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Abstract

We establish Fredholm properties for a class of nonlocal differential operators. Using mild convergence

and localization conditions on the nonlocal terms, we also show how to compute Fredholm indices via

a generalized spectral flow, using crossing numbers of generalized spatial eigenvalues. We illustrate

possible applications of the results in a nonlinear and a linear setting. We first prove the existence

of small viscous shock waves in nonlocal conservation laws with small spatially localized source terms.

We also show how our results can be used to study edge bifurcations in eigenvalue problems using

Lyapunov-Schmidt reduction instead of a Gap Lemma.

Keywords: Nonlocal operator; Fredholm index; Spectral flow; Nonlocal conservation law; Edge bifurca-

tions.

1 Introduction

1.1 Motivation

Our aim in this paper is the study of the following class of nonlocal linear operators:

T : H1(R,Rn) −→ L2(R,Rn), U 7−→ d

dξ
U − K̃ξ ∗ U (1.1)

where the matrix convolution kernel K̃ξ(ζ) = K̃(ζ; ξ) acts via

K̃ξ ∗ U(ξ) =

∫
R
K̃(ξ − ξ′; ξ)U(ξ′)dξ′.

Operators such as (1.1) appear when linearizing at coherent structures such as traveling fronts or pulses in

nonlinear nonlocal differential equations. One is interested in properties of the linearization when analyzing

robustness, stability or interactions of these coherent structures. A prototypical example are neural field

equations which are used in mathematical neuroscience to model cortical traveling waves. They typically

take the form [18]

∂tu(x, t) = −u(x, t) +

∫
R
K(|x− x′|)S(u(x′, t))dx′ − γv(x, t) (1.2a)

∂tv(x, t) = ε(u(x, t)− v(x, t)) (1.2b)
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for x ∈ R and with γ, ε positive parameters. The nonlinearity S is the firing rate function and the kernel

K is often referred to as the connectivity function. It encodes how neurons located at position x interact

with neurons located at position x′ across the cortex. The first equation describes the evolution of the

synaptic current u(x, t) in the presence of linear adaptation which takes the form of a recovery variable

v(x, t) evolving according to the second equation. In the moving frame ξ = x− ct, equations (1.2) can be

written as

∂tu(ξ, t) = c∂ξu(ξ, t)− u(ξ, t) +

∫
R
K(|ξ − ξ′|)S(u(ξ′, t))dξ′ − γv(ξ, t) (1.3a)

∂tv(ξ, t) = c∂ξv(ξ, t) + ε(u(ξ, t)− v(ξ, t)), (1.3b)

such that stationary solutions (u(ξ), v(ξ)) satisfy

−c d
dξ
u(ξ) = −u(ξ) +

∫
R
K(|ξ − ξ′|)S(u(ξ′))dξ′ − γv(ξ) (1.4a)

−c d
dξ
v(ξ) = ε(u(ξ)− v(ξ)). (1.4b)

The linearization of (1.3) at a particular solution (u0(ξ), v0(ξ)) of (1.4) takes the form

∂tu(ξ, t) = c∂ξu(ξ, t)− u(ξ, t) +

∫
R
K(|ξ − ξ′|)S′(u0(ξ′))u(ξ′, t)dξ′ − γv(ξ, t) (1.5a)

∂tv(ξ, t) = c∂ξv(ξ, t) + ε(u(ξ, t)− v(ξ, t)). (1.5b)

Denoting U = (u, v) and L0 the right-hand side of (1.5), the eigenvalue problem associated with the

linearization of (1.3) at (u0, v0) reads

λU = L0U. (1.6)

This eigenvalue problem can be cast as a first-order nonlocal differential equation

d

dξ
U(ξ) = K̃λξ ∗ U(ξ) (1.7)

where

K̃λξ (ζ) = −1

c

(
−(1 + λ)δ0 +K(|ζ|)S′(u∗(ξ − ζ)) −γδ0

εδ0 −(ε+ λ)δ0

)
and δ0 denotes the Dirac delta at 0.

The differential systems (1.4) and (1.7) can be viewed as systems of functional differential equations of

mixed type since the convolutional term introduces both advanced and retarded terms. Such equations are

notoriously difficult to analyze. Our goal here is threefold. First, we establish Fredholm properties of such

operators. Second we give algorithms for computing Fredholm indices. Last, we show how such Fredholm

properties can be used to analyze perturbation and stability problems.

For local differential equations, a variety of techniques is available to study such problems. For example,

in the case of the Fitzhugh-Nagumo equations, written in moving frame ξ = x− ct,

∂tu = c∂ξu+ ∂ξξu+ f(u)− γv (1.8a)

∂tv = c∂ξv + ε(u− v) (1.8b)
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with a bistable nonlinearity f , spectral properties of the linearization of (1.8) at a stationary solution

(u∗(ξ), v∗(ξ))

L∗ :=

(
c∂ξ + ∂ξξ + f ′(u∗) −γ

ε c∂ξ − ε

)
,

are encoded in exponential dichotomies of the first-order equation [17, 22]

d

dξ
U(ξ) = A(ξ, λ)U(ξ), A(ξ, λ) =

 0 1 0

λ− f ′(u∗) −c −γ
− ε
c 0 λ+ε

c

 . (1.9)

In particular, L∗ − λ is a Fredholm operator if and only if (1.9) has exponential dichotomies on R− and

R+. Unfortunately, for nonlocal equations (1.7), neither existence of exponential dichotomies nor Fredholm

properties are known in general. Spectral properties of nonlocal operators such as T in (1.1) are understood

mostly in the cases where T − λ is Fredholm with index zero and U is scalar. We mention the early work

of Ermentrout & McLeod [7] who proved that the Fredholm index at a traveling front is zero in the case

where γ = 0 (no adaptation) for the neural field system (1.2). Using comparison principles, De Masi et

al. proved stability results for traveling fronts in nonlocal equations arising in Ising systems with Glauber

dynamics and Kac potentials [5]. In a more general setting, yet relying on comparison principles, Chen [3]

showed the existence and asymptotic stability of traveling fronts for a class of nonlocal equations, including

the models studied by Ermentrout & McLeod and De Masi et al. . Bates et al. [2], using monotonicity and

a homotopy argument, also studied the existence, uniqueness, and stability of traveling wave solutions in

a bistable, nonlinear, nonlocal equation.

More general results are available when the interaction kernel is a finite sum of Dirac delta measures. In

particular, the interaction kernel has finite range in that case. Such interaction kernels arise in the study

of lattice dynamical systems. Mallet-Paret established Fredholm properties and showed how to compute

the Fredholm index via a spectral flow [13]. His methods are reminiscent of Robbin & Salamon’s work [21],

who established similar results for operators d
dξ + A(ξ) where A(ξ) is self-adjoint but does not necessarily

generate a semi-group. For the operators studied in [13], Fredholm properties are in fact equivalent to the

existence of exponential dichotomies for an appropriate formulation of (1.1) as an infinite- dimensional

evolution problem [10, 15].

Our approach extends Mallet-Paret’s results [13] to infinite-range kernels. We do not know if a dynamical

systems formulation in the spirit of [10, 15] is possible. Our methods blend some of the tools in [21] with

techniques from [13]. In the remainder of the introduction, we give a precise statement of assumptions and

our main results.

1.2 Main results — summary

We are interested in proving Fredholm properties for

T : U 7−→ d

dξ
U − K̃ξ ∗ U.

Our main results assume the following properties for K̃ξ
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• Exponential localization: the kernel K̃ξ is exponentially localized, uniformly in ξ; see Section 1.4,

Hypotheses 1.1 and 1.2.

• Asymptotically constant: there exist constant kernels K̃± such that K̃ξ −→
ξ→±∞

K̃±; see Section

1.4, Hypotheses 1.1 and 1.2.

• Asymptotic hyperbolicity: the asymptotic kernels K̃± are hyperbolic; see Section 1.4, Hypothesis

1.3, and Section 2.2.

• Asymptotic regularity: the complex extensions of the Fourier transforms of K̃± are bounded and

analytic in a strip containing the imaginary axis; see Section 1.4, Hypothesis 1.4.

Our main results can then be summarized as follows.

Theorem 1. Assume that the interaction kernel K̃ξ satisfies the following properties: exponential local-

ization, asymptotically constant, asymptotic hyperbolicity, and asymptotic regularity. Then the nonlocal

operator T defined in (1.1) is Fredholm on L2(R) and its index can be computed via its spectral flow.

As a first example, we study shocks in nonlocal conservation laws with small localized sources of the form

Ut = (K ∗ F (U) +G(U))x + εH(x, U, Ux), U ∈ Rn. (1.10)

Similar types of conservation laws have been studied in [4, 6]. More precisely, using a monotone iteration

scheme, Chmaj proved the existence of traveling wave solutions for (1.10) with ε = 0, U ∈ R, [4]. Du et al.

proposed to study nonlocal conservation laws more systemically and described interesting behavior in the

inviscid nonlocal Burgers’ equation [6]. We show how our results can help study properties of shocks in

such systems (1.10). We prove that for small localized external sources there exist small undercompressive

shocks of index −1, that is, # {outgoing characteristics} = # {ingoing characteristics}. Shocks can be

parametrized by values on ingoing ”characteristics” in the case when characteristic speeds do not vanish.

For vanishing characteristic speeds, we show the existence of undercompressive shocks with index −2, that

is, # {outgoing characteristics} = # {ingoing characteristics} + 2. Here, we use the term characteristic

informally, a precise definition via the dispersion relation is given in Section 5.1.

As a second example, we consider bifurcation of eigenvalues from the edge of the essential spectrum. It

has been recognized early [25] that localized perturbations of operators can cause eigenvalues to emerge

from the essential spectrum. More recently, spatial dynamics methods have helped to treat a much larger

class of eigenvalue problems using analytic extensions of the Evans function into the essential spectrum,

thus tracking eigenvalues into and beyond the essential spectrum; see [8, 12]. This extension, usually

referred to as the Gap Lemma, was used to track stability and instability in a conservation law during

spatial homotopies [19, 20], without referring to spatial dynamics but rather to a local tracking function

constructed via Lyapunov-Schmidt and matching procedures. In Section 5.2, we will show that such an

approach is possible for nonlocal equations, using the Fredholm properties established in our main results.

