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Abstract

We examine the existence and stability of traveling pulse solutions in a continuum neural network

with synaptic depression and smooth firing rate function. The existence proof relies on geometric singular

perturbation theory and blow-up techniques as one needs to track the solution near a point on the slow

manifold that is not normally hyperbolic. The stability of the pulse is then investigated by computing

the zeros of the corresponding Evans function. This study predicts that synaptic depression leads to the

formation of stable traveling pulses with algebraic decay along their back. This characteristic feature

differs from the exponential decay of traveling pulses of neural field models with linear adaptation.
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1 Introduction

Electrode recordings and imaging studies have revealed that the primary visual cortex can support a variety

of cortical waves including standing waves [3, 36], traveling pulses [3, 34, 40] and spiral waves [20, 21, 39].

These traveling waves are not only elicited by localized visual stimuli across the visual cortex but they are

also present during spontaneous activity [21, 36]. From a mathematical point of view, much effort has been

directed towards the study of one-dimensional cortical waves [6, 8–11, 15, 16, 26, 32, 33, 35, 42]. A popular

approach to model cortical waves is to use neural field equations with linear adaptation of the form:

∂u(x, t)

∂t
= −u(x, t) +

∫
R
J(x− x′)S(u(x′, t))dx′ − γv(x, t)

1

ε

∂v(x, t)

∂t
= u(x, t)− v(x, t) (1.1)

where u(x, t) represents the local activity of a population of neurons at position x ∈ R, S is the firing rate

function. The neural field v(x, t) represents a form of negative feedback mechanism with γ and ε, positive

parameters, determining the relative strength and rate of feedback. Motivated by studies in inhibited slices

[20, 34], the connectivity function J is assumed to be purely excitatory, isotropic and even.

Ermentrout and McLeod [15], with a homotopy argument, were the first to prove the existence of a traveling

front connecting the up state to the down state for equation (1.1) when γ = 0 and when the firing rate is a
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smooth nonlinear function. The asymptotic stability of this traveling front has been studied in [7, 14] using

comparison principles. Bressloff and Folias [6] have also investigated the existence of traveling front solutions

for equation (1.1) when the firing rate is a smooth function for γ > 0 and in the limit 0 < ε � 1. Using

singular perturbation analysis, it is also possible to construct for 0 < ε � 1 pulse solution for (1.1) with

smooth firing rate function [32]. Numerous studies have analyzed the existence, uniqueness and stability

(through the construction of Evans functions) of equation (1.1) when the firing rate is assumed to be a

Heaviside function [9, 25, 33, 35, 42–44]. The possible bifurcations of traveling front and pulse solutions have

also been investigated by Bressloff and Folias [6, 17].

In this paper, we analyze the existence and stability of traveling pulse solution of a neural field model that

takes into account another physiological form of negative feedback, namely, synaptic depression. The model

is described in Section 2. Using singular perturbation theory and blow-up techniques, we show in Section 3

the existence of a traveling pulse solution (see Figure 1). The existence proof is slightly more involved than

in the case of linear adaptation [32]. The difficulty comes from the fact the solution passes close to the knee

of the slow manifold that is no longer normally hyperbolic. As consequence, we obtain that the decay along

the back of the traveling pulse is only algebraic instead of exponential as is the case with linear adaptation

[32]. This type of problem has already been encountered in biological model of electrical cardiac wave [2] and

in the propagation of wave in deformable media [19]. We then show in Section 4 that the constructed pulse

solution is spectrally stable by the use of Evans functions. Our proof relies on some known results on the

stability of traveling front solutions of neural field equation [7, 14] and stability properties of front solutions

connecting a normally hyperbolic state to a non normally hyperbolic one [38]. More precisely, we show that

the only zero in the right-half plane of the Evans function associated to the linearization of the traveling

pulse is zero, and its geometric and algebraic multiplicity is one. Our definition of the Evans function is

somewhat different from the one previously used for neural field models with Heaviside firing rate function

[9, 33, 35, 42–44]. In our case, the Evans function is not known through an explicit formula due to our choice

of the nonlinearity. However, we are still able to collect enough information to determine the location of its

zeros.

2 Model and parameters

We consider a neural network which includes synaptic depression [26–28, 41], and system (1.1) is modified

according to the following system of equations:

τ
∂u(x, t)

∂t
= −u(x, t) +

∫
R
J(x− y)q(y, t)S(u(y, t))dy

1

ε

∂q(x, t)

∂t
= 1− q(x, t)− βq(x, t)S(u(x, t)). (2.1)

The first equation describes the evolution of the synaptic current u(x, t) in the presence of synaptic depression

which takes the form of a synaptic scaling factor q(x, t) evolving according to the second equation. This

factor can be interpreted as a measure of available presynaptic resources, which are depleted at a rate εβS,

and recovered on a time scale specified by the constant ε. We assume units of time t to be 10ms each and we

set τ = 1 (10ms). Experimental recordings [37] suggest that synaptic depression recovers on a timescale of

200− 800ms, so that 1/ε typically ranges from 20 to 80 and thus ε ∼ 0.01− 0.05 can be consider as a small

parameter in equations (2.1). The range of allowable values for β, as used in used in [26] with ε ∼ 0.01−0.05,

is β ∼ 1− 20. The nonlinear firing-rate function is taken to be the following smooth function

S(u) =
1

1 + e−λ(u−κ)
(2.2)

with threshold κ and gain λ. We take the excitatory weight function J to be a normalized exponential [26],

J(x) =
b

2
e−b|x| (2.3)

2



where b > 0 is the effective range of excitatory distribution.

2.1 Traveling wave equation

Figure 1: Space-time plot of a traveling pulse solution u(x, t) obtained by solving the system (2.1) numerically

with λ = 20, κ = 0.22, b = 4.5, β = 5 and ε = 0.01. The numerical integration is performed for t ∈ [0, 200].

In this paper, we want to prove the existence of traveling wave solution for equation (2.1) (see Figure 1).

To do so, we introduce a coordinate ξ = x+ ct for c ∈ R and then express the neural field equation in these

coordinates as

∂u(ξ, t)

∂t
= −c∂u(ξ, t)

∂ξ
− u(ξ, t) +

∫
R
J(ξ − ξ′)q(ξ′, t)S(u(ξ′, t))dξ′

∂q(ξ, t)

∂t
= −c∂q(ξ, t)

∂ξ
+ ε (1− q(ξ, t)− βq(ξ, t)S(u(ξ, t))) . (2.4)

Time independent solutions of these equations satisfy the functional differential equations of mixed type

(MFDEs)

c
d

dξ
u(ξ) = −u(ξ) +

∫
R
J(ξ − ξ′)q(ξ′)S(u(ξ′))dξ′

c
d

dξ
q(ξ) = ε (1− q(ξ)− βq(ξ)S(u(ξ))) , (2.5)

since they contain both advanced and retarded terms through the convolutional term. This class of equation

is notoriously difficult to analyze and appear naturally in problems set on lattice differential equations

[22, 30]. In order to overcome this difficulty, we will use the very specific form of the connectivity function

J . Indeed, the Fourier transform of this function is given by

Ĵ(k) =
b2

b2 + k2
, ∀k ∈ R. (2.6)

This ensures that if we set v(ξ) =
∫
R J(ξ − ξ′)q(ξ′)S(u(ξ′))dξ′, then v satisfies the ordinary differential

equation

b2v(ξ)− d2

d2ξ
v(ξ) = b2q(ξ)S(u(ξ)), ∀ξ ∈ R. (2.7)
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This implies that system (2.5) is equivalent to the system of ordinary differential equations

b2v(ξ)− d2

d2ξ
v(ξ) = b2q(ξ)S(u(ξ))

c
d

dξ
u(ξ) = −u(ξ) + v(ξ)

c
d

dξ
q(ξ) = ε (1− q(ξ)− βq(ξ)S(u(ξ)))

which can be converted into a system of first-order equations

uξ =
1

c
(−u+ v)

vξ = w

wξ = b2 (v − qS(u))

qξ =
ε

c
(1− q − βqS(u)) . (2.8)

Here for convenience, uξ stands for d
dξu.

2.2 Fixed points

The fixed points of system (2.8) (which are also stationary homogeneous solutions of (2.1)) satisfy

0 = −u+ qS(u)

0 = 1− q − βqS(u). (2.9)

The following Lemma ensures that this system has a unique solution (u0, q0) provided that β is large enough

and that (λ, κ) satisfy a certain inequality. Thus, the nullclines of the system (2.8) intersect only at the fixed

point as depicted in figure 2.

Figure 2: A typical graph of the nullclines of system (2.8) in the (u, q)-plane when the conditions of Lemma

2.1 are satisfied.

Lemma 2.1. Suppose that (λ, κ) ∈ (0,∞)× (0, 1) satisfy the relation

2− 2 ln(2) ≤ λκ− ln(λ).
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Let W−1 be the lower branch of the real-valued Lambert function1. We define

uc(λ, κ) = − 2

λ
W−1

−√λ
2
e
−
λκ

2

 > 0

βc(λ, κ) =
1

uc(λ, κ)
− 1

S(uc(λ, κ))
> 0.

If β > βc(λ, κ) then system (2.9) has a unique solution (u0, q0).

Proof. We postpone to Appendix A the proof of this Lemma.

2.3 Hypotheses on the parameters

In order to prove the existence of a traveling pulse of equation (2.1), we will need to have some hypotheses on

the different parameters of our system (λ, κ, β, b, ε). The following hypothesis, which is a direct consequence

of Lemma 2.1, ensures that (u0, q0) is the only stationary homogenous solution of system (2.1).

Hypothesis 2.1. We suppose that (λ, κ) ∈ (0,∞)× (0, 1) satisfy the relation

2− 2 ln(2) ≤ λκ− ln(λ)

and β > βc(λ, κ) such that (u0, q0) is the unique fixed point of system (2.9).

The second hypothesis that we formulate is on the shape of our nonlinear function S.

