periodic. For an even and periodic initial condition u(x, 0) = uL(x) of period L,
A(t) = ∪n∈Z [−a(t) + nL, a(t) + nL], so by symmetry we can reduce Eq. (25) to

a′(t) = − 1

α(t)
[WL(a(t))− κ] , (26a)

α(t) = u′L(a(t))e−t + e−t
∫ t

0

es
∑
n∈Z

wn(a(t), a(s))ds, (26b)

where wn(a(t), a(s)) = w(a(t) + a(s) + nL) − w(a(t) − a(s) + nL) and WL(x) is
defined as in Eq. (6). Fixing L, the initial condition uL(x) is defined by the single
parameter `L := a(0), where uL(±`L + nL) = κ, ∀n ∈ Z. Criticality occurs for
`L = bL(κ) = W−1

L (κ), the half-width of each active region of the periodic solution
UL(x), Eq. (5). The analysis proceeds along similar lines to that given in Section 3.1
for the single active region case yielding the following results (illustrated in Fig. 6):

Starting with smooth L-periodic, even initial conditions, uL(x), unimodal on
[−L/2, L/2], the fate of the solutions u(x, t) to Eq (1), falls into three cases:

(i) If `L > W−1
L (κ), then u→ 1 uniformly on R as t→ +∞;

(ii) If `L < W−1
L (κ), then u→ 0 uniformly on R as t→ +∞;

(iii) If ` = W−1
L (κ), then u→ UL uniformly on R as t→ +∞.

Asymptotic results. Similar to the single active region case, we can obtain leading
order approximations for the transient dynamics approaching the homogeneous states.
For periodic initial conditions, we do not obtain traveling waves in the long time limit.
In the case of saturation, we can estimate the time t0 at which u(x, t0) ≥ κ, assuming
L/2 − a(t), α(t), and t0 are small. We approximate α(t) ≈ u′′L(L/2)(`L − L/2), so
t0 ≈ (L− 2`L)2u′′L(L/2)/[2− 4κ].

In the case of extinction, the calculation is quite similar to that presented in Section
3.3, and we find u(x, t0) ≤ κ at t0 ≈ `2L|u′′L(0)|/κ in the limit 0 < `L � 1.

Exponential kernels. Assuming w(x) is given by Eq. (2), we can obtain a simple
implicit expression for the critical half-width bL := W−1

L (κ). Plugging Eq. (2) into
Eq. (6), we can simplify the threshold condition UL(±b+ nL) = κ to the form [32]

κ =
sinh(b)

sinh(L/2)
cosh(L/2− b) := WL(b). (27)
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Eq. (27) must be solved numerically (Fig. 7A), showing bL increases with κ and L.
The formula for UL can also be reduced to yield

UL(x) =


sinh(b)

sinh(L/2)
cosh

(
L
2 + xn

)
, xn ∈ (b− L,−b),

1− eL−b − eb

eL − 1
cosh(xn), xn ∈ (−b, b),

sinh(b)
sinh(L/2)

cosh
(
L
2 − xn

)
, xn ∈ (b, L− b),

(28)

where we define xn := x − nL, ∀n ∈ Z (Fig. 7B). Note, we obtain the threshold
condition, Eq. (27) for UL(±b+ nL), ∀n ∈ Z, and as L→∞, UL(x)→ Ub(x).

4.3. Two symmetric active regions. We now consider the case of of bi-
modal even initial conditions u0(x) = u0(−x), with two active regions supported
in [−`2,−`1] ∪ [`1, `2] for 0 < `1 < `2. That is, we have u0(x) ≥ κ for all x ∈
[−`2,−`1] ∪ [`1, `2] and u0(x) < κ elsewhere, with u′0(x) ≷ 0 for x ≶ ∓`2. We also
ensure a non-degeneracy condition of the derivative of u0 at the boundaries of the
active regions, namely u′0(±`1,2) 6= 0. These hypotheses on the initial conditions
ensure that, as time evolves, the active regions can be described by the inner inter-
face a(t) := a2(t) = −b1(t), outer interface b(t) := b2(t) = −a1(t), outer gradient
α(t) := α2(t) = −β1(t), and inner gradient β(t) := β2(t) = −α1(t). We can therefore
write the system of interface equations and their gradients, Eq. (25), in the following
simpler form

a′(t) = − 1

α(t)
[W (b(t)− a(t))− κ+W (b(t) + a(t))−W (2a(t))] , (29a)

b′(t) = − 1

β(t)
[W (b(t)− a(t))− κ+W (2b(t))−W (b(t) + a(t))] , (29b)

