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Abstract. Neural field equations are integro-differential systems describing the macroscopic
activity of spatially extended pieces of cortex. In such cortical assemblies, the propagation of in-
formation and the transmission machinery induce communication delays, due to the transport of
information (propagation delays) and to the synaptic machinery (constant delays). We investigate
the role of these delays on the formation of structured spatiotemporal patterns for these systems in
arbitrary dimensions. We focus on localized activity, either induced by the presence of a localized
stimulus (pulses) or by transitions between two levels of activity (fronts). Linear stability analysis
allows to reveal the existence of Hopf bifurcation curves induced by the delays, along different modes
that may be symmetric or asymmetric. We show that instabilities strongly depend on the dimension,
and in particular may exhibit transversal instabilities along invariant directions. These instabilities
yield pulsatile localized activity, and depending on the symmetry of the destabilized modes, either
produce spatiotemporal breathing or sloshing patterns.
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1. Introduction. Electrode recordings and imaging studies have revealed that
the cortex can support a variety of spatiotemporal dynamics including standing waves [2,
20], traveling pulses [2, 14, 32] and spiral waves [14, 13, 32]. These patterns of activity
are visible from macroscopic measurements related to the firing rate of neurons at a
specific place, and is therefore the macroscopic result of the activity of individual
cells that compose the cortical tissue. The interaction between nerve cells takes a
specific delay: action potentials are delivered to the interconnected neurons after a
time depending on the distance between cells and on the time taken by the synapse
to transmit the information. These delays, on the order of milliseconds, are due to
several phenomena including the finite-velocity propagation of action potentials, den-
dritic and synaptic processing as well as spike-generation dynamics. The question
we may address in the present manuscript is the role of these delays in shaping the
macroscopic dynamics of large neuronal assemblies.

The first step in this journey is to describe the effective macroscopic of large neu-
ronal networks. In that domain, a successful approach consists in considering that
the activity of large interconnected networks satisfies a Neural Field Equation (NFE).
These models introduced in the end of last century [1, 31] describe the macroscopic
activity of the network through an averaged variable, the mean firing rate, of a local
neuronal population. This firing rate evolves depending on the input received by the
population, which is the sum of an external current term (representing the external
stimulations for instance) and the activity of cells at other locations on the cortex.
Thus descriptions of spatially extended populations of neurons give rise to integro-
differential evolution equations. These heuristic descriptions provide a foundation for
studying large populations of cells with complex dynamics, and can be rigorously seen
as accurate descriptions of the underlying microscopic dynamics of noisy spatially ex-
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tended networks as shown in [21, 22, 23]. These neural fields equations were indeed
very successful in reproducing a number of phenomena as reviewed in the comprehen-
sive article [5], including in particular visual hallucination patterns [10, 6], binocular
rivalry [8], working memory [15]. From this wide literature, it became clear that, as
is the case of the widely studied nonlinear reaction diffusion systems of PDEs (with
which the neural field equation has several common points [3]), the class of neural
field equation supports spatio-temporal pattern formation and may exhibit a wide
repertoire of phenomena, such as waves, fronts, pulses and localized activity [5].

The role of delays has been shown central in the activity of neural fields, in rela-
tionship with the emergence of traveling waves or standing waves, and how these delays
may affect the stability of homogeneous solutions (see [29] and references therein). All
these studies point to a specific role of delays in shaping the macroscopic activity of
neural fields, and tend to induce oscillations, as characterized by the exhibition of
delay-induced instabilities. However, the role of delays in the stability of stimulus-
locked pulses or localized fronts has not been addressed, and is of central importance
in order to understand the role of delays in the activity of neural fields in the presence
of localized input, or in the stability of fronts.

In the absence of delays, localized stimulus generates a super-threshold response
whose stability was characterized in the seminal works of Amari [1]. The dynamics
of cells is actually more complex, and particularly neuronal adaptation can yield
destabilization of the pulse. This was demonstrated recently investigated [19, 11] in
the Pinto and Ermentrout model of neural field with adaptation [16, 17]. In detail,
stationary pulses may undergo a Hopf bifurcation as the input amplitude is decreased,
leading to stable periodic oscillations around the localized pulse. These oscillations
take the form of breathers (periodically expanding and contracting solutions around
the stationary pulse) or sloshers (periodic solutions asymmetrically varying around
the stationary pulse).

Here, we will be interested in the influence of delays on the emergence of such
solutions, and we will extend these works to the case of fronts. In order to separate
the effects due to linear adaptation and delays, we will work here in the classical
Amari framework [1], in the presence of constant and space-dependent propagation
delays. Phenomena arising in these equations are highly dependent of the dimension
of the neural field. In order to take this aspect into account, theoretical developments
will be performed in arbitrary dimensions, and examples in dimension one (simplest
example) and two (more relevant to the underlying biological problem). In all cases,
we will show that delays can destabilize the stationary pulses through Hopf bifurca-
tions, yielding, similarly to the case of Pinto-Ermentrout model with adaptation, to
breathing or sloshing pulses. We extend these analyses in order to include the case
of stationary fronts in general dimensions. In that case again, we will show that both
constant and propagation delays shape the solution of the neural field, yielding local-
ized periodic oscillations of the front location. Fronts are essentially one-dimensional
patterns, yet instabilities may arise in transverse dimensions, phenomenon only aris-
ing in dimension larger than two. All these analytical developments are confirmed
by extensive numerical analyses that show a very good agreement with the predicted
transition points.