Hypothesis 2.2. Let g be the C∞-smooth function defined through

g(u) =
u

S(u)
. (2.10)

We suppose that (λ, κ) are such that there exist u+ > um > 0 with g(u0) = g(um) = g(u+) = q0 together

with g′(u0) > 0, g′(um) < 0 and g′(u+) > 0. We further suppose that (λ, κ) are such that∫ u+

u0

−u+ q0S(u)du > 0. (2.11)

See Figure 3 for an illustration.

On account of Hypothesis 2.2, we may choose closed intervals IL and IR with u0 ∈ IL and u+ ∈ IR, that have

nonempty interiors and in addition have g′(u) > 0 for all u ∈ IL∪IR. There exist constants qknee < q0 < qmax

in such way that we can define two C∞-smooth function sL : (qknee, qmax)→ IL and sR : (qknee, qmax)→ IR

with

g(sL(q)) = g(sR(q)) = q

for all q ∈ (qknee, qmax). Notice that sL(q0) = u0 and sR(q0) = u+. We define by continuity uknee = sR(qknee)

and u− = sL(qknee). We thus have the ordering:

u− < u0 < um < uknee < u+.

3 Existence of the traveling pulse

In this section, we prove the existence of traveling pulses for equation (2.1). First, a singular traveling wave

solution is constructed for ε = 0; section 3.1. Then it is shown that this singular solution persists for small

positive values of ε > 0; 3.2.

1Here, we consider the real-valued Lambert function defined as solution of the equation W (x)eW (x) = x restricted to real

number x ∈ R. Its lower branch, denoted W−1, is defined for e−1 ≤ x ≤ 0 and satisfies W−1(x) ≤ −1 in that interval (see [13]).
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Figure 3: Illustration of the assumptions on the function g of Hypothesis 2.2. The large diamond is the fixed

point of the system (u0, q0).

3.1 The singular solution

3.1.1 The slow and fast subsystems

We recall that the traveling pulse solution is a stationary solution to the MFDE (2.4) and also a solution

of the ODE (2.8). The slow subsystem can be found by a rescaling of the independent variable z = εξ, and

then setting ε = 0:

0 =
1

c
(−u+ v)

0 = w

0 = b2 (v − qS(u))

qz =
1

c
(1− q − βqS(u)) . (3.1)

By setting ε = 0 in (2.8), we obtain the reduced fast system:

uξ =
1

c
(−u+ v)

vξ = w

wξ = b2 (v − qS(u))

qξ = 0. (3.2)

When considering the reduced slow system (3.1), there exists associated leading order slow manifold given

by two pieces:

ML = {(sL(q), q)} and MR = {(sR(q), q)} .

The slow dynamics on these manifolds is given by

qz =
1

c
(1− q − βqS(u)) for (u, q) ∈Mj j = L,R.

3.1.2 The front

For q = q0, we seek for a leading order solution connecting the reduced fixed point on ML at (u, v, w, q) =

(u0, u0, 0, q0) to the fixed point on MR at (u, v, w, q) = (u+, u+, 0, q0) for some value of the wave speed c.
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Throughout the paper, we shall call this solution the front of the traveling pulse as it corresponds, to leading

order, to the front profile of the pulse. In the neural field formalism, this is equivalent to find a traveling

wave solution u(x, t) = uf (x+ c∗t) of

∂u(x, t)

∂t
= −u(x, t) + q0

∫
R
J(x− y)S(u(y, t))dy (3.3)

for some wavespeed c∗ ∈ R and profile uf ∈ C1(R,R) that satisfies the limits

lim
ξ→−∞

uf (ξ) = u0 and lim
ξ→+∞

uf (ξ) = u+. (3.4)

If Hypothesis 2.2 holds, then we know that such a solution exists [15]. Adapting the proof of [15], we obtain

the following formula for the wavespeed c∗ as a function of q0:

c∗ = c(q0) =
1

q0

∫ u+

u0
−u+ q0S(u)du∫ +∞

−∞

(
u′f (ξ)

)2

S′(uf (ξ))dξ
> 0. (3.5)

A quick look at formula (3.5) shows that there should be a switch from positive to negative c(q) at some

value qzero where c(qzero) = 0 [15]. Then for all q > qzero, c(q) > 0.

Figure 4: A typical graph of the wave speed c(q) for the front and back of the wave as defined in (3.12),

with λ = 20, κ = 0.22, b = 4.5 and β = 5. Note that qknee = 0.3605, qzero = 0.4405, qcrit = 0.7352 and

q0 = 0.9527 with ccrit = 0.2197 and c∗ = 0.3705. The reduced model admits traveling front solutions for

q ∈ [qzero, qmax] and traveling back solutions for q ∈ [qknee,qzero ]. Note that this picture is typical of the

homoclinic orbits that we study: no value of q ∈ [qcrit, qmax] leads to a singular connection between ML

and MR. Therefore, the jump back must occur at the knee.

3.1.3 The back

The front selects the wavespeed of the pulse. In turn, the wavespeed of the pulse selects the particular value

of q for which a jump back exists connecting the right slow manifold to the left slow manifold. In this section,

we will need to define the knee of the right slow manifold MR. It is easy to see that the knee is given by

the value of q for which

0 = −u+ qS(u)

0 = −1 + qS′(u). (3.6)
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Lemma 3.1. Suppose that (λ, κ) satisfy the condition of Hypothesis 2.1, then the values (uknee, qknee) are

uknee =
1

λ

[
1−W−1

(
−e−λκ+1

)]
qknee =

uknee
S(uknee)

. (3.7)

Proof. The proof of this lemma is moved to the appendix B.

For typical values of the parameters, as illustrated in Figure 4, we observe that above a particular value

of q, there exists no choice of q for which such a connection between the right slow manifold and left slow

manifold can be found. We will label this value of q as qcrit ∈ [qzero, qmax]. It is defined by the condition

that

c(qcrit) = c(qknee)
def
= ccrit.

Therefore, in that case, the only possibility is that the jump back from the right slow manifold to the left

slow manifold occurs at the knee. Note that the knee is not a hyperbolic fixed point such that the existence

result given in Ermentrout & McLeod [15] is no longer valid. However, the existence of such a connection is

well understood in the case of the generalized Fisher-KPP equation of order 2 [4, 5] and can be extended to

the neural field formalism.

Proposition 3.1. For each c ≥ ccrit there exists a traveling back solution ub(x+ ct) to

∂u(x, t)

∂t
= −u(x, t) + qknee

∫
R
J(x− y)S(u(y, t))dy (3.8)

with profile ub ∈ C1(R,R) and that satisfies the limits

lim
ξ→−∞

ub(ξ) = uknee and lim
ξ→+∞

ub(ξ) = u−. (3.9)

Moreover, ub satisfies the asymptotic expansions at ξ = −∞

ub(ξ) ∼


uknee − α exp

(
−1+

√
1+4b2c2

2c ξ
)

c = ccrit

uknee −
(
qkneeS

′′(uknee)

2c

)−1
1

ξ
c > ccrit

as ξ → −∞ (3.10)

with α some positive constant.

Thus, this result ensures that for any c ≥ ccrit there exists a connection between the knee at (uknee, uknee, 0, qknee)

and the left branch of the slow manifold at (u−, u−, 0, qknee). Throughout the paper, we shall refer to this

solution as the back of the traveling pulse as it corresponds, to leading order, to the back profile of the pulse.

Proof. The proof of the proposition is divided into three steps. We first show that there exists a traveling

back solution for c = ccrit and then we show that there still exists a connection between uknee at −∞ and

u− at +∞ for c > ccrit. We conclude the proof by showing the asymptotic expansions (3.10).

Step-1 We first rewrite (3.8) in ξ-coordinate

c
du(ξ)

dξ
= −u(ξ) + q

∫
R
J(ξ − ξ′)S(u(ξ′))dξ′ (3.11)

and allow q ∈ [qknee, qmax]. We know from the study of Ermentrout & McLeod [15], that for each q ∈
(qknee, qmax), there exists a traveling solution (ub(ξ; q), c(q)) of (3.11) with limits

lim
ξ→−∞

ub(ξ; q) = sR(q) and lim
ξ→+∞

ub(ξ; q) = sL(q)

and an associated wavespeed

c(q) = −1

q

∫ sR(q)

sL(q)
−u+ qS(u)du∫ +∞

−∞ (u′b(ξ; q))
2
S′(ub(ξ; q))dξ

. (3.12)
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Thus, this defines a continuous function c : (qknee, qmax) → R. Note that for all q ∈ (qknee, qmax) the

equation

F (u; q)
def
= −u+ qS(u) = 0 (3.13)

has exactly three solutions given by

0 < sL(q) < um(q) < sR(q).

On the other hand, at q = qknee, equation (3.13) has only two solutions given by

u− = sL(qknee) < sR(qknee) = uknee.

We can now use the continuation argument used in Theorem 4.5 [15] and pass to the limit as q → qknee. We

obtain that ucritb (ξ) = lim
q→qknee

ub(ξ; q) is solution of equation (3.8) with the limits:

lim
ξ→−∞

ucritb (ξ) = uknee = lim
q→qknee

sR(q) and lim
ξ→+∞

ucritb (ξ) = u− = lim
q→qknee

sL(q).

We thus obtain ccrit as the limit of c(q) as q → qknee and is given by

ccrit = − 1

qknee

∫ uknee
u−

−u+ qkneeS(u)du∫ +∞
−∞

(
ducritb (ξ)

dξ

)2

S′(ucritb (ξ))dξ
> 0. (3.14)

Step-2 We first write (3.11) has a three-dimensional system of first order differential equations with q = qknee:

uξ =
1

c
(−u+ v)

vξ = w

wξ = b2 (v − qkneeS(u)) . (3.15)

We know that this system has only two fixed points given by U− = (u−, u−, 0) and Uknee = (uknee, uknee, 0).