1.3 Set-up of the problem

We are interested in studying linear nonlocal differential equations that can be written as:

d

dξ
U(ξ) =

∫
R
K(ξ − ξ′; ξ)U(ξ′)dξ′ +

∑
j∈J

Aj(ξ)U(ξ − ξj) +H(ξ). (1.11)
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Here U(ξ), H(ξ) ∈ Cn, and K(ζ; ξ), Aj(ξ) ∈ Mn(C), n ≥ 1, the space of n× n complex matrices. The set

J is countable and the shifts ξj satisfy (without loss of generality)

ξ1 = 0, ξj 6= ξk, j 6= k ∈ J . (1.12)

For each ξ ∈ R, we define A(ξ) by

A(ξ) :=
(
K( · ; ξ), (Aj(ξ))j∈J

)
, (1.13)

such that we may write (1.11) as

d

dξ
U(ξ) = N [A(ξ)] · U(ξ) +H(ξ), (1.14)

where N [A(ξ)] denotes the linear nonlocal operator

N [A(ξ)] · U(ξ) :=

∫
R
K(ξ − ξ′; ξ)U(ξ′)dξ′ +

∑
j∈J

Aj(ξ)U(ξ − ξj). (1.15)

We denote Kξ := K( · ; ξ) and write (1.15) as a generalized convolution

N [A(ξ)] · U =

Kξ +
∑
j∈J

Aj(ξ)δξj

 ∗ U. (1.16)

Here ∗ refers to convolution on R

(W1 ∗W2)(ξ) =

∫
R
W1(ξ − ξ′)W2(ξ′)dξ′,

and δξj is the Dirac delta at ξj ∈ R.

Setting H ≡ 0, we obtain the homogeneous system

d

dξ
U(ξ) = N [A(ξ)] · U(ξ). (1.17)

A special case of (1.16) are constant coefficient operators A(ξ)

A(ξ) =
(
K0( · ),

(
A0
j

)
j∈J

)
:= A0, ∀ ξ ∈ R.

We have

N [A0] · U =

K0 +
∑
j∈J

A0
jδξj

 ∗ U (1.18)

and

U ′(ξ) = N [A0] · U(ξ). (1.19)

Associated with (1.17), we have the linear operator

TA :=
d

dξ
−N [A(ξ)]. (1.20)
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1.4 Notations and hypotheses

We denote by H and W the Hilbert spaces L2(R,Cn) and H1(R,Cn) equipped with their usual norm

‖U‖H := max
k=1,··· ,n

‖Uk‖L2(R),

and

‖U‖W := ‖U ′‖H + ‖U‖H.

For a function Kξ = K( · ; ξ) : R→ L1
η(R,Mn(C)), η > 0, we define its norm as

||Kξ||η := max
(k,l)∈J1,nK2

‖Kk,l( · ; ξ)eη| · |‖L1(R).

We also introduce the following norm for the kernel K ∈ C1
(
R, L1

η(R,Mn(C))
)
,

|||K|||∞,η := sup
ξ∈R
‖Kξ‖η + sup

ξ∈R

∥∥∥∥ ddξKξ
∥∥∥∥
η

.

For a function A ∈ C1(R,Mn(C)) we define its norm as

‖A‖n := sup
ξ∈R
‖A(ξ)‖Mn(C) + sup

ξ∈R

∥∥∥∥ ddξA(ξ)

∥∥∥∥
Mn(C)

.

Finally we denote by τ the linear transformation that acts on Kξ as τ · Kξ := K( · ; · + ξ) and we

naturally define τ · K : ξ 7−→ τ · Kξ. We can now give further assumptions on the maps K and (Aj)j∈J .

Hypothesis 1.1. There exists η > 0 such that the matrix kernel K satisfies the following properties:

1. K belongs to C1
(
R, L1

η(R,Mn(C))
)
;

2. K is localized, that is,

|||K|||∞,η <∞ , (1.21a)

|||τ · K|||∞,η <∞ ; (1.21b)

3. there exist two functions K± ∈ L1(R,Mn(C)) such that

lim
ξ→±∞

K(ζ; ξ) = K±(ζ) (1.22)

uniformly in ζ ∈ R and

lim
ξ→±∞

‖Kξ −K±‖η = 0 (1.23a)

lim
ξ→±∞

‖τ · Kξ −K±‖η = 0. (1.23b)

Hypothesis 1.2. The matrices Aj satisfy the properties:

1. Aj ∈ C1 (R,Mn(C)) for all j ∈ J ;
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2. with η defined in Hypothesis 1.1, we have,∑
j∈J
‖Aj‖neη|ξj | <∞ ; (1.24)

3. there exist A±j ∈Mn(C) such that

lim
ξ→±∞

Aj(ξ) = A±j ,
∑
j∈J
‖A±j ‖Mn(C)e

η|ξj | <∞, j ∈ J (1.25)

and

lim
ξ→±∞

∑
j∈J
‖Aj(ξ)−A±j ‖Mn(C)e

η|ξj | = 0. (1.26)

Note that if we define the map A as

A : R −→ L1
η(R,Mn(C))× `1η (Mn(C))

ξ 7−→ A(ξ) =
(
K( · ; ξ), (Aj(ξ))j∈J

) (1.27)

then, when Hypotheses 1.1 and 1.2 are satisfied, A ∈ C1(R, L1
η(R,Mn(C))× `1η (Mn(C))) and is bounded.

Here we have implicitly defined

`1η (Mn(C)) =

(Aj)j∈J ∈Mn(C)J |
∑
j∈J
‖Aj‖Mn(C)e

η|ξj | <∞

 .

Hypothesis 1.3. We assume that for all ` ∈ R

d±(i`) := det

i` In − K̂±(i`)−
∑
j∈J

A±j e
−i`ξj

 6= 0 (1.28)

where K̂± are the complex Fourier transforms of K± defined by

K̂±(i`) =

∫
R
K±(ξ)e−i`ξdξ.

Hypothesis 1.4. We assume that, with the same η > 0 as in Hypotheses 1.1 and 1.2, the complex Fourier

transforms

ν 7−→ K̂±(ν) +
∑
j∈J

A±j e
−νξj

extend to bounded analytic functions in the strip Sη := {ν ∈ C | |<(ν)| < η}.

1.5 Main results

We can now restate our informal Theorem 1 which we split in two separate theorems. The first theorem

states the Fredholm property of the nonlocal operator TA while the second gives a characterization of the

Fredholm index via the spectral flow.
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Theorem 2 (The Fredholm Alternative). Suppose that Hypotheses 1.1, 1.2, and 1.3 are satisfied. Then

the operator TA :W → H is Fredholm. Furthermore, the Fredholm index of TA depends only on the limiting

operators A±, the limits of A(ξ) as ξ → ±∞. We denote ι(A−,A+) the Fredholm index ind TA.

Theorem 3 (Spectral Flow Theorem). Assume that Hypotheses 1.1, 1.2, 1.3, and 1.4 are satisfied and

suppose, further, that there are only finitely many values of ξ0 ∈ R for which A(ξ0) is not hyperbolic. Then

the Fredholm index of TA
ι(A−,A+) = −cross(A) (1.29)

is the net number of roots, counted with multiplicity, of the characteristic equation

dξ(ν) := det

νIn − K̂ξ(ν)−
∑
j∈J

Aj(ξ)e
−νξj

 = 0, (1.30)

which cross the imaginary axis from left to right as ξ is increased from −∞ to +∞; see Section 4.1 for a

precise definition.

Remark 1.5. Similar Fredholm results hold for higher-order differential operators with nonlocal terms.

This can be seen by transforming into a system of first-order equations, or, more directly, by following the

proof below, which treats the main part of the equation as a generalized operator pencil, thus allowing for

more general forms of the equation.

Outline. This paper is organized as follows. We start in Section 2 by introducing some notation and

basic material needed in the subsequent sections. Section 3 is devoted to the proof of Theorem 2 while in

Section 4 we prove Theorem 3. Finally in Section 5, we apply our results to nonlocal conservation laws with

spatially localized source term and to nonlocal eigenvalue problems with small spatially localized nonlocal

perturbations.

2 Preliminaries and notation

Consider Banach spaces X and Y. We let L(X ,Y) denote the Banach space of bounded linear operators

T : X → Y, and we denote the operator norm by ‖T ‖L(X ,Y). We write rg T for the range of T and ker T
for its kernel,

rg T := {T U ∈ Y ; U ∈ X} ⊂ Y, ker T := {U ∈ X ; T U = 0} ⊂ X .

In the proof of Theorem 2, we shall use the following Lemma; see [24] for a proof.

Lemma 2.1 (Abstract Closed Range Lemma). Suppose that X , Y and Z are Banach spaces, that T :

X → Y is a bounded linear operator, and that R : X → Z is a compact linear operator. Assume that there

exists a constant c > 0 such that

‖U‖X ≤ c (‖T U‖Y + ‖RU‖Z) , ∀U ∈ X .

Then T has closed range and finite-dimensional kernel.
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Let us recall that a bounded operator T : X → Y is a Fredholm operator if

(i) its kernel ker T is finite-dimensional;

(ii) its range rg T is closed; and

(iii) rg T has finite codimension.

For such an operator, the integer

ind T := dim (ker T )− codim (rg T )

is called the Fredholm index of T .

2.1 Adjoint equation

We introduce the formal adjoint equation of (1.17) as

d

dξ
U(ξ) := N [A(ξ)]∗ · U(ξ) = −

∫
R
K∗(ξ′ − ξ; ξ′)U(ξ′)dξ′ −

∑
j∈J

A∗j (ξ + ξj)U(ξ + ξj) (2.1)

with K∗ and A∗j denoting the complex conjugate transposes of the matrices K and Aj , respectively. Ele-

mentary calculations give that N [A(ξ)]∗ = N [Ã(ξ)] where

Ã(ξ) =
(
K̃( · ; ξ), (Ãj(ξ))j∈J

)
and K̃ and Ãj are defined as

K̃(ζ; ξ) = −K∗(−ζ;−ζ + ξ) ∀ ζ ∈ R,

Ãj(ξ) = −A∗j (ξ + ξj) ∀ j ∈ J .

Note that K̃ and Ãj also satisfy Hypotheses 1.1 and 1.2.

Considering TA as a closed, densely defined operator on H, we find that the adjoint T ∗A : W ⊂ H → H is

given through

T ∗A = − d

dξ
+N [A(ξ)]∗. (2.2)

2.2 Asymptotically autonomous systems

Associated to the constant coefficient system (1.19) is the characteristic equation

d0(ν) := det ∆A0(ν) = 0 (2.3)

where

∆A0(ν) = ν In − K̂0(ν)−
∑
j∈J

A0
je
−νξj , ν ∈ C. (2.4)
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Note that the characteristic equation possesses imaginary roots precisely when there exist solutions of the

form ei`ξ to (1.19). More generally, roots of d0(ν) detect pure exponential solutions to (1.19). We say that

this constant coefficient system is hyperbolic when

d0(i`) 6= 0, ∀ ` ∈ R. (2.5)

In the specific case considered here, when K̂0 is a bounded analytic function in the strip Sη, there are only

finitely many roots of (2.3) in the strip. One can think of roots ν of (2.3) as generalized eigenvalues to the

generalized eigenvalue problem (1.18).