The paper is organized as follows. In section 2, we introduce the framework of the
study. Section 3 will deal in the existence and stability of localized activity (pulses),
and section 4 will consider the case of stationary fronts and their stability.
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2. Neural Fields Formalism with Delays. The classical Neural Field Equa-
tion describes a continuum limit of the activity of neurons belonging to a spatially
extended piece of cortex Γ ⊂ Rd through a macroscopic variable, the population-
averaged firing rate u(x, t) at location x ∈ Γ and time t ≥ 0. This average firing rate
evolves depending of the input it receives. In the absence of input, it is postulated
that the activity exponentially decays to zeros. Input received by the neural field are
of two types: (i) the external input at time t received at location x ∈ Γ, denoted
I(x, t), accounting for the external stimuli received by the cortex, and (ii) the internal
input from neurons within the network. This second type of input necessitates to
describe how the average firing-rate at location x ∈ Γ is affected by the presence of
an averaged firing rate at location x′. This depends on the structure of the network,
in particular on the distance between x and x′ (inducing propagation delays), and
on the type of connection (level of excitation or inhibition) between the two areas.
Here, we will consider the classical synaptically coupled network. In this framework,
probably the most widely used neural field model since the seminal works of Amari
and Wilson and Cowan [1, 30], we will consider that the type of interaction between
these populations is described by a kernel Jd(‖x − x′‖) which only depends on the
distance between the cells, and that the effective input received from neurons at lo-
cation x′ is a non-decreasing function of the mean firing rate f(u(x′, t− τ(x− x′))).
This framework therefore considers a single layer composed of both excitatory and
inhibitory neurons, and gives rise to the following integro-differential equation:

(2.1)
∂u

∂t
(x, t) = −u(x, t) +

∫
Γ

Jd(‖x− y‖)f(u(y, t− τ(x− y))dy + I(x, t)

The quantity f(u(x, t)) represents the average activity, namely the pulse emission
rate, of the neurons at location x and time t, it is therefore a non-decreasing posi-
tive function. The simplest model one could think of, and probably the only model
allowing closed-form derivation of the solutions to the NFE (see e.g. [5, 1, 19]) is the
Heaviside function with threshold θ :

(2.2) f(u) =

{
0 , u ≤ θ
1 , u > θ

The connectivity function Jd represents the average intensity of connection be-
tween neurons at positions x and y on the neural field Γ. It characterizes the averaged
effect of spikes received by neurons at location x incoming from neurons at location
y. The choice of this function therefore depends on the type of anatomical and func-
tional connections between different neuronal areas. Typically, it has been shown that
functional connectivity is globally excitatory at short spatial scales and inhibitory at
larger distances. This macroscopic description of the connection motivated to con-
sider functions that only depend on the distance on the cortex. Anatomical studies
showed that excitatory axons are in average, longer than inhibitory cables, yielding
to a typical inverse Mexican hat connectivity. When Γ is a feature space representing
the coding attribute of neurons (e.g., orientation of a visual stimulus for the modeling
of primary visual areas [7]), connections are locally excitatory and laterally inhibitory
(Mexican hat connectivity, see Fig. 2.1). In the present study, we will see that the
specific shape of the map Jd is not essential to obtain rigorous closed-form results on
the existence and stability of particular types of solutions. For concreteness, we will
consider that these maps are differences of Gaussians:

Jd(‖x‖) = weGd(‖x‖, σe)− wiGd(‖x‖, σi), ∀x ∈ Rd,
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(a) Mexican Hat (b) Inverse Mexican Hat

Figure 2.1. Typical shape of the connectivity functions Jd in two dimensions (Γ ⊂ R2).
Here Jd is a difference of Gaussians. (a) local excitation and lateral inhibition case (functional
connectivity profile), (b) local inhibition and lateral excitation (anatomical profile).

where Gd(‖x‖, σ) is the isotropic Gaussian function in dimension d with variance σ:

Gd(x, σ) =
1

(σ
√
π)d

exp

(
−x

2

σ2

)
, ∀x ∈ R.

In equation (2.1), the term I(x, t) corresponds to the intensity of a stimulus
reaching the neural field at location x and time t. In section 3, we will choose time-
independent localized stimuli around the origin, and will opt for a Gaussian form:
I(x) = I(‖x‖) = I0e

−‖x‖2/σ2

. This will induce localized pulse activity. In section 4,
we will work with an independent stimulus of the form:

I(x) = I(e · x) = I0

(
1− 1

1 + e−se·x

)
,

where e ∈ Sd−1 will be the direction of propagation for the fronts. Again, the partic-
ular shape of these two stimuli will not crucially impact the results.

Eventually, the delay function is considered of the general form

τ(x) = τD +
‖x‖
c

such that it takes into account both constant transmission delays (τD) and space-
dependent delays (c) related to the transmission of spikes at finite speed along the
axons.

The model is therefore complete as soon as the space Γ is defined. Since we
will investigate in the present manuscript localized states, we will consider that the
piece of tissue considered, Γ, covers Rd. Beyond the fact that under this assumption
the problem is amenable to analysis, this appears as a reasonable assumption in the
present context. Indeed, boundary effects may be negligible as long as the spatial
extent of the phenomena investigated is relatively small compared to the size of the
entire network, which is sensible when considering the presence of localized activity
patterns or the local evolution of stationary fronts.



5

Now that these equations and assumptions have been done, we are in a position
to analyze their solutions. We start by analyzing the presence of localized patterns of
activity (pulses) driven by the presence of a local stimulus.

3. Pulses: Existence, Stability and Delay-Induced Breathers and Slosh-
ers. The basic mechanism described by Bressloff and Folias [11, 19] for the generation
of a stimulus induced breathing pulse in the Pinto-Ermentrout model consists in a
Hopf instability of the stimulus-induced stationary pulse. We will show here that
the same phenomenon arises, in arbitrary dimensions, related to the presence of de-
lays. Beforehand, we will briefly discuss (in an overarching formalism) the existence
of pulses in general dimensions.

3.1. Existence of pulses in general dimensions. For one-dimensional equa-
tions, Amari provided the conditions for the existence of stationary pulses [1], and
similar arguments were provided in two dimensions [9]. These arguments readily
extend to d-dimensional neural fields.

Let us consider equation (2.1) in dimension d ≥ 1 and consider a rotationally
invariant time-independent input I(‖x‖) centered at the origin. A stationary ro-
tationally invariant pulse (simply called pulse in the sequel) is a time-independent
profile U(x) solution of equation (2.1) satisfying, for some a > 0 (called the pulse
half-width):

(3.1)

{
U(x) > θ, ‖x‖ < a

U(x) < θ, otherwise

and decaying towards zero at infinity.
Plugging these conditions in equation (2.1) yields the implicit relation:

(3.2) U(x) =

∫
Rd
Jd(‖x− y‖)f (U(y)) dy + I(‖x‖),

which provides the profile of possible pulses parametrized by their half-width a:

(3.3) U(x) =

∫
Bd(0,a)

Jd(‖x− y‖)dy + I(‖x‖).