α(t) = u′0(a(t))e−t + e−t
∫ t

0

es [w(a(t) + b(s))− w(a(t) + a(s))] ds,

+ e−t
∫ t

0

es [w(a(t)− a(s))− w(a(t)− b(s))] ds, (29c)

β(t) = u′0(b(t))e−t + e−t
∫ t

0

es [w(b(t)− a(s))− w(b(t)− b(s))] ds
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+ e−t
∫ t

0

es [w(b(t) + b(s))− w(b(t) + a(s))] ds. (29d)

The system Eq. (29) is closed by the initial conditions a(0) = `1 and b(0) = `2.
As opposed to the single active region case, it is not possible to develop a simple
condition on (`1, `2) that determines whether propagation, extinction, or stagnation
occurs in the long time limit. However, we can still partition the space of initial
conditions (`1, `2) into several cases, for which the long term behavior of Eq. (1)
is determined by the initial transient dynamics of (a(t), b(t)). Observe that both
W (b(t)+a(t))−W (2a(t)) > 0 and W (2b(t))−W (b(t)+a(t)) > 0 for all time whenever
they are well defined (i.e. as long as 0 < a(t) < b(t)). As a consequence, we can
already rule out the trivial case where `2 − `1 ≥W−1(κ).

Class I: `2 − `1 ≥ W−1(κ). In this case, we automatically deduce that b′(t) > 0
while a′(t) < 0 for all time where they are both well defined. This implies that there
exists a finite t∗ > 0 at which we have a(t∗) = 0. At this point, the two active
regions merge to form a single active region given at time t = t∗ by [−b(t∗), b(t∗)]
with 2b(t∗) > 2`2 > W−1(κ) as `2 − `1 ≥W−1(κ). As a consequence, we are back to
the propagation scenario studied in Section 3.1 and we find the associated solution of
the neural field Eq. (1) obeys u→ 1 locally uniformly on x ∈ R as t→ +∞.

Class II: `2 − `1 < W−1(κ). We now discuss the case where `2 − `1 < W−1(κ). In
order to simplify the presentation, we define the following two quantities:

W1(`1, `2) := W (`2 − `1)− κ+W (`1 + `2)−W (2`1),

W2(`1, `2) := W (`2 − `1)− κ+W (2`2)−W (`1 + `2),

defined for all 0 < `1 < `2. It is crucial to observe that W1(`1, `2) − W2(`1, `2) =
2W (`1 + `2)−W (2`1)−W (2`2) > 0 for any 0 < `1 < `2 by concavity of the function
W on the positive half line. Thus, we only have to consider three cases (See Fig. 8).

Case A: If W1(`1, `2) > W2(`1, `2) ≥ 0, then b′(t) > 0 and a′(t) < 0 for all time
where they are both well defined. Once again, there must exist t∗ > 0 at which
a(t∗) = 0. At that point, the two active regions merge to form a single active region
given at time t = t∗ by [−b(t∗), b(t∗)] with 2b(t∗) > 2`2 > W−1(κ). Indeed, from
W2(`1, `2) > 0, we deduce that W (2`2) > W (`1 + `2)−W (`2 − `1) + κ > κ. And we
are back to the propagation case of Section 3.1.

Case B: If 0 ≥ W1(`1, `2) > W2(`1, `2), then b′(t) < 0 and a′(t) > 0 for all time
where they are both well defined. As a consequence, there exists some time t∗ > 0
where a(t∗) = b(t∗) and such that u(x, t∗) ≤ κ for all x ∈ R. As a consequence, this
will lead to the extinction case of Section 3.1 and we get that the solutions of the
neural field equation Eq. (1) obeys u→ 0 uniformly on R as t→ +∞.