We say that the system (1.17) is asymptotically autonomous at ξ = +∞ if

lim
ξ→+∞

A(ξ) = A+

where A+ is constant. In this case, of course, (1.19) with A0 = A+ is called the limiting equation at

+∞. If in addition, the limiting equation is hyperbolic, then we say that (1.17) asymptotically hyperbolic

at +∞. We analogously define asymptotically autonomous and asymptotically hyperbolic at −∞. If

(1.17) is asymptotically autonomous at both ±∞, we simply say that (1.17) is asymptotically autonomous,

asymptotically hyperbolic if asymptotically hyperbolic at ±∞.

In the case of the constant coefficient system (1.19) it is straightforward to see that we have

∆A0∗(ν) = −∆A0(−ν̄)∗,

so that

det ∆A0∗(ν) = (−1)n det ∆A0(−ν).

This implies that system (1.19) is hyperbolic if and only if its adjoint is hyperbolic.

3 Fredholm properties

For each T > 0, we define H(T ) = L2([−T, T ],Cn) and W(T ) = H1([−T, T ],Cn). It is easy to see that the

inclusion W(T ) ↪→ H(T ) defines a compact operator such that the restriction operator

R :W → H(T )

U 7→ U[−T,T ]

is a compact linear operator and ‖RU‖H(T ) = ‖U‖H(T ).

Lemma 3.1. There exist constants c > 0 and T > 0 such that

‖U‖W ≤ c
(
‖U‖H(T ) + ‖TAU‖H

)
(3.1)

for every U ∈ W.

Proof. Following [21], we divide the proof into three steps.
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Step - 1 For each U ∈ W, we have

‖TAU‖H =

∥∥∥∥ ddξU(ξ)−N [A(ξ)] · U
∥∥∥∥
H
≥
∥∥∥∥ ddξU

∥∥∥∥
H
− C‖U‖H,

where the constant C > 0 can be chosen as

C = n

√|||K|||∞,η|||τ · K|||∞,η +
∑
j∈J
‖Aj‖n

 .

Indeed, fix k ∈ J1, nK, and estimate∫
R

∣∣(Kξ ∗ U)k (ξ)
∣∣2 dξ ≤ n n∑

l=1

∫
R

(∫
R

∣∣Kk,l(ξ − ξ′; ξ)Ul(ξ′)∣∣ dξ′)2

dξ

≤ n
n∑
l=1

∫
R

(∫
R

∣∣Kk,l(ξ − ξ′; ξ)∣∣1/2 ∣∣Kk,l(ξ − ξ′; ξ)∣∣1/2 ∣∣Ul(ξ′)∣∣ dξ′)2

dξ

≤ n
n∑
l=1

∫
R

(∫
R

∣∣Kk,l(ξ − ξ′; ξ)∣∣ dξ′)(∫
R

∣∣Kk,l(ξ − ξ′; ξ)∣∣ ∣∣Ul(ξ′)∣∣2 dξ′) dξ
≤ n|||K|||∞,η

n∑
l=1

∫
R

(∫
R

∣∣Kk,l(ξ − ξ′; ξ)∣∣ dξ) ∣∣Ul(ξ′)∣∣2 dξ′
≤ n2|||K|||∞,η|||τ · K|||∞,η‖U‖2H.

Similarly, one obtains ∫
R

∣∣(Aj(ξ)U(ξ − ξj))k
∣∣2 dξ ≤ n2‖Aj‖2n‖U‖2H.

This proves the estimate (3.1) with T =∞:

‖U‖W ≤ c1 (‖U‖H + ‖TAU‖H) . (3.2)

Step - 2 In the second step, we prove the estimate for a hyperbolic, constant coefficient system (1.19),

N [A0] · U =

K0 +
∑
j∈J

A0
jδξj

 ∗ U.
Applying Fourier transform to f = TA0U givesi`In − K̂0(i`)−

∑
j∈J

A0
je
−i`ξj

 Û(i`) = f̂(i`) ∀ ` ∈ R.

Using the fact that A0 is hyperbolic (d0(i`) 6= 0), we can invert

Û(i`) =

i`In − K̂0(i`)−
∑
j∈J

A0
je
−i`ξj

−1

f̂(i`) ∀ ` ∈ R.
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This implies that

‖Û‖H ≤ sup
`∈R

∥∥∥∥∥∥
i`In − K̂0(i`)−

∑
j∈J

A0
je
−i`ξj

−1∥∥∥∥∥∥
Mn(C)

‖f̂‖H,

and, using the Fourier-Plancherel theorem, we obtain

‖U‖H ≤ c1‖TA0U‖H ∀U ∈ W,

for some constant c1 > 0. Using the first step, we finally have the inequality

‖U‖W ≤ c2‖TA0U‖H ∀U ∈ W, (3.3)

with c2 > 0.

Step - 3 We want to prove that there exist T > 0 such that, if U(ξ) = 0 for |ξ| ≤ T − 1, U ∈ W, we have

‖U‖W ≤ c3‖TAU‖H. (3.4)

To do so, we first prove that inequality (3.4) is satisfied for functions U± ∈ W, of the form

U+(ξ) = 0 for ξ ≤ T − 1 and U−(ξ) = 0 for ξ ≥ −T + 1. (3.5)

We remark that Hypotheses 1.1 and 1.2 ensure that for every ε > 0 there exists T > 0, sufficiently large,

so that , if U± ∈ W are defined as above, the following estimates are satisfied∥∥(K± −Kξ) ∗ U±∥∥H ≤ ε

2
‖U±‖H, (3.6a)∥∥∥∥∥∥

∑
j∈J

(
A±j −Aj(ξ)

) (
δξj ∗ U

±)∥∥∥∥∥∥
H

≤ ε

2
‖U±‖H. (3.6b)

This ensures that for every U± ∈ W satisfying (3.5), we have

1

c2
‖U±‖W ≤ ‖TA±U±‖H ≤ ε‖U±‖H + ‖TAU±‖H,

which proves inequality (3.4) in that case, choosing εc2 < 1. Here, we have used the implicit notations

TA± =
d

dξ
−N [A±],

N [A±] · U± =

K± +
∑
j∈J

A±j δξj

 ∗ U.
Finally, if U ∈ W is such that U(ξ) = 0 for |ξ| ≤ T − 1, we decompose U as the sum U+ + U−, setting

U+(ξ) =

{
U(ξ), ξ ≥ 0

0, ξ < 0
, U−(ξ) =

{
0, ξ > 0

U(ξ), ξ ≤ 0
.

Of course, U± now satisfy (3.5) and we have

‖U‖2W = ‖U+‖2W + ‖U−‖2W ≤ c2
3

(
‖TAU+‖2H + ‖TAU−‖2H

)
= c2

3‖TAU‖2H,

12



which gives the desired inequality.

Step - 4 Finally, the estimate (3.1) is proved by a patching argument. We choose a smooth cutoff function

χ : R→ [0, 1] such that χ(ξ) = 0 for |ξ| ≥ T and χ(ξ) = 1 for |ξ| ≤ T − 1. Using estimate (3.2) for χU and

(3.4) for (1− χ)U , we have

‖U‖W ≤ ‖χU‖W + ‖(1− χ)U‖W
≤ c1(‖χU‖H + ‖TA(χU)‖H) + c3‖TA[(1− χ)U ]‖H
≤ c

(
(‖U‖H(T ) + ‖TA(U)‖H

)
.

Together with the abstract closed range Lemma 2.1, Lemma 3.1 immediately implies the semi-Fredholm

properties for TA and its adjoint.

Corollary 3.2. Both, TA and T ∗A, considered as operators from W into H, possess closed range and

finite-dimensional kernel.

Proof. We only need to verify that the Hypotheses 1.1, 1.2 and 1.3 are satisfied for the adjoint operator

T ∗A. We recall that in that case we have

T ∗A = − d

dξ
+N [Ã(ξ)]

where

Ã(ξ) =
(
K̃( · ; ξ), (Ãj(ξ))j∈J

)
and K̃ and Ãj are defined as

K̃(ζ; ξ) = −K∗(−ζ;−ζ + ξ) ∀ ζ ∈ R,

Ãj(ξ) = −A∗j (ξ + ξj) ∀ j ∈ J .

As a consequence, Hypotheses 1.1 and 1.2 are satisfied for the adjoint. Hypothesis 1.3 refers to asymptotic

hyperbolicity of TA. We already noticed that A± is hyperbolic if and only if its adjoint A±∗ is hyperbolic,

which implies that Hypothesis 1.3 is also satisfied for the adjoint equation. By Lemma 3.1, T ∗A then has

closed range and finite-dimensional kernel.

Proof. [of Theorem 2] The above corollary implies that TA :W → H has finite-dimensional kernel, closed

range, and finite-dimensional co-kernel given by the kernel of its adjoint T ∗A.

To prove that the Fredholm index depends only on the limiting operators A± we consider two families of

operators A0(ξ) and A1(ξ) that satisfy Hypotheses 1.1, 1.2 and 1.3 with coefficients

A0(ξ) =
(
K0( · ; ξ), (Aj,0(ξ))j∈J

)
, A1(ξ) =

(
K1( · ; ξ), (Aj,1(ξ))j∈J

)
and the same shifts ξj . We assume that the limiting operators at ±∞ are equal, that is,

A±0 = A±1 ,

13



where

A±σ =

(
K±σ ,

(
A±j,σ

)
j∈J

)
= lim

ξ→±ξ
Aσ(ξ), σ = 0, 1.

For 0 ≤ σ ≤ 1, we define Aσ(ξ) = (1− σ)A0(ξ) + σA1(ξ). Then for each such σ, Aσ satisfies Hypotheses

1.1, 1.2 and 1.3 and TAσ is a Fredholm operator and TAσ varies continuously in L(W,H) with σ. Thus the

Fredholm index of TAσ is independent of σ and only depends on the limiting operators A±.