The question that remains to answer is whether there exists such solutions, or in
other words if there exists such quantity a so that equation (3.1) is satisfied. Since
the functions are rotationally invariant, we have that for any x such that ‖x‖ = r,
the integral term in the righthand side is equal to:

M(r, a) =

∫
Bd(0,a)

Jd(‖x− y‖) dy =

∫ a

0

∫
Sd−1

Jd(‖r − uϕ‖)ud−1dudd−1ϕ,

where Bd(0, a) is the ball of radius a in Rd and Sd−1 is the unit sphere. Therefore,
existence of a pulse is ensured as soon as there exists a > 0 satisfying the implicit
relationship:

(3.4) θ =M(a, a) + I(a).

This provides a condition for a bump to exist provided that it crosses the threshold θ
exactly once. Moreover, finding a solution to this equation provides the exact shape of
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the solution of the pulse through equation (3.2). Eventually, this relationship provides
the non-linear dependence of the half-width a with respect to the other parameters.

The existence of stimulus-dependent pulse solutions is of course dependent on the
maximal amplitude of the input I0. The pulse relationship can be easily written as a
condition on this amplitude, and one obtains:

I0 = ea
2/σ2

(θ −M(a, a)).

Interestingly, we observe that the level of input necessary to induce the presence of
a stationary bump, as well as its half-width, depends on the dimension of the neural
field, and on the type of connectivity function chosen.

In dimension 1, we obtain therefore the simple conditions for bumps to exist as:

θ =

∫ 2a

0

J1(x)dx+ I(a)

which in the case of our choice of functions further simplifies as:

θ = weerf

(
2a

σe

)
− wierf

(
2a

σi

)
+ I0e

−a2/σ2

.

It is now convenient, in order to characterize more precisely the shape of the
bump (and in order to expedite the analysis of the stability of the bump) to compute
the gradient of this solution. By standard differential calculus methods, one obtains:

∇U(x) =

∫
Bd(0,a)

J ′d(‖x− y‖) x− y

‖x− y‖
dy +∇I(‖x‖)(3.5)

= ad
∫ 1

0

∫
Sd−1

J ′d(‖x− auϕ|)
x− auϕ
‖x− auϕ‖

ud−1dudd−1ϕ+ I ′(‖x‖) x

‖x‖
.

Of course, as the gradient of a spherically symmetric function, this function is odd
(i.e. ∇U(−x) = −∇U(x)), and more generally, is equivariant under the action of the
orthogonal group: for any orthogonal transformation (e.g., rotation) A ∈ O(d), we
have:

∇U(Ax) =

∫
Bd(0,a)

J ′d(‖Ax− y‖) Ax− y

‖Ax− y‖
dy +∇I(‖Ax‖)

=

∫
Bd(0,a)

J ′d(‖x− z‖)Ax−Az

‖x− z‖
dz + I ′(‖x‖) Ax

‖x‖
= A∇U(x).

This simple property will be useful in order to characterize the deformation modes of
the bumps. In particular, it is important to note that the norm of this quantity is
constant along spheres in Rd, which will be useful for the analysis of the stability.

In dimension d = 1, we obtain the rather classical and simple expression at x = ±a

U ′(−a) = −U ′(a) = J1(0)− J1(2a) + I ′(a).

Figure 3.1 represent the solutions to the bump equation for d = 1 or 2. We
observe that the existence and size of the bump depends on the dimension and on the
type of connectivity chosen. In the case of the Mexican hat connectivity (Fig. 3.1(A)),
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 d= 2

 d=1 

I0
I0

d= 1

d= 2

(A)
(B)

Figure 3.1. Dependence of the stationary pulse half-width a on the intensity of the input I0
in the 1d (red line) and 2d (green line) neural fields. Dashed (solid) lines indicate the stability of
the bump in the non-delayed case. (A) Mexican hat connectivity (see inset for the 1-d connectivity)
θ = 0.4, σe = 1, σi = 2, σ = 1.2, we = 0.4 and wi = 1. (B) Inverse Mexican hat connectivity (see
parameters in Fig. 3.3).

the value of the input amplitude I0 forms a U-shaped curve as a function of the pulse
size a. For I0 smaller than a critical value (which is strictly smaller than the threshold
θ), no bump exist, and when I0 exceeds this value, two bumps exist for I0 < θ, and a
unique bump exists for I0 > θ. At I0 = θ, the size of the smallest bump goes to zero.
The existence of pulses for inputs strictly smaller than the threshold is precisely due
to the local excitation of Mexican hat connectivities. In that case, some values of the
input sufficient to trigger a pulse in dimension 1 are too small to trigger a pulse in
dimension 2. In the case of the inverse Mexican hat connectivity (Fig. 3.1(a)), this
is no more the case: the value of the half-width a is an increasing function of the
input I0: below I0 = θ, no bump exists, and in any dimension, above I0 = θ, a pulse
exists. As the input amplitude increases, the pulse width increases. It is important
to note that in this case that there exists a unique pulse for a given value of the input
amplitude I0 > θ.

In both cases, we observe a quantitative and qualitative dependence of the zone of
existence of pulses on the dimension of the space: while the size of the one-dimensional
bump decreases almost linearly as I0 is decreased, the size of the two dimensional
bump has rather a quadratic behavior. This implies that there are different parameters
corresponding to the existence of pulses: in the Mexican hat connectivity case, one
needs larger inputs to obtain pulses (note that this ordering persists on a larger range
of values tested, up to I0 = 50), and at a given input amplitude value, and when
both 1d and 2d models display the presence of a pulse, the small pulse is larger in
the 2d model while the large pulse is smaller. In the inverse Mexican hat model, for
small values of I0 the two-dimensional pulse has a smaller half-width than the one-
dimensional one, and for large values of I0, it is the contrary. The question that arises
is precisely what is the stability of these solutions. This is the topic of the following
section.

3.2. Linear stability. In order to characterize the linear stability of the pulses
with respect to parameters, we need to characterize the spectrum of the linearized op-
erator around these solutions. This is not a trivial task, because of the non-regularity
of the function f . In order to handle such issues, Amari expressed the linearized
operator in one dimension. This was then generalized by Bressloff and Kilpatrick [4]
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for two-dimensional models with synaptic depression and no delays. We extend these
linearizations to the d-dimensional case with delays, and use a formalism based on
the linearization in the sense of distribution instead of developments at leading orders
to obtain these formulae.