Case C: If W1(`1, `2) > 0 >W2(`1, `2), then we are led to study three sub-cases:

Sub-case 1: Both a(t) and b(t) satisfy W1(a(t), b(t)) > 0 > W2(a(t), b(t)) for all
t ∈ [0, t∗) where they are well defined, and at time t = t∗ we have a(t∗) = 0. Once
more, at this point, the two active regions merge to form a single active region at time
t = t∗: [−b(t∗), b(t∗)] with 2b(t∗) < 2`2. Thus, it is enough to check that the limit
t → t∗, we have W2(a(t), b(t)) → W (2b(t∗)) − κ. Since W2 does not change sign in
(0, t∗), then 0 ≥W (2b(t∗))− κ, so we obtain either stagnation (when W (2b(t∗)) = κ)
or extinction (when W (2b(t∗)) < κ), as studied in Section 3.1.

Sub-case 2: There exists a time t0 > 0 where a(t) and b(t) satisfyW1(a(t), b(t)) >
0 >W2(a(t), b(t)) for all t ∈ [0, t0), and at t = t0 we have a(t0) 6= 0 withW2(a(t0), b(t0)) =
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Fig. 8. Evolution of interfaces for two symmetric bumps having Class II initial conditions:
`2 − `1 < W−1(κ). Phase portrait of Eq. (29) in (a(t),b(t)) is shown in the case of an exponential
kernel, Eq. (2), κ = 0.45 and the initial condition u0(x), Eq. 30. We fix a(0) = `1 = 1/4 and
vary b(0) = `2 from 0.5 to 2.25. Some initial conditions (red stars) lead to trajectories (black lines)
that propagate, while other initial conditions (blue stars) lead to extinction. Case A (W1(`1, `2) >
W2(`1, `2) ≥ 0): a(t) vanishes in finite time with a final value above the nullcline W2(`1, `2) = 0
(where red line meets `2 axis), leading to propagation. See corresponding example evolution of
u(x, t). Case B (0 ≥ W1(`1, `2) > W2(`1, `2)): a(t) and b(t) merge in finite time, leading to
extinction. Case C (W1(`1, `2) > 0 > W2(`1, `2)): Three subcases are described in main text,
leading to either extinction for subcases (1) and (3) or propagation for subcase (2). Green arrows
indicate the direction of the vector field in each sub-region. Outer panels demonstrate behavior of
the full neural field model, Eq. (1), in the cases A, B, C1, C2, and C3.

0 while W1(a(t0), b(t0)) > 0, in which case we are back to Case A and propagation
occurs.

Sub-case 3: There exists a time t1 > 0 where a(t) and b(t) satisfyW1(a(t), b(t)) >
0 >W2(a(t), b(t)) for all t ∈ [0, t1), and at t = t1 we have a(t1) 6= 0 withW1(a(t1), b(t1)) =
0 while 0 >W2(a(t1), b(t1)), in that case we are back to Case B and extinction occurs.

We illustrate these different scenarios on a specific example in Fig. 8 using an
exponential kernel, Eq. (2), and the following initial condition

u0(x) =
U0

2

(
e−|x+x0| + e−|x−x0|

)
, (30)

which allows us to specify

x0 =
1

2
ln
(
−1 + 2 cosh(`1)e`2

)
, and U0 = κ

√
−1 + 2 cosh(`1)e`2

cosh(`1)
,

and ensure that u0(±`1,2) = κ. Note, for a fixed `1, there is a critical value of `2
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at which initial conditions transition from those that lead to extinction (blue stars)
to those that lead to propagation (red stars) in Fig. 8. Corresponding example
simulations of the full neural field Eq. (1) are also shown.

4.4. Critical spatially-periodic stimuli. Finally, we can consider the impact
of spatially periodic inputs I(x, t) = I(x)χ[0,t1] (I(x) = I(x + L)) on the long-
term dynamics of Eq. (1), assuming u0(x) ≡ 0. To make our calculations more
straightforward, we assume that I(x) is even and unimodal on x ∈ [−L/2, L/2] with
I ′(0) = I ′(±L/2) = 0. Our analysis follows similar principles as that performed for
unimodal inputs in Section 3.4. To ensure propagation, there must be no station-
ary L-periodic pattern solutions to Eq. (1) with stationary input I(x) and the active
region on x ∈ [−L/2, L/2] at t = t1 must be wider than bL = W−1

L (κ).
Stationary periodic patterns exist as solutions to Eq. (1) for I(x, t) = I(x) periodic

(I(x) = I(x + L)), even, and unimodal on x ∈ [−L/2, L/2]. Adapting our analysis
from Section 2.2, we can show they have the form

UL(x) =
∑
n∈Z

(W (x+ b+ nL)−W (x− b+ nL)) + I(x).

