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Abstract

In this paper, we provide a complete description of the selected spreading speed of systems of reaction-

diffusion equations with unilateral coupling and prove the existence of anomalous spreading speeds

for systems with monostable nonlinearities. Our work extends known results for systems with linear

and quadratic couplings, and Fisher-KPP type nonlinearities. Our proofs rely on the construction of

appropriate sub- and super-solutions.
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1 Introduction

In this article we study the spreading properties of the following system of coupled reaction diffusion

equations, 
ut = duxx + f(u) + βvp(1− u) , t > 0, x ∈ R,
vt = vxx + v(1− v) , t > 0, x ∈ R,
u(0, x) = u0(x), v(0, x) = v0(x) , x ∈ R,

(1.1)

with d, β, p > 0 and f ∈ C2 a monostable function, that is


f(0) = f(1) = 0,

0 < f(u) , 0 < u < 1,

f ′(0) > 0 > f ′(1).

(1.2)

Given initial conditions 0 ≤ u0, v0 ≤ 1 being compactly supported perturbations of the Heaviside step

function 1x≤0, such systems typically present front-like solutions that propagates to the right with a

certain spreading speed. In this study, we are interested in the asymptotic speed of propagation for the u

component. That is, if we define the invasion point

κ(t) = sup
x∈R

{
x |u(t, x) ≥ 1

2

}
,
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we want to know the expression of the so-called selected speed or spreading speed,

ssel = lim
t→∞

κ(t)

t
,

with respect to f and the parameters. Note that, given our initial conditions, an application of the

comparison principle gives that the solutions of (1.1) satisfy 0 ≤ u(t, x), v(t, x) ≤ 1 for all t > 0 and x ∈ R,

so that the threshold 1/2 in the definition of κ(t) is arbitrary and we shall see that the selected speed is

identical for any threshold in (0, 1).

The v component. Observe that the coupling only occurs in the u equation, thus we can first look at

the v equation in isolation :

vt = vxx + v(1− v). (1.3)

This is the well-known scalar Fisher-KPP equation, and has been the object of numerous studies, see

[1, 2, 5, 9] among others. Given our compactly supported, positive initial condition, a classical result

established in [1] proves that this component will spread at asymptotical speed s∗ = 2 in the following

sense :

inf
x≤st

v(t, x) −→
t→∞

1, for all s < 2,

and

sup
x≥st

v(t, x) −→
t→∞

0, for all s > 2.

Here s∗ = 2 is also the minimal speed of monotone traveling wave solutions having the form v(t, x) =

ϕ(x− st) and satisfying

ϕ′′ + sϕ′ + ϕ(1− ϕ) = 0 in R, ϕ(−∞) = 1, ϕ(+∞) = 0. (1.4)

In fact, one can show [2, 10] that there exists a constant x∞ depending on the initial condition only such

that κ(t) has the following asymptotics

κ(t) = 2t− 3

2
ln t+ x∞ + ϕ−1

∗ (1/2)− 2
√
π√
t

+ O

(
1

t1−γ

)
, (1.5)

as t −→ +∞, for any γ > 0 and ϕ∗ denotes the critical traveling front solution of (1.4) at s∗ = 2.

The uncoupled case. We now turn our attention to the u component. We first look at the decoupled

case β = 0. The u equation in isolation shares many properties with the Fisher-KPP equation (1.3). More

specifically, from [1], we know the existence of a spreading speed s0 ≥ 2
√
df ′(0) in the sense explained

above:

inf
x≤st

u(t, x) −→
t→∞

1, for all s < s0,

sup
x≥st

u(t, x) −→
t→∞

0, for all s > s0.

In general, there is no explicit expression for the spreading speed s0 with the hypothesis that f is monostable

only. However, this speed is linearly determined if f is of Fisher-KPP type, that is f monostable (see (1.2))

and

f(u) ≤ f ′(0)u, for all 0 ≤ u ≤ 1. (1.6)
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In that case, given our initial condition, the component u will spread at speed s0 = 2
√
df ′(0) as it is the

case for equation (1.3) where d = f ′(0) = 1. Thus, for Fisher-KPP type nonlinearity, the selected speed

depends on f only through its derivative at u = 0. From now on we denote α := f ′(0).

The coupled case – Main result. We now consider (1.1) in the coupled case β > 0, with f of Fisher-

KPP type satisfying (1.2) and (1.6). At first, one could expect that the selected speed for the u component

is given by max(2, 2
√
dα). For instance, if we consider values of (d, α) such that 2

√
dα > 2, and place

ourselves in a window y = x− 2
√
dαt, the v component will converge to zero as t→∞, locally uniformly

in y. Thus one could think that replacing v by zero in the u equation would give the spreading speed. This

turns out to not always be the case, and there exists a domain for our parameters that leads to a selected

speed strictly superior than max(2, 2
√
dα). This phenomenon was first observed in [11] and given the

label of anomalous spreading, and rigorously studied in [7, 8]. In fact, we are going to prove the following

theorem.

Theorem 1. Consider (1.1) with f of Fisher-KPP type satisfying (1.2) & (1.6) and with d, β, p > 0 and

α = f ′(0) > 0. Fix initial data 0 ≤ u(0, x) ≤ 1 and 0 ≤ v(0, x) ≤ 1, each consisting of a compactly

supported perturbation of the Heaviside step function 1x≤0. Then, there exist domains I, II, III, depending

on p, so that the selected speed ssel(p) is given by

ssel(p) =


2 , (d, α) ∈ I,

2
√
dα , (d, α) ∈ II,

sanom(d, α, p) , (d, α) ∈ III,

with

sanom(d, α, p) =

√
α− p
p− dp2

+

√
p− dp2

α− p
, (1.7)

and

I =

{
α ≤ p(2− dp) | d ≤ 1

p

}
∪
{
α ≤ 1

d
| d > 1

p

}
,

II =

{
α ≥ dp2

2dp− 1
| 1

2p
< d ≤ 1

p

}
∪
{
α ≥ 1

d
| d > 1

p

}
,

III =

{
α > p(2− dp) | d < 1

2p

}
∪
{
p(2− dp) < α <

dp2

2dp− 1
| 1

2p
< d ≤ 1

p

}
.