In order to characterize the linear stability of the bump U(x) with half-width a,
we analyze the spectrum of the linearized operator around the bump. The method
used by [4] consists in considering an arbitrary perturbation of small amplitude of the
pulse u(x, t) = U(x) +εϕ(x, t), injecting this form of solution in the equation in order
to find the evolution of the perturbation in the limit ε→ 0:

∂tϕ = Lϕ

where

Lϕ(x) = −ϕ(x) + lim
ε→0

1

ε

∫
Rd
Jd(‖x−y‖)[f(U(y))− f(U(y) + εϕ(y, t− τ(x−y)))]dy.

A formal method allows to find this result in a more compact way using the differential
of the Heaviside function f in the sense of distributions, which is the Dirac delta
function at θ, δθ(·) = δ(· − θ). This allows to write the linearized operator as:

Lϕ(x) = −ϕ(x) +

∫
Rd
Jd(‖x− y‖)δθ(U(y))ϕ(y, t− τ(x− y))) dy.

The measure δθ charges only the sphere of radius a in Rd thanks to the rotational
symmetry of U and by definition of the half-width of the pulse. In circular coordinates,
denoting y = rψ with r ∈ R+ and ψ ∈ Sd−1 the unit sphere and using a change of
variables, one readily obtains in the case of our particular bump (crossing once the
threshold with spherical symmetry):

Lϕ(x) = −ϕ(x) +
ad−1

|U ′(a)|

∫
Sd−1

Jd(‖x− aψ‖)ϕ(aψ, t− τ(x− aψ))) dd−1ψ

where |U ′(a)| is the constant value taken by the gradient of U on the sphere of radius
a (see above).

In one dimension, the operator is therefore similar to the classical Amari linearized
operation (with an additional delay term):

Lϕ(x) = −ϕ(x)+
1

|U ′(a)|

(
J1(|x−a|)ϕ(a, t−τ(x−a))+J1(|x+a|)ϕ(−a, t−τ(x+a))

)
and in dimension 2, we recover the form of the linearized operator in [4].

This linear operator includes a convolution term and a delay term. At this level of
generality, it is not possible to determine a complete set of solutions to this equation.
However, we may simplify the problem by considering complex perturbations in the
class of functions ϕ(x, t) = eλtp(x) for λ ∈ C and p(x) a bounded continuous function
on Rd decaying to zero at infinity (reflecting the properties of the weight distribution
Jd)1. Of course, the sign of the real part of λ will give us the stability of the bump.

1From the point of view of time evolution, the assumption is justified by noting that the action
of the linear operator on the time variable is a convolution, which is therefore diagonalizable in
the Fourier space. This is also the case of the space operator, which will motivate to specify, in a
forthcoming section, to take an exponential shape for p(x).
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Let us now analyze the possible eigenvalues of the linear operator. Acting on the
class of functions we considered, we rewrite the evolution in time of the perturbation
and obtain a relationship, the dispersion relationship, characterizing the eigenvalues
λ:

(3.6) (λ+ 1)p(x) =
ad−1

|U ′(a)|

∫
Sd−1

Jd(‖x− aψ‖)eλτ(x−aψ)p(aψ) dd−1ψ.

which rewrites, using the form of the delays considered:

(λ+ 1)eλτDp(x) =
ad−1

|U ′(a)|

∫
Sd−1

Jd(‖x− aψ‖)e
λ
c ‖x−aψ‖p(aψ) dd−1ψ.

The spectrum of the linear operator is composed of the complex values λ such
that the equation (3.6) has solutions. This spectrum is comprised of the essential
spectrum corresponding to cases where the righthand side of the relationship vanishes
(i.e. any perturbation vanishing on the sphere of radius a), and the point spectrum.

The essential spectrum is therefore given by the solutions to the equation:

λ+ 1 = 0.

This corresponds to a stable mode of the bump: no destabilization may arise from
perturbations vanishing on the sphere of radius a, and any such perturbation decays
exponentially in time towards the bump solution. In other words, may the pulse be
destabilized, the position of the threshold crossing will vary.

The point spectrum is slightly more complex to handle, as it requires to take
into account the infinite-dimensional operator on the righthand side of the dispersion
relationship. It is precisely in this part of the spectrum that delays come into play
and may produce qualitative effects such as destabilization of bumps.

In order to illustrate the role of delays in the stability of the bump solutions, we
now treat the case of a one-dimensional neural field analytically, before dealing with
the problem in general dimension.

3.2.1. One-dimensional neural fields. The dispersion relationship greatly
simplifies for one-dimensional neural fields allowing analytical treatment of the prob-
lem. In detail, in one space dimension, the dispersion relationship now reads:

(3.7) eλτD (λ+ 1)p(x) =
J1(|x− a|)
|U ′(a)|

p(a)e−λ
|x−a|
c +

J1(|x+ a|)
|U ′(a)|

p(−a)e−λ
|x+a|
c ,

and we search for complex solutions λ of these equations. In the absence of delays, this
is a linear equation in λ, and estimating this relationship at x = ±a yields a system of
two equations which can be solved for λ under the condition that p(±a) 6= 0. In the
presence of delays, the equation is no more linear (it is a transcendental equation),
but the same strategy allows obtaining analytical characterization of the eigenvalues.
In detail, estimating the dispersion relationship at x = a and x = −a leads to the
system: {

(J1(0)− F (λ))p(a) + J1(2a)e−2λac p(−a) = 0

J1(2a)e−2λac p(a) + (J1(0)− F (λ))p(−a) = 0

where F (λ) = eλτD (λ + 1)|U ′(a)|. This system is linear in p(±a). It has has non
trivial solutions for p(±a) if and only if its determinant vanishes:

(3.8) (J1(0)− F (λ))2 = J1(2a)2e−4λac
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(a) Symmetric Perturbation (b) Asymmetric Perturbation

Figure 3.2. Form of the eigenfunctions related to the bump destabilization for the inverse
Mexican hat (Model I, see Fig 3.3 for the parameters): (a) symmetric perturbation p+ corresponding
to breathing waves and (b) asymmetric perturbations p− corresponding to sloshing waves.

which leads to the relationship:

(λ± + 1)eλ±τD =
J1(0)± J1(2a)e−2

λ±a
c

|U ′(a)|
.