The linearization at this two points is given by

L− (c) =

 −
1
c

1
c 0

0 0 1

−b2α b2 0

 and Lknee (c) =

−
1
c

1
c 0

0 0 1

−b2 b2 0

 ,

where we have set α = qkneeS
′(u−) ∈ (0, 1). Lknee (c) has three real eigenvalues:

• µ = 0 with eigenvector ζ = (1, 1, 0),

• µ± = −1±
√

1+4b2c2

2c with eigenvector ζ± = (1,−cµ∓, cb2).

The three eigenvalues of L− (c) are solutions of the cubic equations

x3 +
x2

c
− b2x+

b2(α− 1)

c
= 0.

As α < 1, the above equation has always a positive real solution that we denote ν3 and the two other solutions

(ν1, ν2) necessarily have negative real parts. The corresponding eigenvectors are ζj = (1, 1 + cνj , νj(1 + cνj))

for j = 1, 2, 3. We can then define the two-dimensional stable manifold at the fixed point U− together with

the two-dimensional center unstable manifold at the knee.

We know from the first step that these manifolds intersect for c = ccrit. Indeed, the connection that

departs the right slow manifold along the unstable direction approaches the left slow manifold along its

stable manifold is continuous in q > qknee. Then, passing to the limit q → qknee, we obtain a connection that

departs the knee of the right slow manifold along the unstable direction and approaches the left slow manifold

along its stable manifold with associated wavespeed c = ccrit. This gives us the desired intersection. At
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q = qknee, we can use this connection as a separatrix in the two-dimensional center unstable manifold at the

knee and then use the trapping region argument of Billingham & Needham [4, 5] to prove that a connection

also exists between the knee and the fixed point U− for all c > ccrit. Furthermore, this connection can

only depart the knee along the center-unstable direction and approaches the left fixed point along its stable

manifold. In Figure 5, we present an illustration of the trajectories of the solution of (3.15) for different

values of the wavespeed c.

Step-3 In the case c = ccrit, the connection departs the knee along the unstable direction with corresponding

eigenvalue −1+
√

1+4b2c2

2c . Then there exists a constant α > 0 such that

ucritb (ξ) ∼
ξ→−∞

uknee − α exp

(
−1 +

√
1 + 4b2c2

2c
ξ

)
.

In the case c > ccrit, we know that the connection leaves the knee along its center-unstable direction. To

leading order, we only need to compute the one-dimensional center manifold at the knee. We know from

standard dynamical systems theory (see [18]) that there exists a smooth Ck (k ≥ 2) center manifold given

as a graph:

U = Uknee + βζ + Ψ(β), Ψ(β) = β2Ψ1 +O(β3) as β → 0, (3.16)

where ζ = (1, 1, 0). It is a simple computation to see that the equation on the center manifold is given by

β̇ =
qkneeS

′′(uknee)

2c
β2 +O(β3) as β → 0.

Such that, as ξ → −∞, β(ξ) ∼ −
(
qkneeS

′′(uknee)

2c

)−1
1

ξ
. Plugging back this expansion into (3.16), we

deduce the second asymptotic expansion of equation (3.10). This concludes the proof.

Figure 5: A sketch of the phase portrait of two solution of (3.15) in the (u, v, w)-space for q = qknee for

different values of c. The trajectory for c = ccrit departs Uknee along the unstable direction and approaches

U− along its stable manifold while the trajectory for c > ccrit departs Uknee along the center-unstable

direction and approaches U− along its stable manifold. Ws(U−) represents the two-dimensional stable

manifold of U− and Wcu(Uknee) the two-dimensional center-unstable manifold of Uknee.

Hypothesis 3.1. We suppose that (λ, κ) are such that the wavespeed selected by the front is strictly greater

than the wavespeed selected by the back. Hence, the jump back must occur along the center direction at the

knee. See Figure 5.
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3.1.4 Summary of the singular solution

Putting the information from the reduced slow and fast dynamics together, the singular solution consists of

four pieces as follows:

(1) a fast jump from (u0, u0, 0, q0) to (u+, u+, 0, q0), which is given by the profile uf solution of (3.3) with

speed c∗ > 0;

(2) slow decay along MR from (u+, u+, 0, q0) to (sR(qknee), sR(qknee), 0, qknee);

(3) a fast jump from (sR(qknee), sR(qknee), 0, qknee) to (sL(qknee), sL(qknee), 0, qknee) that departs along

the center-unstable manifold;

(4) slow growth along ML back to (u0, u0, 0, q0).

The singular solution, projected onto the (u, q)-plane, is plotted in Figure 6(a). We show, in Figure 6(b),

the corresponding singularly perturbed solution projected onto the (u, q)-plane for ε = 0.005 with values of

the parameters being fixed to λ = 20, κ = 0.22, b = 4.5 and β = 5. In Figure 7, we plot the singularly

perturbed solution, for the same values of the parameters, in the (u, v, q)-space.

(a) (b)

Figure 6: (Left) A sketch of the leading order pulse projected onto the (u, q)-plane, consisting of: (1) a

fast jump from (u0, u0, 0, q0) to (u+, u+, 0, q0), (2) slow decay along MR, (3) another fast jump connecting

(uknee, uknee, 0, qknee) to (u−, u−, 0, qknee) and leaving at the knee, and (4) slow growth along ML. (Right)

Plot of the pulse solution of (2.8) in the (u, q)-plane, computed numerically with λ = 20, κ = 0.22, b = 4.5,

β = 5 and ε = 0.01.

3.2 Persistence of the pulse

For the simplicity of this paper, we always illustrate our results in the case of λ = 20, κ = 0.22, b = 4.5 and

β = 5 which are similar to the values used in Kilpatrick & Bressloff [26]. However, the proof holds for much

more general parameters values, which we now define.

Definition 3.1. The set, labelled Π, of allowable parameters (λ, κ, b, β) for the model in (2.1) consists of

those parameters such that Hypotheses 2.1, 2.2 and 3.1 are satisfied together with b > 0.

Theorem 3.1. Suppose that (λ, κ, b, β) ∈ Π. Then there exists ε1 > 0 such that for all 0 < ε < ε1, there

exists c(ε) = c∗+O(ε) for which problem (2.1) has a traveling pulse solution of the form (u(x+ ct), q(x+ ct))

with limξ±∞(u, q) = (u0, q0).

11



Figure 7: Plot of the traveling pulse solution of (2.8) in the (u, v, q)-space, computed numerically with

λ = 20, κ = 0.22, b = 4.5, β = 5 and ε = 0.01. The thin curves represent the slow manifolds to leading

order. The large dot is the fixed point of the system.

A space-time plot of the u(x, t)-component of a traveling pulse solution, as given in Theorem 3.1, is shown in

Figure 1. In Figure 8, we present the corresponding (u, q)-profiles in the traveling wave coordinate ξ = x+ct.

Note that the decay rate along the back is less than the decay rate along the front. In fact, we will see that

the decay along the front is exponential, whereas the decay along the back is only algebraic, as it is already

the case for the singular solution at ε = 0.

(a) u-component. (b) q-component.

Figure 8: Profiles of a traveling pulse solution (u(ξ), q(ξ)) obtained by solving the system (2.1) numerically

with λ = 20, κ = 0.22, b = 4.5, β = 5 and ε = 0.01.

Proof. The idea of the proof is to demonstrate that the singular pulse described above persists for small,

positive ε. It will be shown that this singular solution lies in the transverse intersection of the stable and

unstable manifolds of the equilibrium point (u0, u0, 0, q0) when ε = 0.

Persistence of the front

We begin by tracking Wcu, the center-unstable manifold emanating from the unique fixed point of the

system, along the first jump. We will show that Wcu intersects transversely the center-stable manifold Wcs

of the right slow manifold in the plane q = q0. Consider the reduced fast system (3.2). The plane q = q0 is

12



invariant, and we want to determine how the unstable manifold of (u, v, w) = (u0, u0, 0) intersects the stable

manifold of (u, v, w) = (u+, u+, 0) as we vary the wavespeed c. To do this, we first augment our traveling

wave system with a trivial differential equation for the wavespeed c

uξ =
1

c
(−u+ v)

vξ = w

wξ = b2 (v − q0S(u))

cξ = 0. (3.17)

Based upon the analysis in subsection 3.1.2, there is a unique c∗ for which a unique heteroclinic connection

between the saddle (u0, u0, 0) at −∞ and the saddle (u+, u+, 0) at +∞ exists. We will show that the two-

dimensional center-unstable manifold which is a union of the unstable manifolds of (u, v, w) = (u0, u0, 0)

for values of c near c∗ and denoted Wcu(u0, u0, 0), intersects the three-dimensional center-stable manifold

of (u+, u+, 0), defined as a union of the stable manifolds for c near c∗, denoted Wcs(u+, u+, 0), and this

intersection is transverse in the c direction.

One way to track the evolution of k-dimensional manifolds is using k-forms, as in [24]. Here, it will be

enough to use 2-forms. Along the front, the reduced variational equations are given by

du′ =
1

c
(−du+ dv)− 1

c2
(−u+ v)dc

dv′ = dw

dw′ = b2 (dv − q0S
′(u)du)

dc′ = 0. (3.18)

The associated two-forms are Puv = du ∧ dv, Puw = du ∧ dw, Puc = du ∧ dc, Pvw = dv ∧ dw, Pvc = dv ∧ dc
and Pwc = dw ∧ dc, with evolution equations

P ′uv = −1

c
Puv +

1

c2
(−u+ v)Pvc + Puw

P ′uw =
1

c
(−Puw + Pvw) +

1

c2
(−u+ v)Pwc + b2Puv

P ′uc =
1

c
(−Puc + Pvc)

P ′vw = −b2q0S
′(u)Puv

P ′vc = Pwc

P ′wc = b2(Pvc + q0S
′(u)Puc) (3.19)

The manifoldsWcu(u0, u0, 0) andWcs(u+, u+, 0) both have the vector field, n =
(

1
c (−u+ v), w, b2(v − q0S(u)), 0

)
,

as one tangent vector. Denote the other one by η± = (du±, dv±, dw±, 1), respectively, where we can take

dc = 1 since dc′ = 0. This ensures that these two vectors are linearly independent. Based on the dimension

of Wcu(u0, u0, 0) and Wcs(u+, u+, 0), we can also assume that dw± = 0. We can compute explicitly that

Pvc(n, η
±) = w and Puw(n, η±) = 0, such that the equation for Puv now reads

P ′uv = −1

c
Puv +

1

c2
(−u+ v)w.