Let first note that the system (1.1) has already been studied in the case f(u) = αu(1−u), with p = 1 [7, 8]

or p = 2 [4] and Theorem 1 is a natural generalization of those studies to p > 0. It is also important to

remark that for (d, α) ∈ III we have sanom(d, α, p) > max(2, 2
√
dα) and in that respect sanom is referred to

as an anomalous spreading speed. We will see that it is the coupling βvp into the u component of system

(1.1) that induces a resonance in the dynamics leading to this anomalous spreading speed. We refer to

Figure 2.2 for an illustration of the different domains defined in Theorem 1. It is interesting to note that

as p→ +∞, the domain III of existence of the anomalous speed shrinks as it is shifted close to axis d = 0

where it imposes large values for α as we have α ≥ p(2 − dp) in that region. On the other hand, when

p → 0+, the domain of existence of the anomalous speed becomes larger and eventually covers the whole

quadrant α > 0 and d > 0. In that respect, small values of p enhance anomalous spreading.
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Strategy of the proof. Contrary to the case p = 1 [7, 8], when p 6= 1 a linearization around the

equilibrium state (u, v) = (0, 0) is either impossible, or decouples the system. However, using the fact that

f is of Fisher-KPP type and that βvp(1 − u) ≤ βvp whenever v ≥ 0 and u ≥ 0, we obtain the following

system {
ut = duxx + αu+ βvp , t > 0, x ∈ R,
vt = vxx + v , t > 0, x ∈ R,

(1.8)

which will serve as a natural super-system for (1.1). It turns out that a thorough study of (1.8) will help

us:

• predict the selected speed for system (1.1) in the spirit of the approach presented for the case p = 2

in [4];

• devise elementary exponential solutions which will serve in the construction of sub- and super-

solutions for (1.1).

The proof of Theorem 1 relies on the fact that each component of (1.1) satisfies the comparison principle,

allowing us to apply the theory of sub- and super-solutions [3]. In fact, for each domain, we will explicitly

construct sub- and super-solutions from which we will deduce Theorem 1.

Application – Monostable nonlinearities. As it will be clear in the proof of Theorem 1, the fact that

the nonlinearity f is of Fisher-KPP type plays a crucial role in our analysis. However, it turns out that

Theorem 1 still provides valuable insights when considering nonlinearities that are only monostable (see

(1.2)). More specifically, we will see that anomalous spreading speeds do occur for this type of nonlinearities

and we will apply our results to a specific example. This is a new development compared to the original

studies of [7, 8].

Outline. The outline of this paper is as follows. In Section 2 we determine the expression of the selected

speed ssel(p) for any p > 0. By doing so, we highlight the existence of an anomalous speed depending

on parameters d, α, p. Section 3 is devoted to the proof of Theorem 1. Finally, in Section 4 we relax the

Fisher-KPP condition and we consider a particular example of (1.1) for which we establish the existence

of an anomalous speed on a particular domain of parameters.

2 Spreading speeds for system (1.1)

This section is devoted to the existence of a possible anomalous spreading speed for system (1.1). More

specifically, we will explain how such a speed can be computed. We first start by explaining the case p = 1

for which a linearization around the equilibrium state (u, v) = (0, 0) makes sense. Then, following the

approach presented in [4], we derive the formula (1.7) for the anomalous spreading speed together with the

domains I, II and III appearing in Theorem 1.
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2.1 Study of (1.8) when p = 1

We place ourselves at p = 1. In that case system (1.8) is precisely the linearized form of (1.1) around the

equilibrium state (u = 0, v = 0), and in a moving frame y = x− st, it reads{
ut = duyy + suy + αu+ βv , t > 0, y ∈ R,
vt = vyy + svy + v , t > 0, y ∈ R.

(2.1)

In the decoupled case β = 0, elementary solutions of (2.1) are exponentials of the form given by

u(t, y) = eλt
(
C1e

ν+u (s,λ)y + C2e
ν−u (s,λ)y

)
,

v(t, y) = eλt
(
C1e

ν+v (s,λ)y + C2e
ν−v (s,λ)y

)
,

with ν±u (s, λ) and ν±v (s, λ) roots of the dispersion relation for the u and v equations respectively :

Du(ν) := dν2 + sν + α− λ = 0,

Dv(ν) := ν2 + sν + 1− λ = 0.

When looking at the coupled case β 6= 0 with initial conditions 1x≤0(x), it has been shown in [7] that

the spreading speed of (1.8) can be inferred from the analyticity, or lack thereof, of the pointwise Green’s

function associated to system (2.1). It is obtained after a Laplace transform in time with parameter λ ∈ C
and when considering delta Dirac initial conditions. The skew-product nature of the coupling implies

that the dispersion relation of the full system (2.1) is the product of the dispersion relations Du and Dv.

Non-removable singularities of the Green function appear for values of s, λ such that the full dispersion

relation admits pinched double roots, that is when one of these relations holds

ν+
u (s, λ) = ν−u (s, λ), (2.2a)

ν+
v (s, λ) = ν−v (s, λ), (2.2b)

ν±u (s, λ) = ν∓v (s, λ). (2.2c)

Then the spreading speed of (2.1) is exactly the minimal value of s such that those singularities are all

located in the stable half plane Re(λ) ≤ 0, that is :

slin := sup {s > 0 | all couples (s, λ) solutions of (2.2) satisfy Re(λ) > 0} .

We refer to it as the linear spreading speed. In fact, solving (2.2) one obtains the following expression for

the linear spreading speed [7]:

slin =


2 , α ≤ 2− d,
2
√
dα , d > 1

2 and α ≥ d
2d−1 ,

sanom =
√

α−1
1−d +

√
1−d
α−1 , otherwise.

Due to the fact that f is of Fisher-KPP type, this linear spreading speed usually provides a good predictor

for the selected speed of the nonlinear system. A more thorough study [8] allows one to show that the

selected speed for the nonlinear system (1.1) is equal to the linear spreading speed except on the domain

IV =
{
d > 1 , max(2− d, 0) < α < d

2d−1

}
, where the selected speed is equal to max(2, 2

√
dα), and one

recovers precisely the statement of Theorem 1 with p = 1. What is crucial here is that all values taken

by the selected speed of (1.1) are captured by the linear speeds of (2.1). In that respect, the system (1.1)

when p = 1 is said to be linearly determined.
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2.2 An heuristic approach

When p 6= 1, we have already explained that either a linearization is impossible or it decouples the system.

Nevertheless, we would like to proceed along similar lines as in the case p = 1, and it turns out that system

(1.8) is a natural ”generalization” of the linearized system. Therefore, we rewrite (1.8) in a moving frame

y = x− st and obtain {
ut = duyy + suy + αu+ βvp , t > 0, y ∈ R,
vt = vyy + svy + v , t > 0, y ∈ R.

(2.3)

Our goal here is to mimic the step that leads us to compute the linear spreading speed slin of system (2.1).

This heuristic approach on system (2.3) will give us an educated guess on the expressions of domains I, II,

III and the expression of sanom in the general case p > 0. And then, in the next section we will provide a

theoretical proof of our guess using techniques of sub- and super-solutions.

First, recall that when p = 1, the spreading speed can be computed by looking at the resonance between

decay rates ν±u,v(s, λ) corresponding to equations u and v isolated. If one considers exponential solutions

of the form

u(t, y) = eΛteνu(s,Λ)y,

v(t, y) = eλteνv(s,λ)y,

then in order for those functions to satisfy (2.3) we necessarily need

Λ = pλ,

νu(s,Λ) = pνv(s, λ).