Once this relationship is solved, we obtain the eigenfunctions through the dispersion
relationship (3.7):

p±(x) =
p(a)

F (λ±)

(
J1(|x− a|)e−λ±

|x−a|
c + J1(|x+ a|)e−λ±

|x+a|
c

F (λ±)− J1(0)

J1(2a)
e

2λ±a
c

)
and using the relationship (3.8), we know that the coefficient multiplying the second
term within the parenthesis has a square equal to one, hence we have two possible
solutions:

(3.9) p±(x) =
p(a)

F (λ±)

(
J1(|x− a|)e−λ±

|x−a|
c ± J1(|x+ a|)e−λ±

|x+a|
c

)
.

We note that these are complex-valued functions. They have to be seen as a two-
dimensional eigenspace spanning the vector space corresponding to the two functions
<[eλ±tp±(x)] and =[eλ±tp±(x)] (and correspond to the two complex conjugate eigen-
values λ± and λ∗±). Interestingly, the two eigenmodes found clearly correspond to a
symmetric and asymmetric perturbation of the bump, and an instability along one of
these modes allows to infer the type of pattern observed. These two eigenfunctions
are plotted in Fig. 3.2 for a specific choice of parameter.

We are interested in changes in the stability of the bump solution. These changes
occur when one can find a characteristic root with zero real part. These are of two
types: either fold transitions when λ = 0, or Hopf transitions when the characteristic
roots are purely imaginary. Fold transitions are independent of the delays. In our
model, they therefore arise exactly for the same parameters as in the non-delayed
equation, and were largely studied in the literature (see e.g. [1, 19]). Analysis shows
that for delays equal to zero, the stability of the pulses can be related to a geometric
property of the curves I0(a) corresponding to the existence of pulses (see Fig. 3.1): one
can show that pulses are stable whenever I ′0(a) > 0 and unstable otherwise, justifying
the stability depicted in the diagram.

The question we may now ask from this setting is whether delays induce changes in
the stability of these bumps. From what precedes, it is clear that such destabilization
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necessarily occur through Hopf bifurcations. In order to characterize such bifurca-
tions, we solve equation (3.6) for purely imaginary solutions λ± = iω±. Necessarily,
such solutions exist if and only if the modulus of the righthand side is greater than
zero, and in that case, equating modulus and argument in the previous relationship
yields two conditions to be satisfied in the parameter space so that Hopf bifurcations
occur.

Let us first address the case of constant delays (we start by neglecting the prop-
agation delay term, i.e. considering c → ∞). Hopf bifurcations arise if and only
if ∣∣∣∣J1(0)± J1(2a)

|U ′(a)|

∣∣∣∣ > 1,

and for parameters satisfying the simple relationship:

(3.10)

 ω± =

√(
J1(0)±J1(2a)
|U ′(a)|

)2

− 1

τD± ≡ 1
ω±

(
arg
(
J1(0)±J1(2a)
|U ′(a)|

)
− arccos

(
|U ′(a)|

|J1(0)±J1(2a)|

))
(mod 2π

ω±
).

The above notation for the delays τD± has to be understood has follows. If arg
(
J1(0)±J1(2a)
|U ′(a)|

)
≥

arccos
(

|U ′(a)|
|J1(0)±J1(2a)|

)
, then we set the critical delay to

τD± =
1

ω±

(
arg

(
J1(0)± J1(2a)

|U ′(a)|

)
− arccos

(
|U ′(a)|

|J1(0)± J1(2a)|

))
≥ 0,

otherwise, we set it to

τD± =
1

ω±

(
2π + arg

(
J1(0)± J1(2a)

|U ′(a)|

)
− arccos

(
|U ′(a)|

|J1(0)± J1(2a)|

))
≥ 0.

Formula (3.10) provides a closed-form relationship, in the parameter space, where
Hopf bifurcations occur. This relationship depends on half-width a of the bump, which
is a function of other parameters given by equation (3.4), and as we saw, this can be
written in a simple form when solved for I0 (considering a as a parameter). This
allows to have a closed-form relationship between parameters corresponding to the
Hopf bifurcation curve, along the symmetric or asymmetric mode.

More precisely, we have:

(i). If
∣∣∣J1(0)+J1(2a)

|U ′(a)|

∣∣∣ > 1, a Hopf bifurcation arises when τD reaches the value given

in equation (3.10), and the destabilization arises along a symmetric mode
p+(x) given by equation (3.9). This gives rise to localized periodic oscillations
symmetric around the stationary pulse, or breather (see e.g. Fig. 3.3(C) or
Fig. 3.4(B,D)).

(ii). If
∣∣∣J1(0)−J1(2a)

|U ′(a)|

∣∣∣ > 1, a Hopf bifurcation arises when τD reaches the value given

in equation (3.10), and the bump looses stability along the antisymmetric
mode p−(x). This gives rise to an asymmetric periodic solution around the
stationary pulse, a slosher (see Fig. 3.4(C,E)).

Which mode is unstable, and therefore the type of periodic solution obtained
passed the Hopf bifurcation depends on the choice of parameters, and particularly on
the type of connectivity chosen.
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Figure 3.3. Delay-induce breathing pulse in one dimensional neural field with inverse Mexican
hat connectivity (Model I): ωe = 1.3, ωi = 1.1, σe = 4, σi = 2, θ = 0.3, σ = 1.5. (A): codimension 2
bifurcation diagram in the plane (τD, I0). Blue region: no pulse (I0 ≤ θ), Yellow: breathing pulses
and Green: Stationary pulses. Red curve corresponds to the Hopf bifurcation curve (3.10), and the
red dashed-dotted line to the value of I∗0 . (B), (C) and (D) are space-time representations of the
solution for different choices of parameters: (B) I0 = 0.4, τD = 0: stationary pulse, (C): I0 = 0.4,
τD = 1: breathing pulse, (D): I0 = 0.65, τD = 1: stationary pulse. Colormap with fixed boundaries
θ ± 20%

For Mexican hat connectivity, it is folklore that no delay-induced destabilization
is likely to arise. This has been suggested in a number of studies [18, 27, 28], and
is evocative of the analogous fact, valid for ordinary differential equations in one
dimension, that only inhibitory delayed feedbacks loops can destabilize a fixed point.
In the present setting, the same phenomenon occurs: stable pulses do not undergo
Hopf bifurcations. The unstable pulse does undergo a Hopf bifurcation along the sum
mode (symmetric perturbation), but the dynamics of the system remain qualitatively
the same: the pulse with largest half-width is globally stable, while the pulse with
smallest half-width remains unstable whatever the delays.