Remark 3.3. The proof immediately generalizes to a set-up where H andW are Lp-based, with 1 < p <∞,

with the exception of invertibility of the asymptotic, constant-coefficient operators, where we used Fourier

transform as an isomorphism. On the other hand, analyticity of the Fourier multiplier shows that the

inverse is in fact represented by a convolution with an exponentially localized kernel, which gives a bounded

inverse in Lp, so that our theorem holds in Lp-based spaces as well.

Corollary 3.4 (Cocycle property). Suppose that A0,A1 and A2 are hyperbolic constant coefficient opera-

tors in L1
η(R,Mn(C))× `1η (Mn(C)), then we have

ι(A0,A1) + ι(A1,A2) = ι(A0,A2).

Proof. We consider, for 0 ≤ σ ≤ 1, the system

U ′(ξ) = N [Aσ(ξ)]U(ξ), U(ξ) ∈ C2n

where Aσ(ξ) =
(
Kσ( · ; ξ), (Aj,σ(ξ))j∈J

)
∈ L1

η(R,M2n(C))× `1η (M2n(C))

Kσ( · ; ξ) = χ−(ξ)

(
K0( · ) 0

0 K1( · )

)
+ χ+(ξ)R(σ)

(
K1( · ) 0

0 K2( · )

)
R(−σ),

Aj,σξ) = χ−(ξ)

(
A0
j 0

0 A1
j

)
+ χ+(ξ)R(σ)

(
A1
j 0

0 A2
j

)
R(−σ),

R(σ) =

(
cos
(
πσ
2

)
− sin

(
πσ
2

)
sin
(
πσ
2

)
cos
(
πσ
2

) )

with χ±(ξ) = (1 + tanh(±ξ))/2. For all 0 ≤ σ ≤ 1, Aσ(ξ) is asymptotically hyperbolic and satisfies

Hypotheses 1.1 and 1.2, thus TAσ is Fredholm and the Fredholm index of TAσ is independent of σ. Namely,

we have ind TAσ=0 = ind TAσ=1 . At σ = 0 and σ = 1, the equation U ′(ξ) = N [Aσ(ξ)]U(ξ) decouples and

one finds that

ind TAσ=0 = ι(A0,A1) + ι(A1,A2),

ind TAσ=1 = ι(A0,A2) + ι(A1,A1) = ι(A0,A2).

This concludes the proof.

14



4 Spectral flow

Throughout this section we fix the shifts ξj . For ρ ∈ R, we denote by Aρ a continuously varying one-

parameter family of constant coefficient operators of the form:

A : R −→ L1
η(R,Mn(C))× `1η (Mn(C))

ρ 7−→ Aρ =

(
Kρ( · ),

(
Aρj

)
j∈J

)
.

(4.1)

For simplicity, we identify the family Aρ with its associated constant nonlocal operator N [Aρ]. In this

section we will prove the following result which automatically gives the result of Theorem 3.

Theorem 4. Let Aρ, for ρ ∈ R, a continuously varying one-parameter family of constant coefficient

operators of the form (4.1), with limit operators A± = lim
ρ→±∞

Aρ. We suppose that:

(i) the limit operators A± are hyperbolic in the sense that ∀ ` ∈ R

d±(i`) = det

i`In − K̂±(i`)−
∑
j∈J

A±j e
−i`ξj

 6= 0,

(ii) ∆Aρ(ν) defined in (2.4) is a bounded analytic function in the strip Sη = {λ ∈ C | |<(λ)| < η} for

each ρ ∈ R.

(iii) there are finitely many values of ρ for which Aρ is not hyperbolic.

Then

ι(A−,A+) = −cross(A) (4.2)

is the net number of roots of (1.30), counted with multiplicity, which cross the imaginary axis from left to

right as ρ is increased from −∞ to +∞.

In our approach to the proof , we approximate the family Aρ of Theorem 4 with a generic family [13, 21].

To do so, we need to introduce some notations. We denote by P := P(R, L1
η(R,Mn(C)) × `1η (Mn(C)))

the Banach space of all continuous paths for which conditions (i) and (ii) of Theorem 4 are satisfied. And

finally, define the open set P1 := C1(R, L1
η(R,Mn(C))× `1η (Mn(C)) ∩ P.

4.1 Crossings

For any continuous path A of the form (4.1), a crossing for A is a real number ρj for which Aρj is not

hyperbolic and we let

NH(A) := {ρ ∈ R | equation (1.17) with constant coefficients Aρ is not hyperbolic} ,

be the set of all crossings of A. Thus A satisfies condition (iii) of Theorem 4 if and only if A has finitely

many crossings. In that case, NH(A) is a finite set that we denote by NH(A) = {ρ1, . . . , ρm}. Note that

for all A ∈ P and at any crossing ρj , the equation

dρj (ν) := det(∆Aρj (ν)) = 0
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has finitely many zeros in the strip Sη, by analyticity and boundedness of ∆Aρj (ν). We define the crossing

number ofA, cross(A), to be the net number of roots (counted with multiplicity) which cross the imaginary

axis from left to right as ρ increases from −∞ to +∞. More precisely, fix any ρj ∈ NH(A) and let (νj,l)
kj
l=1

denote the roots of dρj (ν) on the imaginary axis, <(νj,l) = 0. We list multiple roots repeatedly according

to their multiplicity. Let Mj denote the sum of their multiplicities. For ρ near ρj , with ±(ρ − ρj) > 0,

this equation has exactly Mj roots (counting multiplicity) near the imaginary axis, M
L±
j with <ν < 0 and

M
R±
j with <ν > 0, and Mj = M

L±
j +M

R±
j . We define

cross(A) =
m∑
j=1

(
M

R+

j −MR−
j

)
.

For A ∈ P1, we say that a crossing ρj is simple if there is precisely one simple root of dρj (ν∗) located

on the imaginary axis, and if this root crosses the imaginary axis with non-vanishing speed as ρ passes

through ρj . Note that for these simple crossings, we can locally continue the root ν∗ ∈ iR as a C1-function

of ρ as ν(ρ). We refer to this root as the crossing root. Non-vanishing speed of crossing can then be

expressed as < (ν̇(ρj)) 6= 0.

Next, suppose that A ∈ P1 has only simple crossings ρj ∈ NH(A). In this case we let νj(ρ) be the complex-

valued crossing-value defined near ρj such that νj(ρ) is a root of dρ and <(νj(ρj)) = 0. In this case, the

crossing number is explicitly given through

cross(A) =

m∑
j=1

sign (< (ν̇j(ρj))) . (4.3)

The following result shows that the set of paths with only simple crossings is dense in P.

Lemma 4.1. Let A ∈ P, with limit operators A± = lim
ρ→±∞

Aρ, be such that NH(A) is a finite set. Then

given ε > 0, there exists Ã ∈ P1 such that:

(i) Ã± = A±;

(ii) |Ãρ −Aρ| < ε for all ρ ∈ R; and

(iii) Ã has only simple crossings.

This lemma is proved in the following section.

Remark 4.2. If ε is small enough in Lemma 4.1, then one has

cross(A) = cross(Ã).

4.2 Proof of Lemma 4.1

The proof follows [13] with some appropriate modifications.
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We start by introducing submanifolds of Mn(C). For 0 ≤ k ≤ n we define the sets Gk ⊂ Mn(C) and

H ⊂Mn(C)×Mn(C) by

Gk = {M ∈Mn(C) | rank(M) = k} ,
H = {(M1,M2) ∈Mn(C)×Mn(C) | rank(M1) = n− 1,

M2 is invertible, and rank(M1M
−1
2 M1) = n− 2

}
.

The sets Gk and H are analytic submanifolds of Mn(C) and Mn(C) ×Mn(C) respectively, of complex

dimension

dimCGk = n2 − (n− k)2, dimCH = 2n2 − 2; (4.4)

see [13]. We also consider the following maps

F ,G :
(
L1
η(R,Mn(C))× `1η (Mn(C))

)
× R→Mn(C)

F × G :
(
L1
η(R,Mn(C))× `1η (Mn(C))

)
× R→Mn(C)×Mn(C)

D :
(
L1
η(R,Mn(C))× `1η (Mn(C))

)
× T →Mn(C)×Mn(C)

given by

F(A, `) = i`In − K̂(i`)−
∑
j∈J

Aje
−i`ξj , (4.5a)

G(A, `) = In − K̂′(i`) +
∑
j∈J

ξjAje
−i`ξj , (4.5b)

(F × G)(A, `) = (F(A, `),G(A, `)) , (4.5c)

D(A, `1, `2) = (F(A, `1),F(A, `2)) , (4.5d)

where A =
(
K, (Aj)j∈J

)
∈ L1

η(R,Mn(C))× `1η (Mn(C)) and T is the set

T =
{

(`1, `2) ∈ R2 | `1 < `2
}
.

Proposition 4.3. Suppose that A =
(
K, (Aj)j∈J

)
∈ L1

η(R,Mn(C))× `1η (Mn(C)) satisfies the conditions

(i) F(A, `) /∈ Gk, 0 ≤ k ≤ n− 2, ` ∈ R
(ii) (F × G)(A, `) /∈ Gn−1 ×Gk, 0 ≤ k ≤ n− 1, ` ∈ R
(iii) (F × G)(A, `) /∈ H, ` ∈ R
(iv) D(A, `1, `2) /∈ Gn−1 ×Gn−1, (`1, `2) ∈ T

(4.6)

for all ranges of k, `, `1 and `2. Then the constant coefficient system (1.19) has at most one ` ∈ R such

that ν = i` is a root of the characteristic equation det ∆A(ν) = 0, and the root ν is simple.

Proof. We first note that F(A, `) = ∆A(i`) as defined in (2.4) and that G(A, `) = −i∆′A(i`). Therefore,

condition (i) implies that rank(∆A(ν)) = n− 1 for all roots ν = i`. Condition (ii) ensures that ∆′A(ν) is

invertible for such ν. Condition (iii) implies that the rank of ∆A(ν)∆′A(ν)−1∆A(ν) is n − 1 for such ν.

Hypothesis 1.4 ensures the existence of η0 > 0 such that η − η0 > 0 and f(ν) = ∆A(ν) is a holomorphic

function in a neighborhood of i` ∈ Sη−η0 = {ν ∈ C | |<(ν)| < η − η0} that satisfies:
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• rank(f(i`)) = n− 1

• f ′(i`) is invertible

• rank(f(i`)f ′(i`)−1f(i`)) = n− 1.

As a consequence, g(ν) = det f(ν) has a simple root at ν = i` [13] and ν = i` is a simple root of the

characteristic equation det ∆A(ν) = 0. Finally, the last condition (iv) ensures that there is at most one

value ` ∈ R for which det ∆A(i`) = 0 which concludes the proof.