The heuristic is the following : for fixed values of (d, α, p), we seek the couples (s, λ) solutions of any of

the four equations

ν+
u (s, λ) = ν−u (s, λ), (2.4a)

ν+
v (s, λ) = ν−v (s, λ), (2.4b)

ν±u (s, pλ) = pν∓v (s, λ), (2.4c)

and we want to find the value of the speed

slin(p) = sup {s > 0 | all couples (s, λ) solutions of (2.4) satisfy Re(λ) > 0} . (2.5)

We will call that speed the linear speed despite (2.3) not being linear. That is because it will play a

similar role of predictor for the selected speed of the nonlinear system, just like the case p = 1. Obviously,

slin(1) = slin.

Remark 2.1. It is important to note that when p = 2, we recover the ”2 : 1- resonant spreading speed”

from [4]. Actually, for any p ≥ 1 being an integer, the spreading speed (2.5) can be interpreted as a ”p : 1-

resonant spreading speed”. However, for general p > 0 we could not use the definition [4, Definition 2.1]

and this is why we proposed the natural generalization (2.5).
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2.3 Expression of the spreading speed slin(p)

In this section, we prove the following result which is a first step in proving our main Theorem 1.

Proposition 2.2. The linear speed defined by (2.5) is given by

slin(p) =


2 , α ≤ 2p− dp2,

2
√
dα , d > 1

2p and α ≥ dp2

2dp−1

sanom(d, α, p) , otherwise,

, (2.6)

with

sanom(d, α, p) =

√
α− p
p− dp2

+

√
p− dp2

α− p
.

Proof. We solve explicitly each equation. Solutions of (2.4a) and (2.4b) are respectively{(
s, λ = α− s2

4d

)
| s > 0

}
, and

{(
s, λ = 1− s2

4

)
| s > 0

}
.

Thus it requires slin(p) ≥ max(2, 2
√
dα). Equations (2.4c) involve more work. We first consider the

particular case d = 1/p. One checks it implies that α = p and the solutions are{(
s, λ = 1− s2

4

)
| s > 0

}
,

meaning that the case d = 1/p does not impose more restrictive conditions for slin(p) than the ones

previously derived. From now on, we suppose that d 6= 1/p, and we define

X :=
α− dp2

p− dp2
, Y :=

α− p
p− dp2

.

Using these notations, we obtain a parametrization of the solutions of (2.4c) as a function of the speed s,

namely two curves in the complex plane

λ±(s) = X ± s
√
Y . (2.7)

More precisely, couples (s, λ±(s)) are exactly the solutions of one of the four equations

ν±u (s, pλ) = pν±v (s, λ),

ν±u (s, pλ) = pν∓v (s, λ).

Recall that only (2.4c) leads to an anomalous speed, from an heuristical point of view. From there, one

can in fact compute explicitly the values ν±u,v(s, λ) when λ satisfies (2.7),

ν+
u (s, pλ±(s)) = − s

2d
+

1

2d

√
s2 − 4dα+ 4dp

(
α− dp2

p− dp2
± s
√
Y

)
,

= − s

2d
+

1

2d

√
s2 ± 4dp

√
Y s+ 4d2p2

(
α− p
p− dp2

)
,

= − s

2d
+

√( s
2d

)2
± p

d

√
Y s+ p2Y ,

= − s

2d
+

√( s
2d
± p
√
Y
)2
,
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and as a consequence, we have

ν+
u (s, pλ±(s)) =

±p
√
Y , if Re

(
s
2d ± p

√
Y
)
≥ 0,

− s
d ∓ p

√
Y , if Re

(
s
2d ± p

√
Y
)
≤ 0.

Note that we used the convention that a square root of a complex number z is the only complex number

ζ which satisfies ζ2 = z and arg(ζ) ∈ (−π
2 ,

π
2 ] if ζ 6= 0. One can do the same calculation for all the roots.

We obtain the following expressions, depending on Y ′ := Re(
√
Y ) ∈ R+,

ν+
u (s, pλ±(s)) =

{
− s
d ∓ p

√
Y , if s ≤ ∓2dpY ′,

±p
√
Y , if s ≥ ∓2dpY ′,

ν−u (s, pλ±(s)) =

{
±p
√
Y , if s ≤ ∓2dpY ′,

− s
d ∓ p

√
Y , if s ≥ ∓2dpY ′,

and

pν+
v (s, λ±(s)) =

{
−sp∓ p

√
Y , if s ≤ ∓2Y ′,

±p
√
Y , if s ≥ ∓2Y ′,

pν−v (s, λ±(s)) =

{
±p
√
Y , if s ≤ ∓2Y ′,

−sp∓ p
√
Y , if s ≥ ∓2Y ′.

From there, one can directly solve (2.4c) for each λ(s) = λ±(s). The case Y ≤ 0 implies Y ′ = 0, and leads

to only one solution, (s, λ) = (0, X). As we already have slin(p) ≥ max(2, 2
√
dα) > 0, there is no additional

condition on slin(p) if Y ≤ 0. Thus slin(p) = max(2, 2
√
dα) on {Y ≤ 0}.

We now restrict ourselves to the domain

{Y > 0} = {α > p , d < 1/p} ∪ {α < p , d > 1/p}.

Note that it implies Y ′ > 0. The couples (s, λ±(s)) play symmetric roles regarding the sign of s. In

fact, a necessary condition for (s, λ+(s)) to be solution of (2.4c) is s < 0. Thus it has no impact on

slin(p). However, note that if we took initial conditions of the form 1x≥0, we would propagate to the left at

nonpositive speed and we would exclude (s, λ−(s)) instead. Consider now the couple (s, λ−(s)). We find

the following solutions,{
(s,X − s

√
Y ) | s ∈ [2dpY ′; 2Y ′]

}
, if Y > 0 and d < 1/p, (2.8){

(s,X − s
√
Y ) | s ∈ [2Y ′; 2dpY ′]

}
, if Y > 0 and d > 1/p, (2.9)

with (2.8) being solution of ν+
u (s, pλ−(s)) = pν−v (s, pλ−(s)) and (2.9) being solution of ν−u (s, pλ−(s)) =

pν+
v (s, pλ−(s)).

Note that

Re(λ−(s)) ≤ 0 ⇔ s ≥ sanom :=
X√
Y

=
√
Y +

1√
Y
.