The inverse Mexican hat model is much more sensitive to the presence of delays.
We now focus on two examples. The first example is chosen so that the total ampli-
tude of the connectivity function is small enough, preventing possible destabilization
along the asymmetric mode. The second case considers a large inverse Mexican hat
connectivity, and the asymmetric mode will be destabilized.

In Fig. 3.3, we consider a first choice of inverse Mexican hat (Model (I)) whose
positive and negative peaks are small enough, so that no instability arise from the
asymmetric mode (no ω− exist solving equations (3.10)). In detail, parameters are
chosen so that 2(J1(2a)−J1(0)) < I ′(a) for all a. In that case, any perturbations along
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the asymmetric mode cancel away, while the symmetric mode p+ gets destabilized for
sufficiently large delays in a specific region of input amplitude I0. This region is
bounded on the left by the value I0 = θ corresponding to the emergence of pulses
(condition (3.4)), and on the right by a value I∗0 corresponding to the condition:

I∗0 = −J1(2a)
σ2

a
e(

a
σ )

2

,

for which J1(0)−J1(2a) + I ′(a) = J1(0) + J1(2a), hence ω+ → 0 and τ →∞. Note
that this value necessarily exists since as I0 increases, a increases and I ′(a) decreases
towards zero, while J1(2a) is positive for a sufficiently large. At the emergence of
pulses (for I0 = θ), we are in a situation such that a = 0 and U ′(a) = 0 (tangent case),
in which case ω →∞ and τD → 0. For any value of the input amplitude I0 ∈ [θ, I∗0 ],
there exists a value of τD for which the system undergoes a Hopf bifurcation and
the symmetric mode p+ is destabilized. This gives rise to oscillations around the
stationary pulse along the symmetric mode, i.e., breathers. Interestingly, sufficiently
large input (I0 > I∗0 ) yield unconditionally stable stationary pulses, that cannot be
destabilized by the presence of delays.

For inverse Mexican hat connectivities with larger amplitude, one can find real
values ω− solutions to equation (3.10), and therefore asymmetric instabilities (slosh-
ing pulses, or sloshers). This is the case of Model (II) displayed in Fig 3.4. The
breathing instability persists. In that model, we therefore obtain two curves of Hopf
bifurcations, one corresponding to the destabilization along the symmetric mode p+

(red curve) and the other to the asymmetric mode p− (blue curve). The symmetric
mode destabilization curve has the same properties as those described for model (I):
it emerges from τD = 0 at a value I0 = θ corresponding to the existence of pulses
condition, and diverges for a finite value of τD corresponding to I∗0 . The Hopf bifur-
cation corresponding to the asymmetric mode does not have the same shape: indeed,
in order to obtain a solution ω− to equations (3.10), one needs to exploit the fact that
the connectivity does not have a constant sign, and therefore the Hopf bifurcation
arises for values of I0 corresponding to sufficiently large pulse half-width. These exist
when

2(J1(2a)− J1(0)) ≥ I ′(a)

which defines an interval of values [am, aM ], or of input amplitudes I0 ∈ [Im, IM ] for
which the condition is satisfied (see Fig 3.4(G)). At the boundaries of this interval,
as discussed in Model (I), the value of ω− tends to zero, and therefore the delay τD
corresponding to the Hopf bifurcation diverges to infinity. Let us eventually note that
parameter domains for which the destabilization along the symmetric and asymmetric
modes arise do not completely overlap: it is we observe that Im > θ and IM >
I∗0 . These curves therefore partition the parameter space (I0, τD) into 5 regions: no
pulse, stationary pulse, breathers (instability of the symmetric mode only), sloshers
(instability of the asymmetric mode only), and a mixed breathers-slosher regions
where both symmetric and asymmetric modes are unstable.

Let us now investigate the role of propagation delays. We now no more assume
that the speed of propagation of information is instantaneous. We denote

Φ(τD, ω, a) =
J1(0)− |U ′(a)|eiωτD (iω + 1)

J1(2a)2
.
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Figure 3.4. Delay-induce breathers and sloshers in one dimensional neural field with inverse
Mexican hat connectivity (Model II): ωe = 1, ωi = 1.5, σe = 1.5, σi = 1, θ = 0.2, σ = 1. (A):
codimension 2 bifurcation diagram in the plane (τD, I0). Blue region: no pulse (I0 ≤ θ), Yellow:
symmetric mode unstable, asymmetric mode stable, pink: symmetric mode stable, asymmetric mode
unstable, orange: both symmetric and asymmetric modes unstable, and Green: Stationary pulses
(no instability). Red (resp. blue) curve corresponds to the Hopf bifurcation along the symmetric
(resp. asymmetric) direction given by equations (3.10). (B-F) are space-time representations of the
solution for τD = 1 and different choices of input amplitude I0: (B) I0 = 0.3: breathing pulse,
(C-D): I0 = 0.75, with a symmetric initial condition (C) and asymmetric initial condition (D), (E):
I0 = 0.82, symmetric initial condition: sloshing wave, and (F) I0 = 1.2: stationary pulse. (G)
represents the map I0 7→ 2(J1(2a)−J1(0))− I′(a) with a the half-width of the pulse associated with
I0. In the region where this map is positive, Hopf bifurcations along the asymmetric mode arise,
defining the quantities Im and IM .