Applying the threshold conditions, UL(±b+ nL) = κ then yields∑
n∈Z

(W (2b+ nL)−W (nL)) + I(b) = WL(b) + I(b) = GL(b) = κ, (31)

which defines an implicit equation for the half-width b of each active region. Local
analysis can again be used to show that if there are any solutions to Eq. (31), the
minimal one will be stable or marginally stable, since G(x) will be decreasing or at a
local minimum.

We now demonstrate that for a spatiotemporal input, I(x, t) = I(x)χ[0,t1], to
generate a saturating solution, (i) Eq. (31) must have no solutions and (ii) t1 must
be large enough so the active region A(t) = ∪n∈Z[−a(t) + nL, a(t) + nL] satisfies
a(t1) > bL, where bL solves Eq. (31) for I ≡ 0. Starting from u0(x) ≡ 0, we know
initially the dynamics obeys ∂tu(x, t) = −u(x, t) + I(x, t), so the time needed to

produce a nontrivial active region is given by t0 = ln
[

I(0)
I(0)−κ

]
, as before. If t1 ≤ t0,

then the long term dynamics of the solution is u(x, t) = I(x)(1 − e−t1)e−(t−t1) for
t > t1, so limt→∞ u(x, t) ≡ 0. Note if I(0) < κ, then u(x, t) < κ clearly for all t > 0.

If t1 > t0, then for t0 < t < t1, we can derive the interface equations for
u(±a(t), t) = κ, similar to Eq. (26), finding

a′(t) = − 1

α(t)
[WL(a(t))− κ+ I(a(t))] , (32a)

α(t) = u′L(a(t))e−t + e−t
∫ t

0

es

[∑
n∈Z

wn(a(t), a(s)) + I(a(s))

]
ds, (32b)

with initial conditions a(t0) = 0 and α(t0) = 0, so a′(t0) diverges. As before, we can

desingularize Eq. (32) with the change of variables τ = −
∫ t
t0

ds
α(s) , so we can write a

differential equation for ã(τ) in τ as

dã

dτ
= WL(ã(τ))− κ+ I(ã(τ)), (33)
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Fig. 9. Conditions for propagation driven by a spatially-periodic input I(x, t) = I(x)χ[0,t1] with
I(x) = I(x + L), and u(x, 0) ≡ 0. (A) For periodic, even, and positive profile I(x) with I(0) > κ,
propagation only occurs if GL(b) = WL(b) + I(b) = κ has no solutions. If solutions to Eq. (31)
exist, the minimal one is linearly (bs) or marginally (bm) stable. For inputs I(x) that are monotone
decreasing on x ∈ (0, L/2), there are only two solutions. (B) If GL(bs) = κ is satisfied for some bs,
u(x, t1) ≈ ULs (x) for large t1 with active region centered at x = 0 given [−as, as] where as < bL,
so limt→∞ u(x, t) ≡ 0. (C) Here I(x) is chosen so that GL(b) = κ has no solutions. If t1 := te,
then ue(±ae) := u(±ae, te) = κ and ae < bL, so limt→∞ u(x, t) ≡ 0. However, for t1 := tp with
up(±ap) := u(±ap, te) = κ and ap > bL, then limt→∞ u(x, t) ≡ 1.

with ã(0) = 0. Since α(t) < 0 for t > t0, τ will be an increasing function of t, so we
now refer to τ1 := τ(t1) and note τ(t0) = 0. By assumption I(0) − κ > 0, so dã

dτ > 0
for all τ where it is defined.

We now discuss the three remaining cases: (I) Eq. (31) has at least one solution,
so saturation does not occur; (II) Eq. (31) has no solutions, but τ1 ≤ τc, the time at
which ã(τc) = bL for I(x, τ) ≡ I(x), and saturation does not occur; (III) Eq. (31) has
no solutions, and τ1 > τc, so saturation occurs.