At this point, we cannot conclude yet that slin(p) ≥ sanom whenever Y > 0. Indeed, for either (2.8) or

(2.9) to be satisfied there are three possibilities, depending on the values (d, α, p):

• If we have sanom ≤ min(2dpY ′, 2Y ′), then the couples (s, λ−(s)) already satisfy Re(λ−(s)) ≤ 0. That

is, there is no additional condition for slin(p) (see Figure 1(a)). Hence slin(p) = max(2, 2
√
dα).
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Figure 2.1: Variations of the roots ν±u,v with respect to s. In red, ν+u (s, pλ−(s)), in blue, ν−u (s, pλ−(s)), in green,

pν−v (s, λ−(s)), in yellow pν+v (s, λ−(s)). The two blue dotted lines represent s = 2 and s = 2
√
dα. The black one

represents s = sanom. We have ν+u = pν−v or ν−u = pν+v only if s ∈ I := [min(2dpY ′, 2Y ′),max(2dpY ′, 2Y ′)]. On

each figure, I is precisely the intersection of the red and the green curves. In (a) and (b), we have that s = sanom
does not intersect the segment I, so that no we do not have additional conditions on slin. In (c), s = sanom intersects

I and we need to have slin ≥ sanom and an anomalous speed can appear.

• If we have sanom ≥ max(2dpY ′, 2Y ′), then we are then forced to have slin(p) ≥ max(2dpY ′, 2Y ′),

but a stronger condition is not needed, since beyond that point (s, λ−(s)) is not a solution anymore.

Using the fact that

sanom =
√
Y +

1√
Y

= dp
√
Y +

α

p

√
1

Y
,

the condition sanom ≥ max(2dpY ′, 2Y ′) can be rewritten as Y ≤ min(1, α/dp2). Thus 2Y ′ ≤ 1

and 2dpY ′ ≤ 2
√
dα. This leads to the condition slin(p) ≥ max(2, 2

√
dα), thus does not imply an

anomalous speed (Figure 1(b)).

• If we have min(2dpY ′, 2Y ′) < sanom < max(2dpY ′, 2Y ′), then we are forced to have slin(p) ≥ sanom

(see Figure 1(c)). This is the only case where an anomalous speed is susceptible to appear.

As a consequence, we place ourselves in the last case. First, we check that sanom is indeed an anomalous

speed. One can check that for every (d, α) ∈ {Y > 0} we have sanom ≥ max(2, 2
√
dα). Moreover, we can

prove the following facts :

sanom = 2⇔ Y = 1⇔ α = 2p− dp2 ⇔ sanom = 2Y ′, (2.10)

sanom = 2
√
dα⇔ Y =

α

dp2
⇔
(
d >

1

2p
and α =

dp2

2dp− 1

)
⇔ sanom = 2dpY ′. (2.11)

This means that in the last case, we have sanom > max(2, 2
√
dα), thus an anomalous speed. This also

proves that slin(p) given by (2.6) is a continuous expression with respect to parameters d, α, p.

Now we want to know for which values of (d, α) we are in the last case. Note that it happens if and only

if (sanom, λ−(sanom)) is a solution of (2.8) or (2.9), and sanom /∈ {2Y ′, 2dpY ′}. Thus it is equivalent to find

the couples (d, α) for which

ν+
u (sanom, pλ−(sanom)) = pν−v (sanom, λ−(sanom)),

9
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Figure 2.2: Differences between the speeds slin(p) (left) and sKPP
sel (p) (right) with p = 1.5. On the domains I and

Ĩ both speeds are equal to 2. On the domains II and ĨI both speeds are equal to 2
√
dα. On domains ĨII, ĨV and

III both speeds are equal to sanom > max(2, 2
√
dα). Notice that when considering the selected speed sKPP

sel (p) for the

full system (1.1), the domain ĨV disappears, and in that region of parameters the selected speed is simply equal to

max(2, 2
√
dα).

ν−u (sanom, pλ−(sanom)) = pν+
v (sanom, λ−(sanom)),

and remove from our set of solutions the points which satisfy sanom ∈ {2Y ′, 2dpY ′}, that is the two curves

(d, 2p − dp2) and (d, dp2

2dp−1) in the first quadrant of the (d, α) plane, according to (2.10) & (2.11). As a

consequence, if we set

Ĩ :=
{
α ≤ 2p− dp2

}
, ĨI :=

{
d >

1

2p
, α ≥ dp2

2dp− 1

}
,

together with

ĨII :=

{
d <

1

p
, 2p− dp2 ≤ α

}
∩
{

1

2p
< d <

1

p
, α ≤ dp2

2dp− 1

}
,

ĨV :=

{
1

p
< d , 2p− dp2 ≤ α ≤ dp2

2dp− 1

}
.

then slin(p) = sanom precisely on domains ĨII and ĨV, while we have slin(p) = 2 on domain Ĩ and slin(p) =

2
√
dα on domain ĨI. This ends the proof of Proposition 2.2.

As we have already mentioned, the computation of the linear spreading speed given by Proposition 2.2

will help us get an estimate of the selected speed sKPP
sel (p) for system (1.1). In the following section, we

will prove that the spreading speed of the nonlinear system sKPP
sel (p) is equal to the linear spreading speed

slin(p) for (d, α) in domains Ĩ, ĨI, ĨII, but is equal to max(2, 2
√
dα) for (d, α) in ĨV. For this reason, we shall

call ĨII the relevant domain, with ν+
u , ν

−
v associated relevant double roots, and ĨV the irrelevant domain,

with ν−u , ν
+
v associated irrelevant double roots. We illustrate the differences between slin(p) and sKPP

sel (p)

in Figure 2.2.

3 Proof of Theorem 1

In order to prove Theorem 1, we will construct explicit sub- and super-solutions in every domain Ĩ-ĨV.

Some of these have already been done in [7, 8] in the case p = 1 and f(u) = αu(1− u). In that event, we

10



will only explain how to adapt the proof in the general case. For the next two sections, given v, we define

for any function u

N(u) := ut − duxx − f(u)− βvp(1− u).

Let us already recall that whenever v ≥ 0 and u ≥ 0, we have

N(u) ≥ ut − duxx − αu− βvp.

Finally, throughout the sequel we will simply denote ssel instead of ssel(p).

3.1 Super-solutions

For the sake of readability, we will write νu,v(s), and if not confusing only νu,v, instead of νu,v(s, 0).

Furthermore, for this section, we define slightly different domains in the first quadrant of the (d, α) plane

Î :=
{
α < 2p− dp2

}
, ÎI :=

{
d >

1

2p
, α >

dp2

2dp− 1

}
, ÎII :=

{
d <

1

p

}
\(̂I ∪ ÎI), ÎV :=

{
d >

1

p

}
\(̂I ∪ ÎI),

and the point V̂ :=
{
d = 1

p , α = p
}

.

3.1.1 Domain ÎV

Lemma 3.1. For any (d, α) ∈ ÎV, we have ssel ≤ max(2, 2
√
dα).

Proof. A similar proof was done in [7] in the case p = 1. However, to give the reader more insight about

how we construct those super-solutions which will be used later on, we write it all here.

We consider s > max(2, 2
√
dα) and (d, α) ∈ ÎV. Then for any Cv > 0, a super-solution for the v equation

is given by

v(t, x) = min
(

1, Cve
ν−v (s)(x−st)

)
.