It is easy to see, equating modulus and argument in the dispersion relationship (3.8),
that Hopf bifurcations arise when parameters satisfy the equations:

(3.11)

{
|Φ(τD, ω, a)| = 1

c = − 4aω
arg(Φ(τD,ω,a)2)+2πm

for some m ∈ Z. These formulae are much less transparent than in the case with
constant delays. However, these are relatively simple when investigating the respec-
tive roles of constant and propagation delays. In that case, for fixed connectivity,
threshold and input, the width of the stationary pulse can be readily computed using
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equation (3.4), and it is easy to write the Hopf bifurcation curve given by equa-
tion (3.11) as a parametric curve (parameterized by ω). This method allows to draw

space

-4 40

ti
m

e

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

Breathers

Stationary 

Pulse

c

D

space
-4 40

ti
m

e

space
-4 40

ti
m

e

(A)

(B) (C) (D)

Breathers

&

Sloshers

Figure 3.5. Stability of the pulse with propagation delays for Model (I) with I0 = 0.4. (A)
Bifurcation diagram in the (c, τD) plane with the first Hopf bifurcation (red line) that asymptotes
the value of the delay corresponding to the purely synaptic case (τD ≈ 0.815, pink dot-dashed line).
(B) c = 1, τD = 0: sloshing pulse, (C): c = 3, τD = 0.2: stationary pulse, (D) c = 3, τD = 0.7:
breathing pulse.

the Hopf bifurcation curve obtained in Figure 3.5. The effective role of propagation
delays on the stability of the pulse along the symmetric mode is relatively intuitive:
indeed, by increasing the effective averaged delay, the finite-speed propagation delay
shifts the bifurcation point to smaller values of the constant delay τD. This explains
the increasing shape of the bifurcation curve for Model (I) analyzed in Fig. 3.3 with
an asymptote at the value predicted by the analysis of the case with no propagation.
Interestingly, we observe that below a certain speed, the stationary pulse is unstable
even with no constant delay. More surprising is the emergence of a destabilization of
the pulse along the asymmetric model at low propagation speed (while the asymmet-
ric mode was unconditionally stable in the limit c→∞), leading to the possibility of
sloshing waves induced by the shape of the propagation delays. Eventually, we note
that the shape of the breathing and sloshing pulses reflects the presence of propa-
gation delays. Indeed, we observe (see Fig. 3.5 (B) and (D)) that the oscillations of
the shape of the pulse induce evanescent waves traveling in a small region around the
pulse with a specific speed that depends on the propagation speed c, as visible from
the more horizontal direction of these waves in the case c = 3 (D) compared to c = 1
(B).

3.2.2. Pulses in general dimensions. The one-dimensional neural field case
is informative in that all formulae can be obtained in closed form, allowing to un-
derstand the role of parameters in the stability of the pulses, as well as possible
instabilities along symmetric modes (breathers) or asymmetric modes (sloshers). In
the one-dimensional context indeed, asymmetric perturbations are relatively simple:
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the instability arises along a single mode, p−, which is an odd function. In higher
dimensions, due to the rotational symmetry and geometric constraints, there exists an
infinite number of asymmetric modes around the pulse. For radially symmetric input,
pulses correspond to solutions U(x) with spherical symmetry, i.e. only depending on
r = ‖x‖, which we denote, with a slight abuse of notations U(r), and for which there
exists a ≥ 0 such that:

(3.12)


U(r) > θ, r < a

U(r) < θ, r > a

U(a) = θ.

We recall that the pulse is known explicitly as a function of M and I:

(3.13) U(r) =M(r, a) + I(r),

and the stability of the bump is given by the eigenvalues of the linearized operator,
solutions of the general dispersion relationship (3.6).

In order to characterize the stability of the pulse, we therefore need to solve this
equation. The eigenvectors p(x) provide the modes along which the pulse is deformed
if such an instability is found. Let us start by considering radially symmetric functions
p(x) = p(r). In this case, he dispersion relationship greatly simplifies when evaluated
on the sphere of radius a. One obtains the relationship:

(λ+ 1)eλτD =
ad−1

|U ′(a)|

∫
Sd−1

Jd(a‖e1 − ψ‖)e
λ
c a‖e1−ψ‖ dd−1ψ.

where e1 is the first vector of the canonical basis (without loss of generality). In
the absence of propagation delays (c → ∞), we therefore obtain a relatively simple
equation:

(λ+ 1)eλτD =
ad−1

|U ′(a)|

∫
Sd−1

Jd(a‖e1 − ψ‖) dd−1ψ =: Φd(a)

similar to those obtained in one dimension. In particular, the righthand side of the
equation is a simple function Φd(a) of the parameters of the model. The same algebra
as done in one dimension yields the equations for purely imaginary solutions λ = iω:

(3.14)

{
ω =

√
Φd(a)2 − 1

τD ≡ 1
ω

(
γ(a)− arccos

(
1

|Φd(a)|

))
(mod 2π

ω ).

with γ(a) = 0 if Φd(a) ≥ 0 and π otherwise.
Asymmetric modes are more complex to characterize. However, due to the par-

ticular form of the linearized operator, we observe that the only values of the pertur-
bation that are active are those on the Rd-sphere of radius a. Thanks to the form of
the equation, it is easy to see that the family of exponentials diagonalize the linear op-
erator. Indeed, for p(x) = p(0)eil·ψ with l ∈ Rd, we obtain, evaluating the dispersion
relationship at ax on the sphere of radius a (x is on the unit sphere):

eλτD (λ+ 1)eil·ax =
ad−1

|U ′(a)|

∫
Sd−1

Jd(a‖x− ψ‖) eial·ψdd−1ψ

=
ad−1

|U ′(a)|

∫
x+Sd−1

Jd(a‖z‖) e−ial·zdd−1z e
il·ax
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Figure 3.6. Breathers in two dimensions. Parameters: we = 2, wi = 2.5, σe = 1, σi = 0.5,
σ = 0.5 and θ = 0.3. (A) represents the Hopf bifurcation curve along the symmetric direction (which
was the only instability found in this system). The evolution in the instability region (I0 = 1 and
τD = 1) is provided in panel (B): five snapshots over one period of the breather were taken, and the
time evolution of the amplitude at the center is plotted in panel (C). Analogous plots are provided
in the region where no instability was found: the pulse does not evolve in time, as visible from the
five snapshots and evolution of the central amplitude (D-E). Movies of the evolution are provided in
supplementary material.

yielding the dispersion relationship:

eλτD (λ+ 1) = Φd(a, l)

with

Φd(a, l) =
ad−1

|U ′(a)|

∫
e1+Sd−1

Jd(a‖z‖) e−ial·zdd−1z.