Proposition 4.4. The maps F and F × G have surjective derivative with respect to the first argument

A at each point (A, `) ∈ L1(R,Mn(C)) × `1 (Mn(C)) × R. Moreover, if ξj/ξk is irrational for some

j < k, then the derivative of the map D with respect to the first argument A is surjective at each (A, `) ∈
L1(R,Mn(C))× `1 (Mn(C))× T .

Proof. From their respective definition, one sees immediately that the derivative of F with respect to

A1 ∈ Mn(C) is −In and that the derivative with respect to (A1, A2) ∈ Mn(C) ×Mn(C) is given by the

matrix

−

(
In e−i`ξ2In
0n −ξ2e

−i`ξ2In

)
which is an isomorphism on Mn(C)×Mn(C); in particular, the derivative of both maps is onto.

We fix (`1, `2) ∈ T . Then at least one of the quantities (`1− `2)ξj or (`1− `2)ξk is irrational. Suppose now

that (`1 − `2)ξj is irrational. Then the derivative of D with respect to (A1, Aj) is given by

−

(
In e−i`1ξj In
In e−i`2ξj In

)

which is an isomorphism.

Remark 4.5. Note that we can always assume that ξj/ξk is irrational for some j < k. If it is not the

case, we can enlarge J to J ∪ {ξ∗} with an additional constant coefficient A∗ = 0 in (1.11) so that ξ∗/ξk
is irrational for some k ∈ J .

In order to complete the proof of Lemma 4.1, we will use the notion of transversality for smooth maps

defined in manifolds. We say that a smooth map f : X → Y from two manifolds is transverse to a

submanifold Z ⊂ Y on a subset S ⊂ X if

rg(Df(x)) + Tf(x)Z = Tf(x)Y whenever x ∈ S and f(x) ∈ Z

where TpM denotes the tangent space of M at a point p.

Theorem 5 (Transversality Density Theorem). Let V,X ,Y be Cr manifolds, Ψ : V → Cr(X ,Y) a repre-

sentation and Z ⊂ Y a submanifold and evΨ : V × X → Y the evaluation map. Assume that:

1. X has finite dimension N and Z has finite codimension Q in Y;

2. V and X are second countable;
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3. r > max(0, N −Q);

4. evΨ is transverse to Z.

Then the set {V ∈ V | ΨV is transverse to Z} is residual in V.

The proof of this theorem can be found in [1].

Proposition 4.6. There exists a residual (and hence dense) subset of P1 such that for any A in this

subset, all conditions (4.6) are satisfied.

Proof. The idea is to apply the Transversality Density Theorem 5 to exhibit a residual subset of P1 such

that all the maps F(Aρ, `), (F × G)(Aρ, `) and D(Aρ, `1, `2) are transverse to the manifolds appearing in

(4.6) on (ρ, `) ∈ R2 and (ρ, `1, `2) ∈ R2 respectively. For simplicity we only detail the proof for F , the two

other cases being similar.

We apply Theorem 5 with manifolds V = P1, X = R2 and Y = Mn(C) and submanifold Z = Gk with

0 ≤ k ≤ n− 2. So for any A ∈ P1 we define ΨA : R2 →Mn(C) by

ΨA(ρ, `) = F(Aρ, `),

and the evaluation map is simply given by evΨ : P1 × R2 →Mn(C)

evΨ(A, ρ, `) = F(Aρ, `).

We thus have r = 1, N = 2 and Q = 2(n − k)2 (the real codimension of Gk). This implies that the

third condition of Theorem 5 is satisfied for all 0 ≤ k ≤ n − 2. Proposition 4.4 ensures that the required

transversality hypothesis of the evaluation map is fulfilled.

We can then conclude that there exists a residual subset (and hence dense) of P1 such that for any A in

this subset the composed map F(Aρ, `) is transverse to the manifolds appearing in (4.6).

Proof. [of Lemma 4.1] We are now ready to prove Lemma 4.1. Let A ∈ P such that NH(A) is a finite

set. By Proposition 4.6, we may assume that the family A in the statement of Lemma 4.1 is such that all

four conditions (4.6) hold for Aρ for each ρ ∈ R. Thus for each such Aρ, the constant coefficient equation

(1.19) has at most one ` ∈ R such that ν = i` is an root and i` is a simple root of the characteristic

equation det ∆Aρ(ν) = 0. It is then enough to perturb A to a nearby Ã ∈ P1 with the same endpoints

Ã± = A± such that, by Sard’s Theorem, all the roots of the corresponding family of equations (1.19) cross

the imaginary axis transversely with ρ, that is, Ã has only simple crossings.

4.3 Proof of Theorem 4

We first introduce the map Σγ : L1
η(R,Mn(C))× `1η (Mn(C))→ L1

η(R,Mn(C))× `1η (Mn(C)), defined for

each γ ∈ R by

Σγ · A0 = Σγ ·
(
K0,

(
A0
j

)
j∈J

)
:=
(
K0
γ ,
(
A0
j,γ

)
j∈J

)
,

where

K0
γ(ζ) = K0(ζ)eγζ , ∀ ζ ∈ R, A0

1,γ = A0
1 + γ, A0

j,γ = A0
je
γξj , ∀ j 6= 1.
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This transformation Σγ arises from a change of variables V (ξ) = eγξU(ξ) in (1.19) with constant coefficient

A0 =

(
K0,

(
A0
j

)
j∈J

)
. One can then easily check that

∆Σγ ·A0(ν) = ∆A0(ν − γ), ν ∈ C,

so that Σγ shifts all eigenvalues to the right by an amount of γ.

Proposition 4.7. Suppose that ν = i`0, with `0 ∈ R, is a simple root of the characteristic equation (2.3)

associated to A0, and suppose that there are no other roots with <λ = 0. Then for γ ∈ R, 0 < |γ| < η

sufficiently small, we have that

ι(Σ−γ · A0,Σγ · A0) = −sign(γ). (4.7)

Proof. Without loss of generality, we suppose that γ > 0 is small enough so that ν = i`0 is the only root

of det(∆A0(ν)) = 0 in the strip |<(ν)| ≤ γ < η. We need to show that TA0 is Fredholm with index −1 in

L2
γ(R,Cn) =

{
U : R→ C |

∥∥∥U(·)eγ|·|
∥∥∥
L2(R,Cn)

<∞
}
.

To see this, we give a factorization of TA0 of the form

TA0 = B1 · B2

so that B1 is Fredholm with index −1 on L2
γ(R,Cn) and B2 is bounded invertible. We construct B1 and B2

based on the Fourier symbol of TA0 as follows. As ν = i`0 is a simple root of det(∆A0(ν)) = 0, there exist

two nonzero complex vectors p ∈ Cn and q ∈ Cn such that

∆A0(i`0)p = 0, ∆A0(i`0)∗q = 0, and 〈p, q〉Cn = 1.

There exist two invertible matrices P ∈ Mn(C) and A1 ∈ Mn−1(C), independent of ν, such that the

following holds

P−1∆A0(ν)P =

(
0 01,n−1

0n−1,1 A1

)
+

(
a0(ν − i`0) O(ν − i`0)1,n−1

O(ν − i`0)n−1,1 O(ν − i`0)n−1,n−1

)
, as ν → i`0,

with a0 = 〈∂ν∆A0(i`0)p, q〉Cn 6= 0. We can then define the matrix A(ν) ∈Mn(C) via

A(ν) :=

(
ν+ω
ν−i`0 01,n−1

0n−1,1 In−1

)
P−1∆A0(ν)P,

with ω > η a fixed real number. A straightforward computation show that A(ν) is invertible for all

|<(ν)| ≤ γ. Furthermore, the following equality holds true

∆A0(ν) = P

(
ν−i`0
ν+ω 01,n−1

0n−1,1 In−1

)
A(ν)P−1

for all ν in the strip |<(ν)| ≤ γ. We can now define B1 and B2 through their Fourier symbol as

B̂1(ν) = P

(
ν−i`0
ν+ω 01,n−1

0n−1,1 In−1

)
P−1,

B̂2(ν) = PA(ν)P−1,

20



such that ∆A0(ν) = B̂1(ν)B̂2(ν) for all |<(ν)| ≤ γ. Note that analyticity of B̂1(ν) and B̂2(ν) in |<(ν)| ≤ γ
implies that B1 : L2

γ(R,Cn) → L2
γ(R,Cn) and B2 : H1

γ(R,Cn) → L2
γ(R,Cn), together with TA0 = B1 · B2.

Since we factored the unique root of det ∆A0(ν) = 0 into B̂1(ν), B̂2(ν) is invertible in the strip |<(ν)| ≤ γ.

Therefore, B2 is actually an isomorphism from H1
γ(R,Cn) to L2

γ(R,Cn). Inspecting the explicit form of

B̂1(ν) shows that B1 is conjugate to( d
dξ − i`0

)(
ω + d

dξ

)−1
01,n−1

0n−1,1 In−1

 ,

which is Fredholm index −1 on L2
γ(R,Cn). This completes the proof of the proposition.

The following proposition shows that without loss of generality we may assume that roots of the char-

acteristic equation cross the imaginary axis by means of a rigid shift of the spectrum with the operator

Σγ .

Proposition 4.8. Let A ∈ P1 be such that NH(A) is a finite set and has only simple crossings. Then

there exists Ã ∈ P1 such that:

(i) A± = Ã±;

(ii) NH(A) = NH(Ã);

(iii) for each ρj ∈ NH(A), we have <(ν̇j(ρj)) = <( ˙̃νj(ρj)), with ν̃j corresponding to Ã;

(iv) Ã has only simple crossings.

In addition, the family Ã has the form

Ãρ = Σγj(ρ−ρj) · A
ρj , γj := <(ν̇j(ρj)), (4.8)

for ρ in a neighborhood of each ρj.

We omit the proof of this result, as it is identical to that in [13].

Proof. [of Theorem 4] Let A ∈ C
(
R, L1

η(R,Mn(C))× `1η (Mn(C))
)

be a one-parameter family as in the

statement of Theorem 4. Without loss, by Lemma 4.1, we may assume that A has only simple crossings.

Let Ã ∈ C1
(
R, L1

η(R,Mn(C))× `1η (Mn(C))
)

as in statement of Proposition 4.8. Then for any sufficiently

small ε > 0, using the Corollary 3.4, we have that

ι(A−,A+) = ι(A−, Ãρ1−ε) +
m−1∑
j=1

ι(Ãρj+ε, Ãρj+1−ε) +
m∑
j=1

ι(Ãρj−ε, Ãρj+ε) + ι(Ãρm+ε,A+).