Notice that v changes its expression at the point yv = 1
ν−v (s)

log
(

1
Cv

)
in the moving frame y = x − st. It

is also a sub-solution at y = yv since

0 = lim
y→y−v

∂yv > lim
y→y+v

∂yv.

We then take Cv > 0 large enough so that v(0, x) ≥ v(0, x). Thus v(t, x) ≤ v(t, x) for all (t, x).

We now turn our attention to the u component and construct a similar super-solution. We seek u(t, x)

so that N(u) ≥ 0 for all t > 0 and x ∈ R. We claim that for any Cv > 0, we can find C∗u(Cv) > 0 and

τ(Cu, Cv) so that

u(t, x) =

{
1 , x− st ≤ τ,
Cue

ν−u (x−st) + Cpvκepν
−
v (x−st) , x− st > τ,

11



is a super-solution whenever Cu > C∗u. One easily verifies that u is a super-solution when x− st ≤ τ . If τ

is taken larger than yv, then for x− st > τ we have the following inequality for N(u), assuming u ∈ [0, 1] :

N(u) ≥
[
ut − duxx − αu− βCpvepν

−
v (x−st)

]
+ β(vp − vp).

For (d, α) ∈ ÎV, we have pν−v (s) < ν−u (s) < 0, which implies that

Du(pν−v ) = d(pν−v )2 + spν−v + α > 0.

If we now consider the equation

ut = duxx + αu+ βCpve
pν−v (x−st),

we find a solution

ũ(t, x) = Cue
ν−u (x−st) + Cpvκe

pν−v (x−st),

with

κ =
−β

Du(pν−v )
< 0.

Therefore, we have N(ū) ≥ β (v̄p − vp) if τ > yv. On the other hand, the fact that pν−v < ν−u implies

ũ(t, x) > 0 for x sufficiently large. Moreover, ũ(x− st) has a unique maximum at

ξmax = − 1

ν−u − pν−v
log

(
−Cuν−u
Cpvκpν

−
v

)
.

From there, when Cu → +∞, we have ξmax → −∞. Thus there exists C∗u(Cv) > 0 such that for any

Cu > C∗u, the following two conditions are satisfied: (i) ξmax < yv(Cv) and (ii) ũ(t, yv + st) > 1. Then,

as ũ(t, x) → 0+ as x → +∞, there exists τ(Cu, Cv) > yv such that ũ(t, τ + st) = 1. This guarantees the

continuity of u. Since ũx < 0 for ξ > ξmax, we have that ũ < 1 for x − st > τ . Thus u propagates to the

right with speed s.

In addition, for ξ > ξmax, we have ũ > 0. Indeed, if there exists ξ0 > ξmax such that u(t, ξ0 + st) = 0, then

it would be in contradiction with ũx < 0 and ũ(t, x) → 0+. Thus we also have u > 0. As v > v, we have

that N(u) ≥ 0 for all (t, x). It is also straightforward to check that u is also a super-solution on x− st = τ .

Finally, given u(0, x) = 1x≤0, we can take C∗u even larger to ensure that u(0, x) ≥ u(0, x). Therefore we

have u(t, x) ≥ u(t, x) for any t > 0 and x ∈ R, so the spreading speed of the u component is bounded

above by s. This construction holds for any s > max(2, 2
√
dα) and thus ssel ≤ max(2, 2

√
dα).

3.1.2 Domain ÎI

Lemma 3.2. For any (d, α) ∈ ÎI, we have ssel ≤ 2
√
dα.

Proof. We can do the exact same proof as with (d, α) ∈ ÎV, by considering (d, α) ∈ ÎI and s > 2
√
dα > 2

instead. We just have to make sure that in that domain pν−v (s) < ν−u (s), which will then imply that

Du(pν−v ) > 0. Thus, in order to have the same proof, all that is needed is to have

pν−v (2
√
dα) < ν−u (2

√
dα).
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Indeed, if s is taken close enough to 2
√
dα, we will have

pν−v (s) < ν−u (s),

and the same proof can hold. We know that ν−u (2
√
dα) = −

√
α
d . Thus we solve

pν−v (2
√
dα) = −p

√
dα− p

√
dα− 1 < −

√
α

d
,√

1− 1

dα
>

1

dp
− 1.

One can check this is always true for (d, α) ∈ ÎI, and the proof is complete.

Note that the last inequality does not hold when α = 1/d = p. This is partly the reason why we had to

redefine our domains Î-V̂.

3.1.3 Domain ÎII

Lemma 3.3. For any (d, α) ∈ ÎII, we have ssel ≤ sanom.

Proof. A similar proof was given in [8] with a coupling term βv instead of βvp(1−u). Our super-solution

will be similar to the one constructed for (d, α) ∈ ÎV, and the proof is also simpler. For this reason we will

briefly mention the different steps.

Consider (d, α) ∈ ÎII and s > sanom. Then we can choose Cv > 0 so that

v(t, x) = min
(

1, Cve
ν−v (s)(x−st)

)
,

is a super-solution of the v equation and satisfies v(t, x) ≥ v(t, x) for all t > 0 and x ∈ R. Notice that v

changes its expression at the point yv = 1
ν−v (s)

log
(

1
Cv

)
in the moving frame y = x− st. Then, we can find

C∗u(Cv) such that for all Cu > C∗u there exists a τ(Cu, Cv) for which

u(t, x) =

{
1 , x− st ≤ τ,
Cue

ν+u (s)(x−st) + κCpvepν
−
v (s)(x−st) , x− st ≥ τ,

is a super-solution for the u component, with

κ =
−β

Du(pν−v )
.

Note that for (d, α) ∈ ÎII we have pν−v (s) < ν+
u (s) and Du(pν−v ) < 0, so that κ > 0. Then the sum of

exponentials in u expression is a positive non increasing function that tends to infinity as x − st → −∞
and to zero as x− st→∞. Therefore we can choose τ as the unique value that makes u continuous. Then

we can choose C∗u large enough so that for every Cu > C∗u we have both τ > yv(Cv) and u(0, x) > u(0, x).

In the end we have u(t, x) ≤ u(t, x) for all (t, x). As u propagates to the right at speed s taken arbitrarily

close to sanom, we have ssel ≤ sanom for (d, α) ∈ ÎII.
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3.1.4 Domain Î

Lemma 3.4. For any (d, α) ∈ Î, we have ssel ≤ 2.

Proof. We can do the exact same proof as for (d, α) ∈ ÎII, by considering (d, α) ∈ Î and s > 2 > 2
√
dα

instead. We just have to make sure that pν−v (s) < ν+
u (s) and Du(pν−v ) < 0. All that is needed is to have

ν+
u (2) ≥ pν−v (2) > ν−u (2).