This is solved as

Puv =
1

c
e−

ξ
c

∫ ξ

−∞
e
τ
c (−u(τ) + v(τ))w(τ)dτ.

We first note that the sign of −u+ v is given by the sign of vξ. Secondly, the sign of w is also given by the

sign of vξ as

w(ξ) = vξ(ξ) = q0
d

dξ

(∫
R
J(ξ′)S(u(ξ − ξ′))dξ′

)
= q0

∫
R
J(ξ′)uξ(ξ − ξ′)S′(u(ξ − ξ′))dξ′.

13



This ensures that Puv is positive and we conclude that

Puv(n, η
+) =

1

c
(−u+ v)dv+ > 0.

An analogous computation gives:

Puv = −1

c
e−

ξ
c

∫ ∞
ξ

e
τ
c (−u(τ) + v(τ))w(τ)dτ,

from which we deduce that

Puv(n, η
−) =

1

c
(−u+ v)dv− < 0.

As −u + v does not change sign, this implies that dv+ 6= dv− as they have opposite signs. Therefore, the

two manifolds Wcu(u0, u0, 0) and Wcs(u+, u+, 0) intersect transversely.

The exchange lemma

We now track Wcu as it passes the right slow manifold. We recall the expressions of uknee and qknee of the

knee (uknee, uknee, 0, qknee, 0) (see Lemma 3.1)

uknee =
1

λ

[
1−W−1

(
−e−λκ+1

)]
qknee =

uknee
S(uknee)

.

For any δ > 0, we define a δ-neighborhood of the knee by

Kδ = {(u, v, w, c) | |u− uknee| < δ, |v − uknee| < δ, |q − qknee| < δ, |c− c∗| < δ}.

Let BR =MR ∩ ∂Kδ. We have the following result.

Lemma 3.2. For fixed δ > 0, the tracked manifold Wcu is C1, O(ε) close to Wcu(MR) in a neighborhood

of BR.

Proof. We have thatWcu intersectsWcs(MR) transversely on entry into a neighborhood ofMR. The proof

is then a standard application of the exchange lemma [24].

Analysis at the knee

Consider the ODE for the pulse (2.8) and append to it an equation for ε:

uξ =
1

c
(−u+ v)

vξ = w

wξ = b2 (v − qS(u))

qξ =
ε

c
(1− q − βqS(u))

εξ = 0. (3.20)

We are interested in the behavior of this equation near the knee, which corresponds to the fixed point

Uknee = (uknee, uknee, 0, qknee, 0). The Jacobian matrix at this point is given by

L =


− 1
c

1
c 0 0 0

0 0 1 0 0

−b2 b2 0 −b2α 0

0 0 0 0 γ

0 0 0 0 0

 ,
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with α = S(uknee) and γ = 1
c (1− qknee − βqkneeS(uknee)). This matrix has one positive eigenvalue

λ+ =
−1 +

√
1 + 4c2b2

2c
and one negative eigenvalue λ− =

−1−
√

1 + 4c2b2

2c
with respective correspond-

ing eigenvectors

ν+ =

(
1,

1 +
√

1 + 4c2b2

2
, cb2, 0, 0

)
and ν− =

(
1,

1−
√

1 + 4c2b2

2
,−cb2, 0, 0

)
.

In addition, ν = 0 is an eigenvalue with algebraic multiplicity three and geometric multiplicity one. The

associated eigenvector is ζ1 = (1, 1, 0, 0, 0), and the generalized eigenvectors are ζ2 = (0, c, 1, c/α, 0) and

ζ3 = (0, 0, c,−1/b2α, c/αγ). In order to apply a blow-up technique at the knee, we will need to isolate the

nonyperbolic dynamics which occur on a three-dimensional center manifold denotedWknee. The vector field

U = (u, v, w, q, ε) can be decomposed as

U = Uknee +Aζ1 +Bζ2 + Cζ3 + Ψ(A,B,C)

where the map Ψ is Ck(W0, ν+ ⊕ ν−) and Ψ(0) = DΨ(0) = 0. Furthermore, the Taylor expansion of Ψ is

given

Ψ(A,B,C) = A2Ψ200 +B2Ψ020 + C2Ψ002 +ABΨ110 +ACΨ101 +BCΨ011 +O(3)

where O(3) regroup all higher order terms.

Inserting this ansatz into (3.20) gives a set of differential equations that are satisfied by (A,B,C) of the form

Ȧ = δ1B + δ2A
2 +O

(
C,B2, C2, AB,BC,AC

)
Ḃ = δ3C +O (AC,BC)

Ċ = 0 (3.21)

where δ1, δ2 and δ3 are constants that can be computed explicitly. A straightforward computation shows

that

δ1 = δ3 = 1.

If we denote R(U1, U2) the following bilinear form on R5

R(U1, U2) =



0

0

−qknee
2

S′′(uknee)u1u2 − S′(uknee)
u1q2 + u2q1

2

−ε1q2 + ε2q1

2c
− β(ε1u2 + ε2u1)

2c
− βS(uknee)(ε1q2 + ε2q1)

2c
0


then we have that:

U̇ = L (U − Uknee) +R (U − Uknee, U − Uknee) +O
(
‖U − Uknee‖2

)
.

If L∗ is the adjoint matrix of L, then there exist vectors (ζ∗3 , ζ
∗
2 , ζ
∗
1 ) such that

L∗ζ∗3 = 0, L∗ζ∗2 = ζ∗3 , L∗ζ∗1 = ζ∗2 with 〈ζi, ζ∗j 〉R5 = δi,j .

The equation for δ2 is then given by

δ2 = 〈LΨ200, ζ
∗
1 〉+ 〈R(ζ1, ζ1), ζ∗1 〉 = 〈R(ζ1, ζ1), ζ∗1 〉 =

qknee
b2c

S′′(uknee).

Equivalently, the equations satisfied by (u, q, ε) on the center manifold are:

uξ =
qknee
b2c

S′′(uknee)(u− uknee)2 +
S(uknee)

c
(q − qknee)

+O
(
ε, (q − qknee)2, (u− uknee)(q − qknee), ε(u− uknee), ε(q − qknee)

)
qξ =

1− qknee − βqkneeS(uknee)

c
ε+O(ε(q − qknee), ε(u− uknee))

εξ = 0. (3.22)
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System (3.22) possesses a slow manifold for ε = 0, which is given by

P =

{
(u, q) | qknee

b2c
S′′(uknee)(u− uknee)2 +

S(uknee)

c
(q − qknee) = 0

}
.

This manifold can be divided into an attracting branch Pa and a repelling branch Pr. Outside a neighborhood

of the fold point (u, q) = (uknee, qknee), these manifolds are normally hyperbolic and, therefore, perturb

smoothly to locally invariant manifolds Pεa and Pεr for ε positive and sufficiently small. We define the

following sets:

∆in =
{

(u, v, w, q, ε) | q = qknee − ρ2
}

∆out = {(u, v, w, q, ε) | u = uknee − ρ}

where ρ > 0.

We have the following theorem from [29].

Proposition 3.2. Let π : ∆in → ∆out be the transition map of the flow of (3.22). Then there exists ε0,

such that for all ε ∈ [0, ε0], the following holds:

1. The manifold Pεa passes through ∆out at a point (u, q, ε) = (uknee − ρ, qknee + h(ε), ε), with h(ε) =

O(ε2/3).

2. The transition map π is a contraction with contraction constant O(ε−C/ε) with C a positive constant.

This proposition tells us how to track the manifold Wcu around the knee and that the resulting analysis

will be independent of the choice of the center manifold. As already mentioned, for any q ∈ (qknee, qmax),

the two-dimensional manifold Wcu is spanned by the one-dimensional fast unstable direction of the points

(sR(q), sR(q), 0, q) and the tangent line in the plane {u = v, w = 0} to the one-dimensional slow manifold,

given by q = u/S(u). As Wcu enters a neighborhood of the knee, it will intersect the center manifold of the

knee Wknee.

Following the notations of [2], we define the following objects:

Iu,in = Wcu ∩∆in

pinknee = Iu,in ∩Wknee

Iu,out = Wcu ∩∆out

poutknee = Iu,out ∩Wknee

Near pinknee, the dynamics of each point in Wcu can be decomposed into the flow of a base point p ∈ Wknee

and an expansion in the corresponding unstable fiber Fu(p) given as a graph over the unstable eigenvector

ν+. Proposition 3.2 implies that all of the basepoints exit Kδ at a distance O(ε−C/ε) close to πpinknee. Since

the fibers depend smoothly on their basepoints, the exponential contraction of π implies that each unstable

fiber will be locally O(ε2/3) close to the unstable fiber at (u, q, ε) = (u− uknee, qknee, 0). Since the unstable

fibers are given as a graph over the unstable eigenvector, whose q component is zero, the manifold Wcu will

be C1 O(ε2/3) close to the plane q = qknee. The C1 aspect of the perturbation follows from the fact that the

center manifold itself is normally hyperbolic, and therefore its unstable fibers perturb smoothly.

Conclusion of the proof

We now follow Wcu along the back and Wcs backward down the left branch of the slow manifold and show

they intersect transversely. We have tracked Wcu to an O(1) distance from the knee and shown that it is

C1, O(ε2/3) close to the plane q = qknee. Due to the slow q dynamics, this result still hold as Wcu enters an

O(1) neighborhood of ML. Due to Fenichel theory, the stable manifold is tangent to the stable eigenspace

of ML. A direct computation shows that this eigenspace has nonzero q component and, therefore, it must

intersect transversely with Wcs. This completes the proof.
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4 Stability of the pulse

In this section, we will study the spectral stability of the traveling pulse solution constructed in Theorem

3.1. We will linearize the system at the pulse and show that the resulting essential spectrum is bounded to

the left of the imaginary axis (note that the bound depends upon ε). We will then construct Evans functions

associated with the full problem and with the reduced fast pieces along the front and the back of the pulse.