For each ρ in the intervals: [ρj + ε, ρj+1− ε], 1 ≤ j ≤ m− 1, (−∞, ρ1− ε] and [ρn + ε,+∞), equation (1.19)

is hyperbolic, and one concludes that

ι(A−, Ãρ1−ε) =

m−1∑
j=1

ι(Ãρj+ε, Ãρj+1−ε) = ι(Ãρm+ε,A+) = 0.
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On each interval [ρj − ε, ρj + ε], 1 ≤ j ≤ m, we have a simple crossing and we can apply the result of

Proposition 4.7:
m∑
j=1

ι(Ãρj−ε, Ãρj+ε) = −
m∑
j=1

sign (< (ν̇j(ρj))) .

This implies that ι(A−, Ãρ1−ε) = −cross(A) which concludes the proof.

4.4 Exponentially weighted spaces

We now give a first application of Theorem 3 to operators posed on exponentially weighted spaces. Assume

that A0 =

(
K0,

(
A0
j

)
j∈J

)
∈ P is a constant coefficient operator and consider the associated operator

TA0 = d
dξ −N [A0] on the space L̃2

γ(R,Cn) with norm

‖U‖
L̃2
γ

= ‖U( · )eγ · ‖L2(R,Cn).

Using the isomorphism

L̃2
γ(R,Cn) −→ L2(R,Cn), U(ξ) 7−→ U(ξ)eγξ,

the operator TA0 for U on L̃2
γ(R,Cn) is readily seen to be conjugate to T γA0 = d

dξ − N [Σγ · A0] for V on

L2(R,Cn). We conclude that T γA0 is Fredholm for γ in open subsets of the real line. When A0 has only

finitely many simple crossings, we can consider the family of operators T γA0 with γ close to zero. More

generally, we introduce a two-sided family of weights via

‖U‖γ−,γ+ = ‖Uχ+‖L̃2
γ+

+ ‖Uχ−‖L̃2
γ−

where

χ±(ξ) =

{
1 ±ξ > 0

0 otherwise.

The operator TA0 on L2
γ−,γ+ :=

{
U : R→ Cn | ‖U‖γ−,γ+ <∞

}
is conjugate to an operator T γ−,γ+A0 on L2

whose coefficients are Σγ+ · A0 for ξ > 0 and Σγ− · A0 for ξ < 0. The following corollary is a direct

consequence of the above discussion and Theorem 3.

Corollary 4.9. Suppose that ν = i`, with ` ∈ R, is a root of the characteristic equation associated to A0

of multiplicity N , and suppose that there are no other roots with <λ = 0. Then, the operator T γ−,γ+A0 is

Fredholm for all γ± close to zero with γ−γ+ 6= 0 and for γ ∈ R, γ 6= 0 sufficiently small, we have that

ι(Σ−γ · A0,Σγ · A0) = ind T −γ,γA0 = −sign(γ)N. (4.9)

5 Applications

We give two applications of our main result. We first consider the effect of small inhomogeneities in

nonlocal conservation laws. We then show how our results can be used to study edge bifurcations for

nonlocal eigenvalue problems, replacing Gap Lemma constructions with Lyapunov-Schmidt and far-field

matching constructions.
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5.1 Localized source terms in nonlocal conservation laws

Consider the nonlocal conservation laws

Ut = (K ∗ F (U) +G(U))x , U ∈ Rn, x ∈ R, (5.1)

with appropriate conditions on convolution kernel K, and fluxes F,G. Nonlocal conservation laws arise

in a variety of applications and pose a number of analytic challenges; see [6] for a recent discussion and

references.

In the absence of the nonlocal, dispersive term K ∗ F , the system of conservation laws is well known to

develop discontinuities in finite time which are referred to as shocks. Shocks can usually be classified

according to ingoing and outgoing characteristics. In the presence of viscosity, shocks are smooth traveling

waves, and characteristic speeds can be characterized via the group velocities of neutral modes in the

linearization. In our case, the linearization at a constant state

Vt = (K ∗ dFU (0) + dGU (0))Vx, V ∈ Rn, x ∈ R,

can be readily solved via Fourier transform, with dispersion relation

d(λ, i`) = det
(
i`K̂(i`)dFU (0) + i`dGU (0)− λIn

)
.

We find an eigenvalue λ = 0 with multiplicity n. Assuming that K̂(i`)dFU (0) + dGU (0) possesses real,

distinct eigenvalues −cj , we obtain expansions λj(i`) = −cj` + O(`2), so that the negative eigenvalues cj
naturally denote speeds of transport in different components of the system. As with viscous approximations

to local conservation laws, instabilities can enter for finite wavenumber ` for non-scalar diffusion, so that

we will need an extra condition on the nonlocal part that guarantees stability of the homogeneous solution.

Rather than studying existence of large-amplitude shock profiles, we focus here on a perturbation result,

exploiting the linear Fredholm theory developed in the previous sections. It will be clear from the techniques

employed here and in the subsequent section that our results can be used to develop a spectral theory for

large amplitude shock profiles in the spirit of [26]. Our results parallel the results in [23], where viscous

regularization of conservation laws were analyzed. Roughly speaking, our results show that at small

amplitude, nonlocal, dispersive terms act in a completely analogous fashion to viscous regularizing terms.

Our analysis considers spatially localized source terms of the nonlocal conservation law (5.1),

Ut = (K ∗ F (U) +G(U))x + εH(x, U, Ux), U ∈ Rn (5.2)

for a kernel K ∈ L1
η0(R,Mn(R)), with fixed η0 > 0, and a smooth hyperbolic flux g with

det(dGU (0)) 6= 0 (5.3a)

σ
(
dGU (0) + K̂(0)dFU (0)

)
= {−c1 > −c2 > · · · > −cn} (5.3b)

det
(
dGU (0) + K̂(i`)dFU (0)

)
6= 0, ∀ ` ∈ R, ` 6= 0 (5.3c)

K̂(ν)dFU (0), dGU (0) ∈ Sn(R) =
{
M ∈Mn(R) | M = M t

}
∀ ν ∈ C (5.3d)

and a smooth, spatially localized, source term H so that there exist constant C, δ > 0 such that

‖H(x, U, V )‖ ≤ Ce−δ|x| (5.4)
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for all x ∈ R and all (U, V ) near zero in Rn × Rn.

Here, the first condition guarantees that steady-states are solutions to ODEs, hence smooth; the second

condition enforces strict hyperbolicity of the nonlocal linear part, the third condition guarantees that zero

is not in the essential spectrum of the linearization for any nonzero wavenumber. The last condition refers

to the usual requirement of symmetric fluxes.

We look for small bounded solutions of the nonlocal equation

0 = (K ∗ F (U) +G(U))x + εH(x, U, Ux). (5.5)

Contrary to hyperbolic conservation laws where the viscous term is typically BUxx with a positive definite,

symmetric viscosity matrix B, we cannot use spatial dynamics techniques for (5.5) because of the nonlocal

term K ∗ F (U). Instead, following [23], we will use an approach based only on functional analysis and

Lyapunov-Schmidt reduction, thus exploiting the Fredholm and spectral flow properties developed in the

previous sections. The key point of our approach is the linearization of equation (5.5) at the solution U = 0

and ε = 0

LU = Kx ∗ (dFU (0)U) + dGU (0)Ux. (5.6)

The adjoint L∗ of (5.6) is given by

L∗U = −dFU (0)tKt− ∗ Ux − dGU (0)tUx (5.7)

where Kt−(x) = Kt(−x). Assuming that dGU (0) is invertible, we can associate the operator

L̃U = Ux + dGU (0)−1Kx ∗ (dFU (0)U) (5.8)

which is of the form of a constant operator studied in Section 3 as Kx ∈ L1(R,Mn(R)). Both L and L̃ can

be viewed as unbounded linear operators on L2(R,Rn) but also can be considered as unbounded operators

on L2
η(R,Rn) for 0 < η < η0 as K ∈ L1

η0(R,Mn(R)) with norm

‖U‖L2
η(R,Rn) = ‖U(x)eη|x|‖L2(R,Rn).

Lemma 5.1. Assume that cj 6= 0 for all j, then there is an η∗ > 0 with the following property. For each

fixed η with 0 < η < η∗, the operator L defined on L2
η(R,Rn) is Fredholm with index −n and has trivial

null space.

Proof. The characteristic equation associated to the linearized system (5.8) is

0 = det(νIn + νdGU (0)−1K̂(ν)dFU (0)) = νn det(dGU (0)−1) det
(
dGU (0) + K̂(ν)dFU (0)

)
, (5.9)

so that ν = 0 is an root with multiplicity n, and all other roots have nonzero real part due to (5.3c). We

can apply Corollary 4.9 and find that the Fredholm index of L̃ and thus of L on L2
η(R,Rn) is equal to −n

as claimed. Since (5.6) is translation invariant, we can use Fourier transform to analyze the kernel. Any

function U in the kernel of L satisfies

0 = i`
(
K̂(i`)dFU (0) + dGU (0)

)
Û(`).

As U ∈ L2
η(R,Rn), Û(`) is a bounded analytic function in the strip Sη, and thus Û(`) = 0 for all ` ∈ R.

This proves that the kernel of L in the exponentially weighted space is trivial.
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Lemma 5.1 implies that the kernel of the L2-adjoint L∗ of L considered on L2
−η(R,Rn) is n-dimensional

and thus spanned by the constants ej for j = 1, . . . , n where ej form an orthonormal basis of Rn such that(
dGU (0) + K̂(0)dFU (0)

)
ej = −cjej .

To find shock-like transition layers, caused by the inhomogeneity h for small ε, we make the following

ansatz

U(x) =
n∑
j=1

ajejχ+(x) +
n∑
j=1

bjejχ−(x) +W (x), (5.10)

where aj , bj ∈ R and W ∈ L2
η(R,Rn), and χ±(x) = (1 + tanh(±x))/2. Substituting the ansatz into (5.2),

we obtain an equation of the form

F(a, b,W ; ε) = 0, F( · ; ε) : Rn × Rn ×D(L) −→ L2
η(R,Rn) (5.11)

for a = (aj), b = (bj). For small enough η, the map F is smooth and the its linearization at (a, b,W ) = 0

is given by

FW (0; 0) = L, Faj (0, 0) = Kx∗(dFU (0)ejχ+)+dGU (0)ejχ
′, Fbj (0, 0) = Kx∗(dFU (0)ejχ−)−dGU (0)ejχ

′

where Fa(0, 0) and Fb(0, 0) lie in L2
η(R,Rn).