Indeed, using the fact that ν+
u is increasing with s and ν−v is decreasing with s, if s is taken close enough

to 2, we will have

ν+
u (s) > pν−v (s) > ν−u (s),

and the same proof holds. We know that pν−v (2) = −p. Thus we solve

ν+
u (2) =

1

d

(
−1 +

√
1− dα

)
≥ −p,

√
1− dα ≥ 1− dp,

ν−u (2) =
1

d

(
−1−

√
1− dα

)
< −p,

√
1− dα > dp− 1.

One can check this is true when (d, α) ∈ Î, which ends the proof.

Remark 3.5. Note that a similar proof as the one for Lemma 3.4 does not hold for (d, α) ∈ {d > 1/p , α =

2p− dp2}. Indeed, recall that for those values we have both ν+
u (sanom) = pν−v (sanom) and sanom = 2. Thus

we have ν+
u (2) = pν−v (2) = ν−u (2). Also, as d > 1/p, we have α < 1/d thus 2

√
dα < 2. So we have

lim
s→2+

∂sν
−
v (s) = lim

s→2+

(
−1

2
− 1

2

s√
s2 − 4

)
= −∞,

∂sν
−
u (2) = − 1

2d
− 1

2d

2√
4− 4dα

> −∞.

As a consequence, we have ν−u (s) > pν−v (s) when s → 2. This is why we removed this curve from the

domain Î. However, note that this case was dealt within the proof of Lemma 3.1 on the domain ÎV.

3.1.5 Point V̂

Lemma 3.6. Let d = 1
p and α = p, then we have ssel ≤ 2 = 2

√
dα.

Proof. As α = 1/d = p, we have ν±u = pν±v for all s. Thus none of the previous proofs work because they

rely on the fact that Du(pνv) 6= 0. Yet, we can construct a similar super-solution for this case.

We consider s > 2, and νv(s) = − s
2 ∈]ν−v (s), ν+

v (s)[. It is still true that

v(t, x) = min(1, Cve
νv(s)(x−st)),
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is a super-solution of the v equation for any Cv > 0. We also have

ν−u (s) < pνv(s) < ν+
u (s),

so that we have Du(pνv) < 0. Let

u(t, x) =

{
1 , x− st ≤ τ,
Cue

ν+u (s)(x−st) + κCpvepνv(s)(x−st) , x− st ≥ τ.

We can proceed the same way as when (d, α) ∈ ÎII and show that u is a super-solution, concluding the

proof of the lemma.

3.2 Sub-solutions

We come back to our former definitions of the domains Ĩ-ĨV given in Section 2. In order to have the

lower bound of Theorem 1, we prove that ssel ≥ 2 and ssel ≥ 2
√
dα for any (d, α), then ssel ≥ sanom for

(d, α) ∈ ĨII.

3.2.1 Lower bound ssel ≥ 2
√
dα

Lemma 3.7. For any d > 0 and α > 0, we have ssel ≥ 2
√
dα.

Proof. Let’s consider the u equation in isolation, that is

ut = duxx + f(u). (3.1)

A phase-plane analysis (see for example [1]) shows that this equation admits solutions of the form Us(x−st),
unique up to a translation for every fixed s ∈ R. If we consider 0 < s < 2

√
dα, then 1 is an unstable

saddle-node point, while 0 is a stable focus. Thus those solutions tend to 1 as x− st→ −∞ and converge

to 0 by oscillating when x − st → ∞. In particular, they attain 0 in finite time. For any s ∈ (0, 2
√
dα)

we define Uosc(x − st) as a solution of (3.1), cut off and set equal to zero for all x − st greater than its

smallest zero. Then one can check that Uosc is a sub-solution of (3.1). Since, for the full system (1.1),

we only add the negative contribution −βvp(1 − u) when considering N(u), it is also a sub-solution for

the coupled equation. Using the invariance by translation, we can ensure that Uosc(x) ≤ u(0, x), so that

we have Uosc(x − st) ≤ u(t, x) for every (t, x). Since we can choose s arbitrarily close to 2
√
dα, we have

ssel ≥ 2
√
dα.

3.2.2 Lower bound ssel ≥ 2

Lemma 3.8. For any d > 0 and α > 0, we have ssel ≥ 2.

While we obtained a sub-solution by removing the coupling in the proof of the previous lemma, this does

not work here. We have to use the coupling term in the expression of our sub-solution, otherwise it would

mean that the selected speed of (3.1) with compactly supported initial condition would also be greater

than 2, which is obviously false. There are multiple ways to achieve it, and we present here a simple one.
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Proof. Consider s < 2. We define the following function depending on y = x− st :

ψ(y) = 1−A cosh(B(y − C)),

with A ∈ (0, 1), B > 0 and C ∈ R. The maximum of ψ is ψ(C) = 1−A < 1, and there exists y+ > C such

that ψ(y+) = 0 and ψy(y+) = ψx(y+) < 0. In fact, we have

y+ =
Argcosh(1/A)

B
+ C.

Thus one can define the continuous function

u(t, x) = u(y) =


1−A , y ≤ C,
ψ(y) , C ≤ y ≤ y+,

0 , y ≥ y+.

It is obvious that u is a sub-solution when y /∈ (C, y+). We also note that at the matching points y = C

and y = y+, we have

lim
y→C−

∂yu = lim
y→C+

∂yu,

lim
y→y−+

∂yu < lim
y→y++

∂yu.

On the other hand, since f(u) ≥ 0, one can check that

N(u) ≤ ut − duyy − suy − f(u)− βvp(1− u),

≤
[
dB2 − βvp

]
A cosh(B(y − C)) + sAB sinh(B(y − C)),

≤
[
dB2 + sB − βvp

]
A cosh(B(y − C)),

with v ≤ v a sub-solution of the v equation. So we need dB2 + sB − βvp(t, y) ≤ 0 when y ∈ [C, y+].

As s < 2, let us consider Vosc(x − st) the sub-solution of the v equation, with Vosc constructed the exact

same way as Uosc above. One can choose a translate of Vosc such that its first zero occurs when y = 0.

Then we have Vosc(x− st) ≤ v(t, x) for all (t, x). This allows us to choose v = Vosc.

As we have Vosc(y) −→
y→−∞

1, there exists y0(s) < 0 such that Vosc(y) ≥ 1
2 whenever y ≤ y0. The parameters

d, s, β, p being fixed, we can select a B small enough so that

dB2 + sB − β
(

1

2

)p
≤ 0.

Thus we have N(u) ≤ 0 if we can ensure that Vosc(y) ≥ 1
2 for y ∈ [C, y+], that is if y+ ≤ y0. Given the

expression of y+, and as y0 depends only on s, one can choose C very negative so that y+ ≤ y0. Thus u is

a sub-solution.

Finally, we have to verify if u(0, x) ≤ u0(x). We have u ≤ 1− A, y+ < 0, and u = 0 outside of (−∞, y+).

By choosing C possibly even more negative, we can ensure that u(0, x) ≤ u0(x). So that eventually we

have u(x− st) ≤ u(t, x) for every (t, x).