We will then show that the eigenvalues of the full Evans function are determined by those of the reduced

problems which will allow us to determine the spectral stability of the pulse. More precisely, we will prove

the following theorem.

Theorem 4.1. Suppose that (λ, κ, b, β) ∈ Π. Then there exists ε2 > 0 such that for all 0 < ε < ε2, the

traveling pulse solution from Theorem 3.1 is spectrally stable with a simple zero eigenvalue at λ = 0 due to

translational invariance of the pulse.

We note that the linear stability of the traveling pulse solution follows directly from a spectral mapping

theorem [31] for the strongly continuous semigroup generated by the linear operator in (4.1). In addition,

we can use standard center-manifold theory of Bates & Jones [1] and the results for neural field equations

of Sandstede [35] to show that the traveling pulse is nonlinearly stable as well. Indeed, the zero eigenvalue

found in Theorem 4.1 is isolated.

4.1 Essential spectrum

In this section, we will denote the traveling pulse solution to (2.4) of Theorem 3.1 by (Uε(ξ), Qε(ξ)). Lin-

earizing equation (2.4) at the pulse leads to the system of equations

∂u(ξ, t)

∂t
= −c∂u(ξ, t)

∂ξ
− u(ξ, t) +

∫
R
J(ξ − ξ′)S(Uε(ξ

′))q(ξ′, t)dξ′ +

∫
R
J(ξ − ξ′)Qε(ξ′)S′(Uε(ξ′))u(ξ′, t)dξ′

∂q(ξ, t)

∂t
= −c∂q(ξ, t)

∂ξ
− εβQε(ξ)S′(Uε(ξ))u(ξ, t)− ε (1 + βS(Uε(ξ))) q(ξ, t). (4.1)

The associated eigenvalue problem, when written as a first order system, is given by

uξ =
1

c
(−(1 + σ)u+ v)

vξ = w

wξ = b2 (v − qS(Uε)−QεS′(Uε)u)

qξ = −εβ
c
QεS

′(Uε)u−
1

c
(σ + ε+ εβS(Uε)) q. (4.2)

Here, we have set v(ξ) =
∫
R J(ξ − ξ′)S(Uε(ξ

′))q(ξ′, t)dξ′ +
∫
R J(ξ − ξ′)Qε(ξ′)S′(Uε(ξ′))u(ξ′, t)dξ′. We can

write this eigenvalue problem using matrix notation

d

dξ


u

v

w

q

 = A(ξ, σ)


u

v

w

q

 (4.3)

where

A(ξ, σ) =


−1 + σ

c

1

c
0 0

0 0 1 0

−b2QεS′(Uε) b2 0 −b2S(Uε)

−εβ
c
QεS

′(Uε) 0 0 −1

c
(σ + ε+ εβS(Uε))

 (4.4)

and the ξ dependence is through the traveling pulse (Uε, Qε) = (Uε(ξ), Qε(ξ)).
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The location of the essential spectrum is determined by the asymptotic limits of the matrix A, defined in

(4.4), as ξ → ±∞:

A∞(σ) = lim
ξ→±∞

A(ξ, σ) =


−1 + σ

c

1

c
0 0

0 0 1 0

−b2q0S
′(u0) b2 0 −b2S(u0)

−εβ
c
q0S
′(u0) 0 0 −1

c
(σ + ε+ εβS(u0))

 .

The boundary of the essential spectrum is given by all values of σ for which this matrix has purely imaginary

eigenvalues. This set is given by

S = {σ ∈ C | det [iνI −A∞(σ)] = 0 for some ν ∈ R} .

Proposition 4.1. The set S is the union of two curves S−1 and S0 in the complex plane with the following

properties:

1. S−1 =
{
σ = ω1 + iω2 ∈ C | ω1 = F−(ω2

2)
}
⊂ {σ ∈ C | − 1 < <(σ) ≤ −1 + q0S

′(u0)},

2. S−1 is asymptotic to the line <(σ) = −1 as =(σ)→ ±∞,

3. S0 =
{
σ = ω1 + iω2 ∈ C | ω1 = F+(ω2

2)
}
⊂ {σ ∈ C | <(σ) ≤ −ε(1 + βS(u0))},

4. S0 is O(ε)-close to the imaginary axis,

5. the functions F± are given through the formula (4.6) in the proof below.

For typical parameters values, the two curves S−1 and S0 are shown in Figure 9.

(a) (b)

Figure 9: (Left) Plot of the two curves S−1 and S0 for values of the parameters: λ = 20, κ = 0.22, b = 4.5,

β = 5 and ε = 0.02. (Right) Zoom on the curve S0 close to the imaginary axis.

Proof. Let σ = ω1 + iω2 be a point in the complex plane. The equation det [iνI −A∞(σ)] = 0 can formally

be written as follows:

Fr(ν, ω1, ω2) + iFi(ν, ω1, ω2) = 0,

leading to two equations, with real coefficients,

Fr(ν, ω1, ω2) = 0

Fi(ν, ω1, ω2) = 0. (4.5)
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Fi is given through the formula:

Fi(ν, ω1, ω2) =
(
ν +

ω2

c

) (
−2ν2ω1 − ν2 − ν2εβS(u0)− εν2 − b2εβS(u0)− b2 + b2q0S

′(u0)− 2b2ω1 − b2ε
)
.

Substituting ν = −ω2/c in the first equation of the above system gives an implicit equation of the form:

Fr

(
−ω2

c
, ω1, ω2

)
= 0.

This equation can be written as a quadratic polynomial in ω1

A(ω2
2) ω2

1 +B(ω2
2) ω1 + C(ω2

2) = 0

where

A(x) = x+ c2b2

B(x) = x+ c2b2 (1− q0S(′u0)) + ε (1 + βS(u0)) (1 + x)

C(x) = ε
[
c2b2(1− q0S

′(u0) + βS(u0)) + (1 + βS(u0))x
]
.

We define the functions F± as follows:

F±(x) =
−B(x)±

√
B(x)2 − 4A(x)C(x)

2A(x)
. (4.6)

Note that B(x)2− 4A(x)C(x) =
(
x+ c2b2(1− q0S

′(u0))
)2

+O(ε) such that, for small enough ε, F± are well

defined for all x ≥ 0. This implies the following asymptotic expansions in ε

F−(x) = −1 +
c2b2q0S

′(u0)

x+ c2b2
+O(ε) and F+(x) = O(ε).

We deduce from the expansion of F− that −1 < F−(x) for all x ≥ 0, provided that ε is small enough. As

1 − q0S
′(u0) > 0, we have that B(x) > 0 and C(x) for all x ≥ 0, such that F+(x) < 0. Straightforward

computations show that

lim
x→+∞

F−(x) = −1, F−(x) ≤ F−(0) ≤ −1 + q0S
′(u0) and F+(x) ≤ lim

x→+∞
F+(x) = −ε(1 + βS(u0)).

To complete the proof, we need to show that there does not exist any other solutions of system (4.5). From

the expression of Fi, we have that other potential solutions should verify the equation:

−2ν2ω1 − ν2 − ν2εβS(u0)− εν2 − b2εβS(u0)− b2 + b2q0S
′(u0)− 2b2ω1 − b2 = 0.

This can be written in a more convenient form as

ν2 = −b2 1 + 2ω1 + ε(1 + βS(u0))− q0S
′(u0)

1 + 2ω1 + ε(1 + βS(u0))

def
= D(ω1).

This equation gives two curves in the (ν, ω1)-plane parametrized by:

F± =

{
(ν, ω1) ∈ R2 | ν = ±

√
D(ω1) for

−1− ε(1 + βS(u0))

2
< ω1 ≤

q0S
′(u0)− 1− ε(1 + βS(u0))

2

}
.

Plugging back ν = ±
√
D(ω1) into the first equation of system (4.5), one finally needs to solve:

Fr

(
±
√
D(ω1), ω1, ω2

)
= 0

−1− ε(1 + βS(u0))

2
< ω1 ≤ q0S

′(u0)− 1− ε(1 + βS(u0))

2
.

We only prove that Fr

(√
D(ω1), ω1, ω2

)
= 0 does have any real solutions (ω1, ω2) (the same analysis

applies for Fr

(
−
√
D(ω1), ω1, ω2

)
= 0 ). This equation can be written as a quadratic polynomial in ω2 with

coefficients as functions of ω1 of the form

Fr

(√
D(ω1), ω1, ω2

)
= δ1(ω1)ω2

2 + δ2(ω1)ω2 + δ3(ω1)
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where δ1, δ2 and δ3 satisfy the relation

δ2
2(ω1)− 4δ1(ω1)δ3(ω1) = −4(ε2βS(u0)− εβS(u0) + ε2 + 2ω1ε+ ω2

1)(εβS(u0) + 2ω+1 + ε)2.

For −1−ε(1+βS(u0))
2 < ω1 ≤ q0S

′(u0)−1−ε(1+βS(u0))
2 , the above expression is negative. This ensures that

Fr

(√
D(ω1), ω1, ω2

)
does not have any real solutions ω2. This completes the proof of the proposition.

We know that the essential spectrum lies to the left of the above boundary, that is:

Σess ⊂ {σ ∈ C | <(σ) ≤ −ε(1 + βS(u0))} .

In the limit ε→ 0, the essential spectrum will approach the imaginary axis. We define Ω(ε) the open region

in the complex plane that lies to the right of the essential spectrum, containing the right half plane.

4.2 Evans function

For σ ∈ Ω(ε), A∞(σ) has only one eigenvalue of positive real part. This is easy to check this for ε = 0.

Indeed, eigenvalues of A∞(σ), with ε = 0, are solutions of(σ
c

+X
)(

X3 +
1 + σ

c
X2 − b2X − b2

c
(1− q0S

′(u0) + σ)

)
= 0.