Case I: minx∈RG(x) ≤ κ. Here, Eq. (31) has at least one solution. Since we have
assumed I(0) > κ, this solution bmin is linearly or marginally stable with respect to
even and odd perturbations. Eq. (33) implies dã

dτ > 0 for all τ < τ1, but dã
dτ vanishes

at ã = bmin, so ã(τ) < bmin < b0 for all τ < τ1. Thus, once τ = τ1, the dynamics is
described by the extinction case from Section 4.2, and limt→∞ u(x, t) ≡ 0 (Fig. 9B).

Case II: minx∈RG(x) > κ and τ1 ≤ τc. Here Eq. (31) has no solutions, but ã(τ) will
not grow large enough for saturation to occur once I(x, τ) = 0, since τ1 ≤ τc. We
define τc as the critical time when ã(τc) = bL = W−1

L (κ), given by the formula∫ W−1
L (κ)

0

da

WL(a)− κ+ I(a)
= −

∫ tc

t0

dt

α(t)
:= τc. (34)

By definition, ã(τ1) ≤ bL, so once τ = τ1, the dynamics is described by either (a) the
extinction case in Section 4.2 if τ1 < τc, so limt→∞ u(x, t) ≡ 0, or (b) the stagnation
case in Section 4.2 if τ1 = τc, so limt→∞ u(x, t) ≡ UL(x) (Fig. 9C).

Case III: minx∈RG(x) > κ and τ1 > τc. Requiring τ1 > τc with Eq. (34), we have
that ã(τ1) > bL. Thus, after τ = τ1, the dynamics is described by the saturation case
in Section 4.2, so limt→∞ u(x, t) ≡ 1 (Fig. 9C).

5. Discussion. In this paper, we have studied threshold phenomena of front
propagation in the excitatory neural field Eq. (1) using an interface dynamics ap-
proach. Our interface analysis projects the dynamics of the integrodifferential equa-
tions to a set of differential equations for the boundaries of the active regions, where
the neural activity is superthreshold. The interface equations can be used to cate-
gorize initial conditions or external stimuli based on whether the corresponding long
term dynamics of the neural field are extinction (u → 0), propagation/saturation
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(u → 1), or stagnation (u → Ustat(x) 6≡ 0, 1). We considered several classes of initial
conditions, which admit explicit results: (i) functions with a single active region; (ii)
even and periodic functions with an infinite number of active regions; and (iii) a two-
parameter family of even functions with two active regions. In these particular cases,
the conditions for extinction, propagation/saturation, or stagnation can be expressed
in terms of a few inequalities for the parameters specifying the initial conditions. We
were able to obtain a similar trichotomy when the neural field Eq. (1) is forced by a
fixed critical stimulus (e.g., unimodal and periodic) over a finite time interval. Our
analysis assumes the nonlinearity in the neural field arises from a Heaviside firing rate
function, so the dynamics of the neural field Eq. (1) can be equivalently expressed
as differential equations for the spatial locations where the neural activity equals the
threshold of the firing rate function. This work addresses an important problem in the
analysis of models of large-scale neural activity, determining the long term behavior
of neuronal network dynamics that begin away from equilibrium.

There are several natural extensions of this work that build on the idea of devel-
oping critical thresholds for propagation in neural fields using an interface dynamics
approach. For instance, one possibility would be to consider a planar version of
Eq. (1), and develop closed form equations for the corresponding interface dynamics
of the contours encompassing active regions as in [15]. In a preliminary analysis, we
have already found that our results developed herein for single active regions can be
extended to the case of radially symmetric initial conditions in two-dimensions (2D).
Single stripe and periodic stripe patterns may also admit explicit analysis. However,
there are also a number of other classes of initial condition that do not have a one-
dimensional analogue, which could be interesting to explore, such as spot patterns
and multiple concentric annuli. Employing our knowledge of the one-dimensional
case may shed light on how to develop a theory for threshold phenomena in 2D.
Alternatively, we may also consider neural fields with negative feedback that mod-
els adaptation [4, 22, 28, 31, 36], which are known to generate traveling pulses, spiral
waves, or more exotic phenomena. In this case, the long term behavior of propagating
solutions can be counter-propagating pulses rather than fronts.
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