In the end, any threshold h ∈ (0, 1−A) travels at speed at least equal to s. As we can choose A arbitrarily

close to 0, we have ssel ≥ s. The same construction holds for any s < 2, thus ssel ≥ 2. This ends the proof

of the lemma.
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3.2.3 Lower bound ssel ≥ sanom

Lemma 3.9. For any (d, α) ∈ ĨII, we have ssel ≥ sanom.

A similar proof has been done in [8] with a coupling term βv instead of βvp(1 − u). The adaptation to

p > 0 is somehow straightforward, but the positive contribution βvpu in the expression of N(u) requires

some specific attention. This is why we will sketch the main lines of the proof. We first quote a result from

[8].

Lemma 3.10. Fix σ > 2 and 0 ≤ v0 ≤ 1 a compactly supported perturbation of the Heaviside step function

1x≤0. Let δ > 0. There exist τ±(t; δ, σ, v0) and a T ∗(δ, σ, v0) > 0 such that the function

v(t, x) = eν
−
v (σ)(x−σt)e−δt,

is a sub-solution of the v component (1.3) for y ∈ [τ−(t), τ+(t)] and t > T ∗.

Proof. [of Lemma 3.9] We now turn our attention to the u component. Consider (d, α) ∈ ĨII and

max(2, 2
√
dα) < s < σ < sanom. We will prove that there exist Tδ > 0 such that

u(t, x) =


Ur(x− st) , x < σt,

Ur((σ − s)t)ψ(x− σt, t) , σt ≤ x < σt+ Θ+(t)

0 , x ≥ σt+ Θ+(t),

,

is a sub-solution of the u equation for any t ≥ Tδ. The different terms in u are as follows.

• The family of fronts Ur(·) indexed by r ∈ R represents the solutions of the u equation in isolation.

Using the invariance by translation, we can parameterize this family with the identity

Ur(r) = h.

with h ∈ (0, 1) fixed. As we choose s > 2
√
dα, those are indeed fronts that tend to one as x−st→ −∞,

and decay to zero as x− st→ +∞. In particular, a phase-plane analysis shows that

U ′r(y) = ν+
u (s)Ur [1 +R(Ur)] ,

with |R(Ur)| < CUr for Ur small enough.

• The function ψ is given by

ψ(y, t) = c1(t)eν
+
u (σ)y − β

Du(pν−v (σ)) + δ
epν

−
v (σ)ye−pδt, with c1(t) =

(
1 +

β

Du(pν−v (σ)) + δ
e−δt

)
,

where Du(pν−v (σ)) + δ > 0 for the values of parameters under consideration. Note that ψ(y, t)→ 0−

when y → ∞, and ψ(0, t) = 1. Finally, there exists Θ+(t) ∈ (0,∞) such that ψ(Θ+(t), t) = 0 and

ψ(y, t) > 0 on [0,Θ+(t)).
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As a consequence, if one chooses,

δ = δc =
1

p

√
σ2 − 4(pν−v (σ)− ν+

u (σ)) > 0,

then one can ensure that

τ−(t; δ, σ, v0) < Θ+(t) < τ+(t; δ, σ, v0),

holds for all t greater than some Tδ(σ, v0) ≥ T ∗(δ, σ, v0). Besides, if σ is close enough to sanom, then

τ−(t) > 0 for t > Tδ. Then, for all t > Tδ, in a moving frame y = x− σt, the real line can be decomposed

into

Ia = (−∞, 0], Ib = (0, τ−(t)], Ic = (τ−(t),Θ+(t)], Id = (Θ+(t),∞).

We now prove that u is a sub-solution on each interval. Regions Ia and Id are trivial. Furthermore, an

easy computation shows that u is a sub-solution at the matching point = x − σt = 0. In both regions Ib
and Ic we have

N(u) = (σ − s)U ′r(·)ψ + Ur(·)c′1(t)eν
+
u (σ)(x−σt)

+ Ur(·)βvp − βvp(t, x)(1− Urψ) + F (Urψ) ,

where F(u) := f(u)− αu = O(u2) as u→ 0. Since σ > s, by taking Tδ perhaps even larger, we have that

Ur(x− st) is very close to 0 when x ∈ Ib ∪ Ic. Thus we can simplify the expression and we obtain

N(u) =
[
(σ − s)ν+

u (s) +R(Ur) + βvp(t, x)
]
Urψ + F (Urψ)

+
[
Ur(·)c′1(t)eν

+
u (σ)(x−σt)

]
+ [βUr(·)vp(t, x)− βvp(t, x)] .

Sub-solution on Ic. Note first that we have c′1(t) < 0. Since Ur → 0 as r → −∞, there exists r0(s, σ, v0)

such that for all r < r0(s, σ, v0) and t > Tδ(σ, v0) we have for all x ∈ Ic that[
(σ − s)ν+

u (s) +R(Ur) + βvp(t, x) + CUrψ
]
< 0

as (σ − s)ν+
u (s) < 0 is a fixed negative number and βvp(t, x) converges to zero uniformly for x ∈ Ic and

F(u) ≤ Cu2 as u→ 0 for some positive constant C > 0. We have thus proved that N(u) < 0 on Ic.

Sub-solution on Ib. The same reasoning does not hold on region Ib, since v is not a sub-solution here.

However, it remains true that the first and second bracket are negative if Tδ is large enough. Indeed, it

is enough to control βUr(·)vp. If we divide and multiply this term by ψ, we can enter it into the first

bracket. Then similarly to the control we applied in region Ic, it suffices to show that βUrv
p/ψ can be

made arbitrarily small, which is satisfied by taking Tδ possibly even larger. Thus N(u) < 0 on Ib.

Conclusion of the proof. The last step is to prove there exists Tu(s, σ, q0) ≥ Tδ such that u(Tu, x) ≤
u(Tu, x). As the proof is identical to the one in [8] we do not detail it here. Thus we obtain u ≤ u for all

t ≥ Tu and x ∈ R. For any threshold h ∈ (0, 1), we have chosen Ur so that Ur(r) = h. For large values

of t we have σt > r so that the invasion point of u associated to the threshold h satisfies κh(t) = st + r.

Then the selected speed of u is equal to s for any h ∈ (0, 1). This implies ssel ≥ s. As s < sanom was taken

arbitrarily, we deduce ssel ≥ sanom. This ends the proof.
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4 Existence of anomalous spreading speed in monostable systems – A

case study

In this section, we investigate the existence of anomalous spreading speed in system (1.1) when we relax

the Fisher-KPP condition (1.6) and only suppose that f is monostable i.e. only satisfies (1.2). As already

explained in the introduction, in general, for the u component in isolation there is no explicit expression for

the selected spreading speed s0. Also, recall that in that case s0 verifies s0 ≥ 2
√
df ′(0). In order to slightly

simplify our presentation and better illustrate our result, we consider (1.1) with a specific f . Namely, we

will suppose throughout this sequel that

f(u) = αu(1− u)(1 + au), (4.1)

where a > 0 is a varying parameter. The motivation for such a choice comes from the fact that one can

exactly compute the spreading speed s0 as shown in the following section. Of course, all results of this

section can be generalized to any monostable nonlinearities but one cannot get as fine statements as the

ones we present here (see Conjecture 1 & 2).