For all real positive σ = ω1 ∈ R+, it is clear that the above equation has only one positive real eigenvalue

as − b
2

c (1− q0S
′(u0) + σ) < 0. Let ω1 ≥ 0 be fixed, and let σ = ω1 + iω2 with now ω2 ∈ R. Then, a direct

numerical computation with values of the parameters in the set Π of Definition 3.1 shows that the above

equation has only one eigenvalue with positive real part. It therefore follows that for ε > 0 and σ ∈ Ω(ε),

A∞(σ) has only one eigenvalue of positive real part. We denote ν+(σ) the corresponding eigenvector. One

can also check that there exists a constant ρ, independent of ε, such that, ν+(σ) remains the unique eigenvalue

with largest real part for all ε sufficiently small and Ω̄ = {σ ∈ C | − ρ < <(σ)}. The eigenvector associated

to ν+(σ) can be written

X+(σ) =

(
1, 1 + σ + ν+(σ), ν+(σ)

(
1 + σ + ν+(σ)

)
,− εβq0S

′(u0)

σ + ε+ εS(u0) + cν+(σ)

)
.

As a result, there exists a unique solution ζ(ξ, σ) to (4.3) that satisfies:

lim
ξ→−∞

ζ(ξ, σ)e−ν
+(σ)ξ = X+(σ). (4.7)

We can consider the adjoint problem

d

dξ


u

v

w

q

 = −Ā(ξ, σ)T


u

v

w

q

 . (4.8)

Similarly, for σ ∈ Ω̄, there exists a unique eigenvalue of the associated asymptotic matrix with smallest real

part. This eigenvalue is given by µ−(σ) = −ν̄+(σ) and we denote Y −(σ) its associated eigenvector. Then

there exists a unique solution to (4.8), η(ξ, σ), such that

lim
ξ→+∞

η(ξ, σ)e−µ
−(σ)ξ = Y −(σ). (4.9)

The Evans function is then defined by

E(σ) = 〈ζ(ξ, σ), η(ξ, σ)〉C4 . (4.10)
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Here 〈 , 〉C4 stands for the Hermitian scalar product of C4. One checks easily that E(σ) is independent of ξ:

d

dξ
E(σ) =

〈
d

dξ
ζ(ξ, σ), η(ξ, σ)

〉
C4

+

〈
ζ(ξ, σ),

d

dξ
η(ξ, σ)

〉
C4

= 〈A(ξ, σ)ζ(ξ, σ), η(ξ, σ)〉C4 −
〈
ζ(ξ, σ), Ā(ξ, σ)T η(ξ, σ)

〉
C4

= 0

Following [23], ζ(ξ, σ) and η(ξ, σ) can be shown to be C4-valued analytic function of σ ∈ Ω̄ for each fixed ξ,

and thus E(σ) is an analytic function on Ω̄ .

4.3 Proof of Theorem 4.1

In this section, we complete the proof of Theorem 4.1. We will show that the only zero of E(σ) with <(σ) ≥
is σ = 0, and that its geometric and algebraic multiplicity is one. The argument will closely follow the one

presented in [2] which is an extension of the primary argument exposed in [23]. We collect only the relevant

results and do not repeat all the proofs here.

4.3.1 Reduced Evans function along the front

We first consider the reduced Evans functions for the fast equation along the front and back of the pulse.

The reduced fast equation that governs the dynamics of the front is given to leading order by

∂u(ξ, t)

∂t
= −c∂u(ξ, t)

∂ξ
− u(ξ, t) + q0

∫
R
J(ξ − ξ′)S(u(ξ′, t))dξ′. (4.11)

The corresponding traveling wave equation is

uξ =
1

c
(−u+ v)

vξ = w

wξ = b2 (v − q0S(u)) . (4.12)

As mentioned in 3.1.2, there exists c∗ so that (4.12) possesses a solution (uf (ξ), vf (ξ), wf (ξ)) so that

lim
ξ→−∞

(uf (ξ), vf (ξ), wf (ξ)) = (u0, u0, 0) and lim
ξ→−∞

(uf (ξ), vf (ξ), wf (ξ)) = (u+, u+, 0).

Linearize (4.11) about this wave:

Lf [u(ξ, t)] = −c∂u(ξ, t)

∂ξ
− u(ξ, t) + q0

∫
R
J(ξ − ξ′)S′(uf (ξ′))u(ξ′, t)dξ′. (4.13)

The associated eigenvalue problem (Lf − σI)u = 0 can be written as a system

d

dξ

uv
w

 = Af (ξ, σ)

uv
w

 (4.14)

where

Af (ξ, σ) =

 −1 + σ

c

1

c
0

0 0 1

−b2q0S
′(uf ) b2 0

 (4.15)

and the ξ dependence is through the traveling front (uf (ξ), vf (ξ), wf (ξ)). This has an asymptotic system at

±∞ given by the matrices:

A−,∞f (σ) =

 −1 + σ

c

1

c
0

0 0 1

−b2q0S
′(u0) b2 0

 and A+,∞
f (σ) =

 −1 + σ

c

1

c
0

0 0 1

−b2q0S
′(u+) b2 0

 . (4.16)
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We set S± =
{
σ ∈ C | det

[
iνI −A±,∞f (σ)

]
= 0 for some ν ∈ R

}
. We denote Gf the component of C\S−∪

S+ containing the right half-plane. Then if we denote the spectrum of Lf Σ(Lf ), we have Σ(Lf ) ∩ Gf ⊂
Σp(Lf ) (here Σp(Lf ) denotes the point spectrum). A−,∞f (σ) has only one eigenvalue with positive real part

that we denote σ+
f (σ) with associated eigenvector

X+
f (σ) =

(
1, 1 + σ + ν+

f (σ), ν+
f (σ)(1 + σ + ν+

f (σ))
)
.

As a result, there exists a unique solution ζf (ξ, σ) to (4.14), analytic in σ ∈ Gf that satisfies:

lim
ξ→−∞

ζf (ξ, σ)e−ν
+
f (σ)ξ = X+

f (σ). (4.17)

We can consider the adjoint problem

d

dξ

uv
w

 = −Āf (ξ, σ)T

uv
w

 . (4.18)

Similarly, for σ ∈ Gf , there exists a unique eigenvalue of the associated asymptotic matrix with smallest real

part. This eigenvalue is given by µ−f (σ) = −ν̄+
f (σ) and we denote Y −f (σ) its associated eigenvector. Then

there exists a unique solution to (4.18), ηf (ξ, σ), such that

lim
ξ→+∞

ηf (ξ, σ)e−µ
−
f (σ)ξ = Y −f (σ). (4.19)

The Evans function is then defined by

Ef (σ) = 〈ζf (ξ, σ), ηf (ξ, σ)〉C3 (4.20)

and it has domain Gf .

The stability of the traveling wave is well understood. De Masi et al [14] and Chen [7] have separately shown

that the front is globally stable modulo translations. This result translates into properties for Ef (σ) that are

stated in the following proposition.

Proposition 4.2. Let Ef (σ) denote the reduced Evans function that one obtains from the stability analysis

of the heteroclinic front of (4.11). Then Ef is analytic in Ω̄ and

1. Ef (0) = 0,

2. Ef (σ) 6= 0 for all σ ∈ Ω̄\{0},

3.
d

dσ
Ef (σ)|σ=0 6= 0.

The first point of the proposition follows from the standard feature of translation of waves, the second and

third point come from the stability analysis of [7, 14]. Here, it may be necessary to take ρ in the definition

of Ω̄ to be slightly smaller than above.

4.3.2 Reduced Evans function along the back

Next, consider the reduced equation for the back:

∂u(ξ, t)

∂t
= −c∂u(ξ, t)

∂ξ
− u(ξ, t) + qknee

∫
R
J(ξ − ξ′)S(u(ξ′, t))dξ′, (4.21)

where c = c∗ is the wavespeed selected in the analysis of the front. The corresponding wave equation is

uξ =
1

c
(−u+ v)

vξ = w

wξ = b2 (v − qkneeS(u)) . (4.22)
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As already seen in 3.1.3, the back solution is a heteroclinic solution between (uknee, uknee, 0) at −∞ and

(u−, u−, 0) at +∞ where u− = sL(qknee). It is asymptotic to a stable manifold at +∞, but a center

manifold at −∞, where it decays only algebraically. It is an easy computation to see that the essential

spectrum of the associated linearized operator is contained in the region of the left plane delimited by the

curve Sb =
{
σ = ω1 + iω2 ∈ C | ω1 = − ω2

2

ω2
2+c2b2

}
. As this region touches the imaginary axis at the origin,

the stability of the back and the construction of the associated reduced Evans function is more involved.

However, this analysis has been carried out in [38] for the Fisher-type equation which can straightforwardly

be extended to our type of nonlinearity. We quote their result.

Proposition 4.3. Let Eb(σ) denote the reduced Evans function that one obtains from the stability analysis

of the heteroclinic solution of (4.21). Then

1. Eb is analytic in Ω̄,

2. Eb(σ) 6= 0 for all σ ∈ Ω̄.

Again, it may be necessary to take ρ in the definition of Ω̄ to be slightly smaller than above.

4.3.3 Approximate location of eigenvalues

In the following proposition, we recall a result from [2] where it is demonstrated that any zeros of the Evans

function E(σ) in Ω̄ must be near a unique zero of Ef (σ) and Eb(σ) near σ = 0.

Proposition 4.4. E(σ) 6= 0 for all σ ∈ G = Ω̄\Bδ, where Bδ denotes the ball of radius δ centered at 0 in

the complex plane with δ > 0 such that Bδ ⊂ Ω̄.

Proof. The proof of the proposition relies essentially on the fact that it is possible to track ζ(ξ, σ) around the

pulse until ξ is large enough and then show that it cannot be orthogonal to η(ξ, σ). This proof was originally

presented in [23] for the FitzHugh-Nagumo pulse and then adapted in [2] in the presence of a knee. Here we

will only sketch the proof and we refer to [2, 23] for more details.