Lemma 5.2. Under the hypotheses of Lemma 5.1, the operator

Fa,W (0; 0) : Rn × L2
η(R,Rn) −→ L2

η(R,Rn), (a,W ) 7−→ Fa(0; 0)a+ FW (0; 0)W

is invertible.

Proof. We first note that the n partial derivatives with respect to aj are linearly independent. To see

this, we integrate Faj (0, 0) over the real line to find∫
R
Faj (0, 0)dx =

∫
R
Kx ∗ (dFU (0)ejχ+) dx+ dGU (0)ej

=

∫
R
K ∗

(
dFU (0)ejχ

′
+

)
dx+ dGU (0)ej

= K̂(0)dFU (0)ejχ̂′+(0) + dGU (0)ej

=
(
K̂(0)dFU (0) + dGU (0)

)
ej

= −cjej ,

and we exploit the fact that all cj 6= 0, and that the ej form a basis of Rn. Next, we evaluate the scalar

product of Faj (0, 0) with the elements ek of the kernel of the adjoint L∗:∫
R
〈Faj (0, 0), ek〉dx = 〈K̂(0)dFU (0) + dGU (0)ej , ek〉 = −cjδj,k

which, for fixed j, is nonzero for j = k. Hence, the partial derivative Faj (0, 0) are not in the range of L.

This proves the lemma.
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We can now solve (5.11) with the Implicit Function Theorem and obtain unique solutions (a,W )(b; ε) and

thus a solution U of the form (5.10) to (5.5). As outlined in [23], the physically interesting quantity is the

jump U(∞)− U(−∞) = a(b; ε)− b. A straightforward expansion in ε gives

U(∞)− U(−∞) = a(b; ε)− b = −ε
∫
R

(
K̂(0)dFU (0) + dGU (0)

)−1
H(x, 0, 0)dx+O(ε2)

which is independent of b to leading order.

The preceding analysis also allows us to study the case where precisely one characteristic speed cj0 vanishes.

In this situation we may further assume that 〈K̂′(0)dFU (0)ej0 , ej0〉 6= 0, such that ν = 0 is a simple zero

of det(K̂(ν)dFU (0) + dGU (0)) = 0 and (K̂(0)dFU (0) + dGU (0))ej0 = 0. We directly see that the Fredholm

index of L̃ and thus L in L2
η(R,Rn) is now −(n + 1), since ν = 0 has multiplicity n + 1 as a solution of

(5.9). The kernel of the adjoint operator L∗ is spanned by the constant functions ej and the linear function

xej0 . Indeed, we have

L∗(xej0) = −dFU (0)tKt− ∗ ej0 − dGU (0)ej0

= −
(
dFU (0)tK̂t−(0) + dGU (0)t

)
ej0

= −
(
K̂(0)dFU (0) + dGU (0)

)
ej0

= 0.

We can once again use the ansatz (5.10) and arrive at the function F given in (5.11).

Lemma 5.3. Assume that K̂(0)dFU (0) + dGU (0) has distinct real eigenvalues with a simple eigenvalue at

ν = 0 with eigenvector ej0. We also suppose that 〈K̂′(0)dFU (0)ej0 , ej0〉 6= 0. Then the linearization of F
with respect to (a, bj0 ,W ) is invertible at (0; 0).

Proof. One readily verifies that the partial derivatives with respect to (aj)j=1,...,n and bj0 are linearly

independent and that for each fixed j = 1, . . . , n, j 6= j0, we have∫
R
〈Faj (0, 0), ek〉dx = 〈K̂(0)dFU (0) + dGU (0)ej , ek〉 = −cjδj,k,

which is non zero for j = k. Lastly,∫
R
〈Faj0 (0, 0), xej0〉dx = −

∫
R
〈(K ∗ (dFU (0)χ+) + dGU (0)χ+) ej0 , ej0〉dx

= −〈K̂′(0)dFU (0)ej0 , ej0〉 6= 0

and similarly ∫
R
〈Fbj0 (0, 0), xej0〉dx = 〈K̂′(0)dFU (0)ej0 , ej0〉 6= 0

so that Faj0 (0; 0) and Fbj0 (0; 0) do not lie in the range of FW (0; 0). Thus Fa,bj0 ,W (0; 0) is invertible.

We can therefore solve (5.11) using the Implicit Function Theorem and obtain a unique solution (a, bj0 ,W )

as functions of ((bj)j=1,...,n, j 6=j0 ; ε). In that case we have that the solution U selects both aj0 and bj0 via

aj0 = Mε+O(ε2), bj0 = −Mε+O(ε2), M :=

∫
R

x〈H(x, 0, 0), ej0〉
〈K̂′(0)dFU (0)ej0 , ej0〉

dx.
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When M 6= 0, the difference between the number of positive characteristic speeds at ∞ and −∞ is two,

and the viscous profile is a Lax shock or under compressive shock of index 2.

Summarizing, we have shown that nonlocal conservation laws behave in a very similar fashion as local

conservation laws when subject to local source terms. Sources that move with non-characteristic speed

cause a jump across the inhomogeneity, while number of ingoing and outgoing characteristics are equal.

Sources that move with characteristic speed are able to act as sources with respect to the characteristic

speed, so that the number of outgoing characteristics exceeds the number of incoming characteristics by

two.

In both cases, stationary profiles are smooth, similar to what one would expect from a viscous conservation

law. Loosely speaking, smoothing here is provided by dispersal through the nonlocal term rather than

smoothing by viscosity.

5.2 Edge bifurcations and the nonlocal Gap Lemma

We show how our methods can be used to study eigenvalue problems near the edge of the essential spectrum.

Motivated most recently by questions on stability of coherent structures, such as solitons in dispersive

equations and viscous shock profiles, there has been significant interest in studying spectra of operators

near the edge of the essential spectrum. In the original works [8, 12], a Wronskian-type function that tracks

eigenvalues and multiplicities via its roots was extended into the essential spectrum, exploiting the fact that

coefficients of the linearized problem converge exponentially as |x| → ∞. While Wronskians are usually

finite-dimensional, extensions are sometimes possible to infinite-dimensional systems, using exponential

dichotomies and Lyapunov-Schmidt reduction to obtain reduced Wronskians [16? ].

Gap Lemma type arguments had been used routinely in the theory of Schrödinger operators, providing

extensions of scattering coefficients into and across the continuous spectrum. One is often interested in

tracking how eigenvalues may emerge out of the essential spectrum when parameters are varied. It was

observed early that small localized traps inserted into a free Schrödinger equation will create bound states

in dimensions n ≤ 2; see [25]. The bound state corresponds to an eigenvalue emerging from the edge of

the continuous spectrum.

We show here how a result analogous to [25] can be proved for nonlocal eigenvalue problems. We therefore

consider the system

T (λ, ε) · U := Uξ +
(
K + εK̃ξ

)
∗ U − λBU = 0, U ∈ Rn. (5.12)

Here, K, K̃ξ ∈ L1
η0(R,Mn(R)), B ∈ Mn(R), and K̃ξ −→

ξ→±∞
0 in L1

η0(R,Mn(R)) such that there exist

constants C > 0 and δ > 0 with ∥∥∥K̃(ζ; ξ)
∥∥∥
n
≤ Ce−δ|ξ|, ∀ ζ ∈ R.

We think of (5.12) as coming from a higher-order differential operator such as ∂ξξ, including nonlocal

terms, after rewriting the eigenvalue problem as a first-order system of (nonlocal) differential equations in

ξ.

Proposition 5.4. We assume that the dispersion relation

d(ν, λ) = det
(
νIn + K̂(ν)− λB

)
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is diffusive near λ = 0:

1. d(0, 0) = dν(0, 0) = 0;

2. dνν(0, 0) · dλ(0, 0) < 0; and

3. d(i`, 0) 6= 0 for all ` ∈ R, ` 6= 0.

We also assume that the localized perturbation is generic:

M :=

〈
K̃ξe0, e

∗
0

〉
L2(R,Rn)〈

2(In + ∂νK̂(0))e1 + ∂ννK̂(0)e0, e∗0

〉
Rn

√
− dνν(0, 0)

2dλ(0, 0)
6= 0,

where the nonzero complex vectors e0, e∗0 and e1 are defined through

K̂(0)e0 = 0, K̂t(0)e∗0 = 0, and
(
In + ∂νK̂(0)

)
e0 + K̂(0)e1 = 0.

Then there exists ε0 > 0, such that for all 0 < Mε < ε0 there exist 0 6= Uε ∈ H1(R,Rn) and λ∗(ε) > 0 so

that

T (λ∗(ε), ε) · Uε = 0.

We also have the asymptotic expansion:

lim
ε→0+

λ∗(ε)

ε2
= M2. (5.13)

We prepare the proof of this proposition by reformulating the eigenvalue problem as a nonlinear equation

that can be solved with the Implicit Function Theorem near a trivial solution. We first introduce λ = γ2,

so that the dispersion relation has local analytic roots γ 7−→ ν±(γ) ∈ C. Expanding d(ν, γ2) in γ2, we

arrive at the expansion

d(ν, γ2) = ν2dνν(0, 0)

2
+ γ2dλ(0, 0) +O

(
|ν|3 + |γ|3

)
,

so that to leading order we have

ν±(γ) = ±

√
−2dλ(0, 0)

dνν(0, 0)
γ +O(γ2).

Associated with these roots can be analytic vectors in the kernel, γ 7−→ e±(γ) ∈ Cn, with(
ν±(γ)In + K̂(ν±(γ))− γ2B

)
e±(γ) = 0, (5.14)

and e0 = e±(0) 6= 0 solves K̂(0)e0 = 0.