4.1 Equation u in isolation

For the moment, we consider the u component in isolation

ut = duxx + αu(1− u)(1 + au).

We look for solutions of the form u(t, x) = Us(x − st) which connects monotonically the homogeneous

states u = 0 and u = 1. Such solutions satisfy

dU ′′s + sU ′s + αUs(1− Us)(1 + aUs) = 0, U ′s < 0 with Us(−∞) = 1 and Us(+∞) = 0.

A phase-plane analysis [1, 6] shows that there exists such Us, unique up to a translation, for any s ≥ s0

where

s0 :=

2
√
dα , if a ≤ 2,(

2+a√
2a

)√
dα , if a ≥ 2.

Note that s0 > 2
√
dα whenever a > 2. As shown in [1], compactly supported, positive initial condition,

will spread at speed s0, and thus for the full system (1.1) we necessarily have that sm
sel(p) ≥ s0 where we

denote by sm
sel(p) the selected speed for system (1.1) the subscript m referring to the monostable nature of

the nonlinearity f .

Remark 4.1. Notice that f can be written

f(u) = αu− αau3 + αu2(a− 1),

such that for any a ∈ (0, 1], f naturally satisfies the Fisher-KPP condition (1.6). And one can also note

that even for a ∈ (1, 2], the spreading speed s0 is linearly determined.

19



0 1 2 3

d

0

1

2

α

Ia

IIIa IIa

Figure 4.1: Selected speed of (1.1) with f(u) = αu(1 − u)(1 + au), p = 0.6, a = 5.5 as stated in Conjecture 2. The

domain Ĩa corresponds to smsel(p) = 2, the domain ĨIa corresponds to smsel(p) = s0, and the domain ĨIIa corresponds to

the anomalous speed smsel(p) = sanom > max(2, c0). The dotted lines represent the shifted boundaries of the domains

when a ≤ 2, that is when smsel(p) is linearly determined (see Conjecture 1). In that case, the respective domains do

not depend on a ∈ (0, 2].

4.2 Anomalous spreading speed

Let us first remark that for any a > 0, one can find f̃ ∈ C2 such that f̃(u) ≤ αu(1 − u)(1 + au) for all

u ∈ [0, 1] and f̃ satisfies (1.2) and (1.6) with f̃ ′(0) = f ′(0) = α. In fact, this a general statement for

monostable nonlinearities which verify conditions (1.2). We will denote by s̃KPP
sel (p) the selected speed for

system (1.1) when the nonlinearity is given by f̃ satisfying the above conditions. As a consequence, we

can apply our main Theorem 1 and we readily obtain that

sm
sel(p) ≥ s̃KPP

sel (p) =


2 , (d, α) ∈ I,

2
√
dα , (d, α) ∈ II,

sanom(d, α, p) , (d, α) ∈ III,

with sanom(d, α, p) > max(2, 2
√
dα) for (d, α) ∈ III. From there, if a ≤ 2, we can conclude the existence of

an anomalous speed sm
sel(p) > max(2, s0) for (d, α) ∈ III. Besides, that anomalous speed is at least greater

or equal than sanom(d, α, p). On the other hand, when a > 2, we have s0 > 2
√
dα and a speed is considered

anomalous if strictly greater than max(2, s0). By solving sanom(d, α, p) > max(2, s0) for (d, α) ∈ III, one is

able to conclude the existence of an anomalous speed on the domain

IIIa =

{
2p− dp2 < α , dp ≤ 2

a+ 2

}
∪
{

2p− dp2 < α <
adp2

(2 + a)dp− 2
,

2

a+ 2
< dp <

4

a+ 2

}
.

This is illustrated in Figure 4.1 and for (d, α) ∈ IIIa, we have an anomalous speed sm
sel(p) ≥ sanom(d, α, p) >

max(2, s0).

4.3 Conjectures & numerical illustrations

We conclude our study by stating two conjectures that we illustrate with numerical simulations.

Conjecture 1 (Case 1 < a ≤ 2). Consider (1.1) with f defined in (4.1) with a ∈ (1, 2] and d, β, p, α > 0.

Fix initial data 0 ≤ u(0, x) ≤ 1 and 0 ≤ v(0, x) ≤ 1, each consisting of a compactly supported perturbation
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of the Heaviside step function 1x≤0. Then, the selected speed sm
sel(p) of (1.1) is given by

sm
sel(p) =


2 , (d, α) ∈ I,

2
√
dα , (d, α) ∈ II,

sanom(d, α, p) , (d, α) ∈ III,

with sanom(d, α, p) defined in (1.7) and domains I, II and III defined in Theorem 1.

Let us define the following two domains

Ia =

{
α ≤ 2p− dp2 , dp ≤ 4

a+ 2

}
∪
{
α ≤ 8a

d(2 + a)2
, dp ≥ 4

a+ 2

}
,

IIa =

{
α ≥ adp2

(2 + a)dp− 2
,

2

a+ 2
< dp <

4

a+ 2

}
∪
{
α ≥ 8a

d(2 + a)2
, dp ≥ 4

a+ 2

}
.

Conjecture 2 (Case a > 2). Consider (1.1) with f defined in (4.1) with a > 2 and d, β, p, α > 0. Fix

initial data 0 ≤ u(0, x) ≤ 1 and 0 ≤ v(0, x) ≤ 1, each consisting of a compactly supported perturbation of

the Heaviside step function 1x≤0. Then, the selected speed sm
sel(p) of (1.1) is given by

sm
sel(p) =


2 , (d, α) ∈ Ia,(

2+a√
2a

)√
dα , (d, α) ∈ IIa,

sanom(d, α, p) , (d, α) ∈ IIIa,

with sanom(d, α, p) defined in (1.7).

The two conjectures 1 & 2 assess that the lower bound sm
sel(p) ≥ max

(
s̃KPP

sel (p), s0

)
that we found is

actually also an upper-bound. And as consequence, the linear anomalous spreading speed we derived in

the previous sections is also the selected spreading speed for system (1.1) when f is given by (4.1) in the

monostable regime. In Figure 4.2, we confirm these conjectures numerically by direct simulations of (1.1)

where we compare the numerical spreading speed with selected speed given in conjectures 1 & 2. It will

be the subject of future work to prove these two conjectures. Actually, we suspect that such results should

also apply to general monostable nonlinearities.
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Figure 4.2: Simulations of the selected speed with parameters a = 5.5, p = 0.6, α = 1.1, β = 1, and for d ∈ [0.05, 1.25].

The maximum relative error is inferior to 9.10−3.
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