In order to track ζ(ξ, σ) around the pulse, we couple the traveling wave system (2.8) with the eigenvalue sys-

tem (4.2) and follow the combined solution (Z(ξ), z(ξ))
def
= (U(ξ), V (ξ),W (ξ), Q(ξ), u(ξ), v(ξ), w(ξ), q(ξ)) ∈

R4 × C4 of

Uξ =
1

c
(−U + V )

Vξ = W

Wξ = b2 (V −QS(U))

Qξ =
ε

c
(1−Q− βQS(U))

uξ =
1

c
(−(1 + σ)u+ v)

vξ = w

wξ = b2 (v − qS(U)−QS′(U)u)

qξ = −εβ
c
QS′(U)u− 1

c
(σ + ε+ εβS(U)) q. (4.23)

The natural setting for (4.23) is the complexified tangent bundle to R4, denoted TR4. Since (4.23) is

linear in z = (u, v, w, q) ∈ C4, the induced flow can be projectivized in the second component. We define

(y1, y2, y3) := π(u, v, w, q) =
(
v
u ,

w
u ,

q
u

)
. Thus, π :

{
(u, v, w, q) ∈ C4 : u 6= 0

}
→ CP3. The evolution of

(y1, y2, y3) is governed by

d

dξ
y1 = y2 +

1 + σ

c
y1 −

1

c
y2

1

d

dξ
y2 = b2 (y1 − S(U)y3 −QS′(U)) +

1 + σ

c
y2 −

1

c
y1y2

d

dξ
y3 = −εβ

c
QS′(U)− 1

c
(−1 + ε+ εβS(U)) y3 −

1

c
y1y3. (4.24)
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Using a scaling argument, we need only to consider a bounded region Ĝ = {σ ∈ G | |σ| < M} within G,

for some fixed M independent of ε. For σ ∈ Ĝ, we denote respectively ζ̂ and η̂ the projectivized version

of ζ and η. Similarly, we can construct the projectivized version of the reduced equation (4.12) and define

ζ̂f . For σ ∈ Ĝ, we know that the reduced system (4.12) does not have an eigenvalue and thus, when the

pulse enters a neighborhood of the invariant slow manifold, to leading order, ζ̂ = (ζ̂f , 0) will be equal to the

direction of the unstable fiber of the manifold. Along the slow manifold, ζ̂ will remain close to the direction

of the unstable fibers until it enters a neighborhood of the knee. Based on the analysis conducted in [38], for

σ ∈ Ĝ, in the neighborhood of the knee, η̂ is still attracted to the direction of its corresponding eigenvector.

When it emerges from a neighborhood of the knee, ζ̂ is C1 O(ε)-close to the strong unstable direction. The

evolution of ζ̂ along the back is similar to that of the front. As the linearization around the back does not

have an eigenvalue in Ĝ, ζ̂ must be still O(ε)-close to the unstable fibers as the pulse enters a neighborhood

of the slow invariant manifold. Thus, ζ̂ can be followed along the slow manifold ML and we can conclude

that it is not orthogonal to η̄ when it enters a neighborhood of the fixed point (u0, u0, 0, q0). This proves

that ζ and η are not orthogonal as well.

4.3.4 Winding number computation

From Proposition 4.3, any potential unstable eigenvalues must lie in Bδ. Here, we choose δ small enough

such that zero is the only eigenvalue of either reduced systems along the front or the back that is contained

in Bδ. Following [2, 23], we will compute the winding number of E(σ) along K = ∂Bδ and show that it is

one.

If we take an element ẑ =
(
v
u ,

w
u ,

q
u

)
∈ CP3, then we can associate it an element in C4 using

π−1(ẑ) =
(

1,
v

u
,
w

u
,
q

u

)
:= z̃.

One can easily check that for any ξ such that u(ξ, σ) 6= 0,

ζ(ξ, σ) = u(ξ, σ)
[
π−1

(
ζ̂
)]

(ξ, σ) = u(ξ, σ)ζ̃(ξ, σ).

Here and in the following of the sequel, u(ξ, σ) always stands for the first component of the eigenvector

ζ(ξ, σ) defined in (4.7). As the Evans function is independent of ξ, we can evaluate it at any value of ξ that

we choose. Hence, we pick T4 > 0, a sufficiently large value of ξ, such that

<
(〈
ζ̃(T4, σ), η̃(T4, σ)

〉
C4

)
> 0,

for all σ ∈ K. The proof of this fact follows closely that in [23], and so we do not repeat here. As T4 is large

enough, from the definition of η(ξ, σ) in (4.9), we also have

eν̄
+(σ)T4η(T4, σ) = η̃(T4, σ) + ε(T4, σ)

where |ε(T4, σ)| → 0 as T4 → +∞, uniformly for σ ∈ K. As E(σ) is independent of ξ, we have

E(σ) = u(T4,K)e−ν
+(σ)T4

(〈
ζ̃(T4, σ), η̃(T4, σ)

〉
C4

+
〈
ζ̃(T4, σ), ε(T4, σ)

〉
C4

)
,

and thus

W (E(σ)) = W (u(T4, σ)) +W
(
e−ν

+(σ)T4

)
+W

(〈
ζ̃(T4, σ), η̃(T4, σ)

〉
C4

+
〈
ζ̃(T4, σ), ε(T4, σ)

〉
C4

)
= W (u(T4, σ)) + 0 + 0

= W (u(T4, σ)),

for all σ ∈ K where W denotes the winding number. Here we have used the fact that δ is small enough

so that ν+(σ) is approximated by ν+(0) for all σ ∈ K, thus W
(
e−ν

+(K)T4

)
= 0. We then have that

W (E(K)) = W (u(T4,K)). It now remains to track the evolution of u(ξ, σ) around the underlying pulse for

σ ∈ K and to evaluate the corresponding winding number at well chosen times Ti. Thus, we introduce the

following intermediary values of ξ:
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• T0 is the value for which the traveling pulse exits a neighborhood of (u0, u0, 0, q0),

• T1 is the value at which it enters a neighborhood of (u+, u+, 0, q0),

• T2 is the value at which it exists a neighborhood of the knee (uknee, uknee, 0, qknee),

• T3 is the value at which it enters a neighborhood of (u−, u−, 0, qknee).

We shall prove that as u(ξ, σ) moves along the pulse, the corresponding winding number increases by one as

it moves along the front and it remains constant along the rest of the wave.

Proposition 4.5. 1. W (u(T0,K)) = 0,

2. W (u(T1,K)) = 1,

3. W (u(T2,K)) = 1,

4. W (u(T3,K)) = 1,

5. W (u(T4,K)) = 1.

Proof. Similar computations of winding numbers have been conducted in [2, 23] so that we only sketch the

proof. Because of the presence of the knee, the main difficulty will be to check that W (u(T2,K)) = 1.

1. W (u(T0,K)) = 0. From its definition we have

e−ν
+(σ)ξζ(ξ, σ) = X+ + ε0(ξ, σ)

with |ε0(ξ, σ)| → 0 as ξ → −∞, uniformly in σ ∈ K. Then, if ξ = T0 is negative enough we have

< (u(T0, σ)) > 0,

and then W (u(T0,K)) = 0.

2. W (u(T1,K)) = 1. Using the same kind of argument as given earlier, we can easily show that

W (Ef (K)) = W (uf (T1,K)), where Ef is the Evans function associated to the front solution. From

Proposition 4.2, we know that Ef (0) = 0 with Ef (σ) 6= 0 for all σ ∈ K, and
d

dσ
Ef (σ)|σ=0 6= 0,

which gives W (Ef (K)) = 1 and thus W (uf (T1,K)) = 1. Here uf stands for the first compo-

nent of the eigenvector ζf (ξ, σ) defined in (4.17). Following the argument of Lemma 6.2 in [23],

one can show that
∣∣∣u(T1,σ)
u(T0,σ) −

uf (T1,σ)
uf (T0,σ)

∣∣∣ can be made as small as desired uniformly in σ ∈ K so that∣∣∣u(T1, σ)− uf (T1,σ)
uf (T0,σ)u(T0, σ)

∣∣∣ can also be made small and

W (u(T1,K)) = W

(
uf (T1,K)

uf (T0,K)

)
+W (u(T0,K)) = 1 + 0 = 1.

3. W (u(T2,K)) = 1. The idea is to construct a homotopy between u(T1,K) and u(T2,K) which would

imply that their winding numbers are equal. The projectivized system (4.24), near the knee, to leading

order in ε, reads

d

dξ
y1 = y2 +

1 + σ

c
y1 −

1

c
y2

1

d

dξ
y2 = b2 (y1 − S(uknee)y3 − 1) +

1 + σ

c
y2 −

1

c
y1y2

d

dξ
y3 =

1

c
y3 −

1

c
y1y3.

This system has four fixed points given by
(
1,−σ/c,−σ2/c2b2S(uknee)

)
and (x(σ),−(1 + σ)x(σ)/c +

x(σ)2/c, 0) where x(σ) is solution of the cubic equation

X3 − 2(1 + σ)X2 − (c2b2 − (1 + σ)2)X + c2b2 = 0.
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This equation has three solutions that we denote x1(σ), x2(σ) and x3(σ) with <(x1(σ)) < 0, <(x2(σ)) >

0 and <(x3(σ)) > 0. As σ → 0, the above equation reduces to

X3 − 2X2 − (c2b2 − 1)X + c2b2 = 0,

and the corresponding solutions are x1(0) =
1−
√

1 + 4c2b2

2
, x2(0) =

1 +
√

1 + 4c2b2

2
and x3(0) = 0.

Thus,
(
1,−σ/c,−σ2/c2b2S(uknee)

)
coincides with (x3(σ),−(1 + σ)x3(σ)/c + x3(σ)2/c, 0) in the limit

σ → 0, while the other fixed points remain separate, uniformly in σ. The direction along x2 defines

the attractor that ζ̂ follows as it moves along the wave. Since fast unstable directions always point

along vector with nonzero u component, this shows that u(ξ) 6= 0 for all ξ ∈ [T1, T2], uniformly for σ

near zero. Then W (u(T2,K)) = W (u(T1,K)) = 1.