Following the analysis of the previous section, there exists η∗ > 0 such that for each fixed η with 0 < η < η∗,

the linear operator L
L : U 7−→ d

dξ
U +K ∗ U,
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defined on L2
η(R,Rn), is Fredholm with index −2 and has trivial null space. Indeed, from the above

properties, we see that

d(ν, 0) = det
(
νIn + K̂(ν)

)
= ν2d̃(ν), d̃(0) 6= 0,

with d(i`, 0) 6= 0 for all ` ∈ R, ` 6= 0. This implies that ν = 0 is a root with multiplicity 2 and all other

roots have nonzero real part. Thus the Fredholm index of L is −2 and it is straightforward to check that

the kernel of L in the exponentially weighted space L2
η(R,Rn) is trivial. Thus the kernel of the L2-adjoint

L∗ of L considered on L2
−η(R,Rn) is two-dimensional. Here, the adjoint L∗ is given via

L∗ : U 7−→ − d

dξ
U +Kt− ∗ U,

where Kt−(ξ) = Kt(−ξ) for all ξ ∈ R. Note that

det
(
L̂∗(ν)

)
= det

(
−νIn + K̂t(−ν)

)
= d(−ν, 0) = ν2d̃(−ν),

so that there exists e∗0 ∈ Rn with K̂t(0)e∗0 = 0 and thus L∗(e∗0) = 0. As dν(0, 0) = 0, the following scalar

product vanishes: 〈
(In + ∂νK̂(0))e0, e

∗
0

〉
Rn

= 0, (5.15)

which ensures the existence of e∗1 ∈ Rn so that

−
(
In + ∂νK̂t(0)

)
e∗0 + K̂t(0)e∗1 = 0. (5.16)

Indeed, the above equation can be solved if
〈(

In + ∂νK̂t(0)
)
e∗0, e0

〉
Rn

= 0, which holds true because of

(5.15). We now claim that ξe∗0 + e∗1 belongs to the kernel of L∗:

L∗ (ξe∗0 + e∗1) =
[
−e∗0 +Kt− ∗ (ξe∗0)

]
+ K̂t(0)e∗1

=
[
−e∗0 − ∂νK̂t(0)e∗0

]
+ K̂t(0)e∗1

= 0.

Summarizing, the kernel of L∗, considered on L2
−η(R,Rn), is spanned by the functions e∗0 and ξe∗0 + e∗1.

In the same way, we also define e1 ∈ Rn via(
In + ∂νK̂(0)

)
e0 + K̂(0)e1 = 0. (5.17)

Furthermore, differentiating (5.14) with respect to γ and evaluating at γ = 0 we obtain

±

√
−2dλ(0, 0)

dνν(0, 0)

(
In + ∂νK̂(0)

)
e0 + K̂(0)e′±(0) = 0.

We see from the above equation and (5.17) that e′±(0) = ±
√
−2dλ(0,0)
dνν(0,0)e1. Moreover, combining equations

(5.16) and (5.17) we have the equality〈
(In + ∂νK̂(0))e1, e

∗
0

〉
Rn

= −
〈

(In + ∂νK̂(0))e0, e
∗
1

〉
Rn
. (5.18)
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The fact that dνν(0, 0) 6= 0 ensures that the following quantity is not vanishing:〈
(In + ∂νK̂(0))e1, e

∗
0

〉
Rn

+
1

2

〈
∂ννK̂(0)e0, e

∗
0

〉
Rn
6= 0. (5.19)

To find solutions of the eigenvalue problem (5.12), for small ε, we make the following ansatz

U(ξ) = a+e+(γ)χ+(ξ)eν+(γ)ξ + a−e−(γ)χ−(ξ)eν−(γ)ξ + w(ξ), (5.20)

where a+, a− ∈ R and w ∈ L2
η(R,Rn). Here χ+(ξ) = 1+ρ(ξ)

2 , where ρ ∈ C∞(R) is a smooth even function

satisfying ρ(ξ) = −1 for all ξ ≤ −1, ρ(ξ) = 1 for all ξ ≥ 1 and χ−(ξ) = 1− χ+(ξ). Substituting the ansatz

into (5.12), we obtain an equation of the form

F(a, γ, w; ε) = 0, F( · ; ε) : R2 × R× Rn ×D(L) −→ L2
η(R,Rn) (5.21)

for a = (a+, a−). We have that F((1, 1), 0, 0; 0) = 0. For small enough η, following the analysis conducted

in [19] and exploiting the localization of K̃ξ, we have that F is a smooth map. Its linearization at (a, γ, w) =

(1, 0, 0) (here for convenience we have denoted 1 = (1, 1)) is given by

Fw(1, 0, 0; 0) = L,
Fa±(1, 0, 0; 0) = L (χ±e0) ,

Fγ(1, 0, 0; 0) =

√
−2dλ(0, 0)

dνν(0, 0)
[L (χ+e1) + L (ξχ+e0)]−

√
−2dλ(0, 0)

dνν(0, 0)
[L (χ−e1) + L (ξχ−e0)]

where Fa(1, 0, 0; 0) and Fγ(1, 0, 0; 0) lie in L2
η(R,Rn).

Lemma 5.5. Under the above assumptions, the operator

Fa−,γ,w(1, 0, 0; 0) : R× R× L2
η(R,Rn) −→ L2

η(R,Rn)

(a−, γ, w) 7−→ Fa−(1, 0, 0; 0)a− + Fγ(1, 0, 0; 0)γ + Fw(1, 0, 0; 0)w

is invertible.

Proof. We first recall that the cokernel of Fw(0; 0) is spanned by e∗0 and ξe∗0 + e∗1. We next evaluate the

functional

L0u = 〈L(ue0), e∗0〉L2(R,Rn) ,

with associated symbol L̂0(ν) =
〈(
νIn + K̂(ν)

)
e0, e

∗
0

〉
Rn

. We have that L̂0(0) = ∂νL̂0(0) = 0, so that

there exists H ∈ L1
η0(R,Mn(R)) such that L̂0(ν) = ν2

〈
Ĥ(ν)e0, e

∗
0

〉
Rn

=

〈
d̂2

dξ2
H(ν)e0, e

∗
0

〉
Rn

with 2Ĥ(0) =

∂ννK̂(0). We can rewrite L0u as

L0u =

〈
H ∗

(
d2

dξ2
ue0

)
, e∗0

〉
L2(R,Rn)

.
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It is now a straightforward computation to evaluate the following quantities:

L0χ− =

〈
d2

dξ2
H ∗ (χ−e0) , e∗0

〉
L2(R,Rn)

= 0,

L0(ξχ±) =

〈
d2

dξ2
H ∗ (ξχ±e0) , e∗0

〉
L2(R,Rn)

=
〈
Ĥ(0)e0, e

∗
0

〉
Rn

(
lim

ξ→+∞

[
d

dξ
(ξχ±(ξ))

]
− lim
ξ→−∞

[
d

dξ
(ξχ±(ξ))

])
= ±1

2

〈
∂ννK̂(0)e0, e

∗
0

〉
Rn
.

We can also define the functional

L1u = 〈L(u e1), e∗0〉L2(R,Rn)

such that L̂1(ν) =
〈(
νIn + K̂(ν)

)
e1, e

∗
0

〉
Rn

and L̂1(0) = 0. Thus, we can find H1 ∈ L1
η0(R,Mn(R)) such

that L̂1(ν) = ν
〈
Ĥ1(ν)e1, e

∗
0

〉
Rn

=
〈
d̂
dξH1

(ν)e1, e
∗
0

〉
Rn

with Ĥ1(0) = In+∂νK̂(0). Using (5.18) we find that

L1χ± =

〈
d

dξ
H1 ∗ (χ−e1) , e∗0

〉
L2(R,Rn)

= ±
〈

(In + ∂νK̂(0))e1, e
∗
0

〉
Rn

= ∓
〈

(In + ∂νK̂(0))e0, e
∗
1

〉
Rn
.

We have thus shown that

〈L (χ±e1) + L (ξχ±e0) , e∗0〉L2(R,Rn) = L1χ± + L0(ξχ±)

= ∓
〈

(In + ∂νK̂(0))e0, e
∗
1

〉
Rn
± 1

2

〈
∂ννK̂(0)e0, e

∗
0

〉
Rn

6= 0.

Based on similar calculations, we obtain

〈L(χ−e0), e∗1 + ξe∗0〉L2(R,Rn) = −
〈

(In + ∂νK̂(0))e0, e
∗
1

〉
Rn

+
1

2

〈
∂ννK̂(0)e0, e

∗
0

〉
Rn

6= 0.

Summarizing our results, we have proved that:〈
Fa−(1, 0, 0; 0), e∗0

〉
L2(R,Rn)

= 0,〈
Fa−(1, 0, 0; 0), e∗1 + ξe∗0

〉
L2(R,Rn)

6= 0,

〈Fγ(1, 0, 0; 0), e∗0〉L2(R,Rn) 6= 0.

Thus Fa−,γ(0; 0) span the cokernel of L, which implies that Fa−,γ,w(1, 0, 0; 0) is invertible, as a Fredholm

index 0 operator that is onto.
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Proof. [of Proposition 5.4] Using Lemma 5.5, we can solve using the Implicit Function Theorem and

obtain a unique solution (a−, γ, w) as a function of (a+, ε). First, the asymptotic expansion (5.13) follows

directly by noticing that, to leading order in ε, we have

γ 〈Fγ(1, 0, 0; 0), e∗0〉L2(R,Rn) + ε
〈
K̃ξe0, e

∗
0

〉
L2(R,Rn)

+O(ε2) = 0.

Here, we have used the fact that
〈
Fa−(1, 0, 0; 0), e∗0

〉
L2(R,Rn)

= 〈Le0, e
∗
0〉L2(R,Rn) = 0. Our above computa-

tions lead to

〈Fγ(1, 0, 0; 0), e∗0〉L2(R,Rn) = 2

√
−2dλ(0, 0)

dνν(0, 0)

〈
(In + ∂νK̂(0))e1 +

1

2
∂ννK̂(0)e0, e

∗
0

〉
Rn
6= 0.

This gives the desired expansion (5.13) and implies that γ = −Mε+O(ε2) is of negative sign for Mε > 0.

In order to find have an eigenvalue λ∗(ε) > 0 for (5.12), we need to check that Uε(ξ) given in the ansatz

(5.20) belongs to L2(R,Rn). For small Mε > 0, we have that ν±(γ) = ∓
√
−2dλ(0,0)
dνν(0,0)Mε+O(ε2), such that

∓< (ν±(γ)) > 0 and Uε is exponentially localized. Since for λ > 0, there are no roots ν ∈ iR, we know that

T (λ, ε) is Fredholm with index zero. Together, this implies that T (λ, ε) possesses a kernel for λ = λ∗(ε).

This completes the proof of Proposition 5.4.

Remark 5.6. Following [19, Prop. 5.11], one can show uniqueness and simplicity of the eigenvalue

λ∗(ε) for Mε > 0. Also, the analysis here gives a natural extension of the eigenvalue concept into the

essential spectrum: for Mε < 0, we can track the eigenvalue λ∗(ε) in smooth fashion as a resonance pole,

that is, a function with particular prescribed exponential growth. In this sense, our method here provides

an alternative to the Gap Lemma [8, 12], where this possibility of tracking eigenvalues into the essential

spectrum was the main objective.
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