4. W (u(T3,K)) = 1. We now use the information collected for the back solution. Once again, using

similar argument as already given earlier, we can easily show that W (Eb(K)) = W (ub(T3,K)), where

Eb is the Evans function associated to the front solution. Here ub stands for the first component

of the eigenvector ζb(ξ, σ). From Proposition 4.3, we know that Eb 6= 0 for all σ ∈ K, which gives

W (Eb(K)) = 0 and thus W (ub(T3,K)) = 0. Using the same argument as in 2., we have

W (u(T3,K)) = W

(
ub(T3,K)

ub(T2,K)

)
+W (u(T2,K)) = 0 + 1 = 1.

5. W (u(T4,K)) = 1. As u(ξ, σ) 6= 0 for all σ ∈ K and T3 ≤ ξ ≤ T4, u(ξ, σ) defines a homotopy from

u(T3,K) to u(T4,K) and therefore W (u(T3,K)) = W (u(T4,K)) = 1.

4.3.5 Conclusion of the proof of Theorem 4.1

We can now conclude the proof of Theorem 4.1.

Proof. [of Theorem 4.1] As W (E(K)) = W (u(T4,K)) = 1, this proves that there is only one zero of the

Evans function in Ω̄, since we know there exists a zero at the origin due to the translations, it must be the

only one.

5 Discussion

In this paper, we have shown the existence of traveling pulse solutions for a neural field model with synaptic

depression and smooth firing rate function. We have first constructed a singular traveling solution for ε = 0

and then proved that this singular solution persists for small positive value of ε. Contrary to neural field

models with linear adaptation [32], the jump back from the right slow manifold to the left slow manifold

must occur at the knee of the right slow manifold for models with synaptic depression and for typical values

of parameters,. This implies that one needs to use a blow-up technique in order to follow the solution near

this non normally hyperbolic point. As a consequence, the decay along the back of the constructed traveling

pulse is only algebraic. Note also that our existence proof does not rely on an explicit construction of the

traveling solution as it is often the case with models with Heaviside firing rate function [26].

We have also investigated the stability of the traveling pulse solution. We have constructed an associated

Evans function and studied its zero in the complex plane. More precisely, we have shown that the only zero

of the Evans function in the right-half plane is zero, and its geometric and algebraic multiplicity is one. The

crucial step in this analysis is to show that the knee does not produce any additional eigenvalue which can

be shown through winding number computations. That part of the proof relies essentially on the results
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presented in [2, 38]. Our definition of the Evans is somewhat different from the one previously used for

neural field models with Heaviside firing rate function [9, 33, 35, 42–44]. In our case, the Evans function is

not known through an explicit formula due to our choice of the nonlinearity. However, we can collect enough

information to determine the location of its zeros.

As it has already been highlighted in other studies, synaptic depression has fundamental repercussion on the

spatiotemporal dynamics of neuronal networks. For example, Kilpatrick [28] has recently shown that synaptic

depression improves information transfer in perceptual multistabaility. In their seminal work [26], Kilpatrick

& Bressloff have demonstrated that synaptic depression plays a major role, compared to adaptation, in

determining the characteristics of the traveling waves. In our study, we have presented another determinant

role that synaptic depression plays on the characteristic of traveling wave. Indeed, we have seen that the

decay along the back of the constructed traveling pulse is only algebraic while it is exponential in the case of

adaptation. We believe that this prediction could be verified experimentally and further assess the validity

of the model.

In [26], Kilpatrick & Bressloff have used a Heaviside firing rate function instead of the smooth firing rate

function (2.2). It is important to note that the singular perturbation analysis presented in this paper breaks

down if one uses a Heaviside function as Hypothesis 2.2 is no longer satisfied. However, Kilpatrick & Bressloff

have explicitly derived formula for the traveling pulse solution. Their constructive approach predicts the

existence of two types of traveling pulse solutions: a fast pulse (with a wide profile) and a slow pulse (with a

narrow profile). The fast traveling pulse solution, obtained with a Heaviside function, is qualitatively similar

to the pulse found in our study. Indeed, in both models, the fast pulse is found to be spectrally stable. Both

fast pulses have a wide profile. Note however that the Heaviside model predicts an exponential decay along

the back of the pulse while our model predicts only an algebraic decay, so that there still exists a slight

difference in the profile of the solution. As we have used singular perturbation theory, it is not possible to

directly predict the existence of the slow pulse without doing some modifications that we now outline. In

order to prove the existence of a slow pulse, one needs to rescale the wave speed c. We anticipate that the

wave speed will scale as c = c̃εα with c̃ = O(1) and for some 0 < α < 1 to be determined. With this new

scaling, one can use singular perturbation theory to prove the existence of a traveling pulse solution along

the lines of this paper. As for the Heaviside model, we expect this slow pulse solution to be unstable. We

keep this analysis for future work.

Finally, the particular choice of our connectivity function has allowed us to transform a functional differential

equation of mixed type (with infinite delays in backward and forward time) into a system of four first order

ordinary differential equations. It seems that the existence of a stable pulse solution is robust with respect

to the choice of the connectivity function. Indeed, a simple numerical exploration shows that for Gaussian

(J(x) = e−x
2

/
√
π) or slowly algebraically decaying (J(x) = 1

π(1+x2) ) connectivity functions, where no simple

transformation to a first order system of ordinary differential equations is possible, there still exists a traveling

pulse solution. We expect that the existence of such a traveling pulse solution will hold true with the following

general conditions on J :

(i) J : R→ R is continuous, positive and even;

(ii) J ∈ L1(R) and J ′ ∈ L1(R);

(iii)
∫
R J(x)dx = 1.

The assumptions (i) are natural from a biological point of view as we are modeling a purely excitatory

network, the technical assumptions (ii) are necessary to prove the existence of the front solution and the

properties of its linearization [7, 15]. The last assumption is only a normalization condition. Note that in

the case of linear adaptation, Pinto & Ermentrout [32] have constructed the singular traveling solution for

ε = 0, but not proved that it persists for small positive value of ε. We think that ideas developed in [22, 30]

can provide insights for proving the persistence of such waves. It will be the subject of forthcoming research.
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APPENDIX

A Proof of Lemma 2.1

Lemma A.1. Suppose that (λ, κ) ∈ (0,∞)× (0, 1) satisfy the relation

2− 2 ln(2) ≤ λκ− ln(λ).

We define

uc(λ, κ) = − 2

λ
W−1

−√λ
2
e
−
λκ

2

 > 0

βc(λ, κ) =
1

uc(λ, κ)
− 1

S(uc(λ, κ))
> 0.

If β > βc(λ, κ) then system (2.9) has a unique solution (u0, q0).

Proof. If we define h(u) = −u + S(u)
1+βS(u) , then looking for solutions to the system (2.9) is equivalent to

finding real roots to the equation h(u) = 0. Due to the boundedness of S, we have for all parameters values

lim
u→+∞

h(u) = −∞.

As h(0) > 0, this ensures the existence of u0 > 0 such that h(u0) = 0. We want to find the critical value βc,

as a function of (λ, κ), such that for β > βc, u0 is the only positive real root of h. In order to compute this

critical value, let first solve the following system:

0 = h(u)

0 = h′(u).

The first equation gives the relation:

u =
1

1 + β + e−λ(u−κ)

which can be plugged into the second equation to obtain the transcendental equation

1 = u2λe−λ(u−κ). (A.1)

This equation can be solved in terms of the Lambert function W as follows. We rewrite equation (A.1) as

λ

4
e−λκ =

(
−λu

2
e−

λu
2

)(
−λu

2
e−

λu
2

)
We introduce the intermediary variable y = −λu

2 e−
λu
2 such that the previous equation reduces to

λ

4
e−λκ = y2.

Taking the square root, we have

−
√
λ

2
e−

λκ
2 =

−λu
2

e−
λu
2 . (A.2)

If (λ, κ) satisfy the relation

2− 2 ln(2) ≤ λκ− ln(λ)
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then the following equality holds

−1

e
≤ −
√
λ

2
e−

λκ
2 .

Then for this choice of parameters, equation (A.2) is equivalent to

−λu
2

= W−1

(
−
√
λ

2
e−

λκ
2

)

which gives

u = − 2

λ
W−1

−√λ
2
e
−
λκ

2

 = uc(λ, κ).

From 0 = h(uc) we deduce that βc is given by

βc(λ, κ) =
1

uc(λ, κ)
− 1

S(uc(λ, κ))
.

We can now complete our proof. For (λ, κ) such that 2−2 ln(2) ≤ λκ− ln(λ), h′(u) < 0 for all u > 0 provided

that β > βc(λ, κ). This implies that u0 is the unique positive root of h for β > βc(λ, κ). The fact that

βc(λ, κ) > 0 for all (λ, κ) ∈ (0,∞)× (0, 1) that satisfy 2− 2 ln(2) ≤ λκ− ln(λ) is checked numerically.

B Proof of Lemma 3.1

Lemma B.1. Suppose that (λ, κ) satisfy the condition of Hypothesis 2.1, then the values (uknee, qknee) are

uknee =
1

λ

[
1−W−1

(
−e−λκ+1

)]
qknee =

uknee
S(uknee)

.

Proof. We look for a solution (uc, qc) of system (3.6). Replacing the value of qc into the second equation

gives:

λuc(1− S(uc)) = 1

which is equivalent to

(λuc − 1)e−λ(uc−κ) = 1.

Multiplying each side by −e−λκ+1, we obtain

(−λuc + 1)e−λuc+1 = −e−λκ+1.

This transcendental equation can be solved using Lambert W function. Noticing that if (λ, κ) satisfy condi-

tion of Hypothesis 2.1 then automatically the following inequality is also satisfied

−1

e
≤ −e−λκ+1

Finally, one can invert the previous equation and obtain

−λuc + 1 = W−1

(
−e−λκ+1

)
,

which gives the desired formula.
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