Here, we used the spherical symmetry to state that the integrals on the righthand
side are all equal whatever x, and denoted e1 the first vector of the canonical basis,
which belongs to Sd−1. This dispersion relationship is solved exactly as done in
equation (3.14), providing the possible Hopf bifurcations along asymmetric modes
(non constant on the sphere of radius a).

These formulae generalize the approach developed in [11] in two-dimensional neu-
ral fields. In this case, the sphere is the unit circle, and the dispersion relationship
reads:

eλτD (λ+ 1)p(r) =
a

|U ′(a)|

2π∫
0

J2(‖r− a eiθ‖)p(aeiθ)dθ.

Estimating this relationship at r = a, one obtains the condition:

(3.15) eλτD (λ+ 1)p(θ) =
a

|U ′(a)|

π∫
0

J2 (2a| sin (θ − θ′) |) p(2θ′)dθ′
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Now we choose angular perturbation of the form p(θ) = einθ to get :

(3.16) eλτD (λ+ 1) =
a

|U ′(a)|

π∫
0

J2(2a| sin(θ)|) cos(2nθ)dθ =: Jn(a).
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Figure 3.7. Breathers and sloshers in two dimensions. Parameters: we = 2.4, wi = 2, σe = 1,
σi = 0.5, σ = 0.5 and θ = 0.2. (A) represents the Hopf bifurcation curve along the symmetric
direction (blue curve) together with the first three instability modes (n = 1, blue, n = 2, green,
n = 3, magenta). These lines, similarly to the case of Fig 3.4, decompose the parameter space into
5 regions (same color code as in Fig. 3.4). Initial conditions were perturbations of the stationary
pulse (found for τD = 0) displayed in (E). Their amplitude is set at 10% of the stationary pulse
amplitude. (B) I0 = 3 and τD = 1.5: asymmetric slosher: snapshots of the time evolution and
periodic evolution of the amplitude at zero (B’). (C) I0 = 3 and τD = 0.5, yields a stationary pulse.
(D) corresponds to I0 = 0.5 and τD = 1 and yields a symmetric breather. Movies of the evolution
are provided in supplementary material. Colormap was not thresholded for legibility.

Equating modulus and argument in (3.16) provide the explicit formulae for the
destabilization of the pulse along an asymmetric mode with n oscillations along the
unit circle.

The shape of the Hopf bifurcation curves are much less easy to grasp than in the
one dimensional case, and we resort to numerical analysis in order to characterize
those bifurcations. In Figure 3.6, we plotted the radially symmetric Hopf bifurcation
curve (red line). This curve still connects to the line I0 = θ, but in that case, the
delay necessary to induce a destabilization is no more zero, as was the case for the
one-dimensional pulse instability. This is visible in our formulae: indeed, while the
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(a) Input I(x). (b) Inverse Mexican Hat J1(|x|).

Figure 4.1. Form of the input I(x) (a) and the connectivity function J1(|x|) for typical values
of the parameters: I0 = 0.7, s = 0.79, we = 1.7, wi = 1.2, σe = 4 and σi = 2.

vanishing of the differential of the pulse at I0 = θ implied an infinite value for ω, this
is no more the case because of the factor ad−1 that also vanishes at I0 = θ and that
may compensate the cancellation of U ′(a). This is indeed what happens in dimension
2. For the parameters chosen, no instability along asymmetric modes were found,
and for asymmetric initial conditions and parameters in the instability region, the
solutions converge towards the symmetric breathing pulse.

Of course, other choices of parameters lead to destabilizing the higher-order spa-
tial modes (i.e. destabilizations of the mode n given by (3.16)). An example in two
dimensions is provided in Fig. 3.7. For the parameters chosen, we find a curve of
Hopf bifurcations along the symmetric mode (blue line) together with destabilization
of higher order modes. These bifurcation curve decompose the parameter space into
5 regions depending on the stability of the symmetric and asymmetric modes, and
asymmetric periodic patterns arise.

We have therefore shown that delays shape the spatio-temporal evolution of the
neural fields in the presence of localized input. We now show that this is also the case
of fronts.

4. Breathing fronts in general neural fields. Let us now consider equa-
tion (2.1) in dimension d ≥ 1 with an input of the form

I(x) = I(e · x) = I0

(
1− 1

1 + e−se·x

)
,

for a given direction e ∈ Sd−1. Here, I0 represents the strength of the input and
s the stiffness of the slope of the input at x = 0 (see Fig. 4.1(a)). A stationary
planar front V(x) is a time-independent profile of the variable x = e ·x solution of the
equation (2.1) satisfying the limits lim

x→−∞
V(x) = we − wi + I0 and lim

x→+∞
V(x) = 0.

Throughout this section we suppose that we−wi+I0 > θ. Without loss of generality,
we suppose that e = (1, 0, . . . , 0) so that V(x) is solution of

(4.1) V(x) =

∫
R
J1(|x− y|)f(V(y))dy + I(x), x ∈ R.
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(a) Profile of V(x). (b) Zoom around x = 0.

Figure 4.2. Profile of the monotonous front for typical values of the parameters: I0 = 0.7,
s = 0.79, we = 1.7, wi = 1.2, σe = 4 and σi = 2.

Here, the one-dimensional kernel J1 appears thanks to our specific scaling of the
Gaussian Gd through which the connectivity Jd is defined. In particular, this kernel
J1 is defined through the same parameters (we, σe, wi, σi) as was Jd.

To simplify the presentation, we will suppose that planar fronts always cross the
threshold θ at x = 0, even in the case I0 = 0 (no input) for which the equation (4.1)
is translation invariant2. Depending on the parameters of the connectivity function
J1, the planar front V(x) may have different forms. First, it can be monotonous (see
Fig. 4.2), in which case we simply have

(4.2) V(x) =

∫ +∞

x

J1(|y|)dy + I(x),

and it crosses the threshold θ exactly once. This gives us a relationship between
coefficients that needs to be satisfied in order to ensure the existence of such fronts.
This relation is given by

(4.3) θ =
we − wi

2
+
I0
2
.

Monotonous front occurs only when the Mexican hat function J1 is greater than the
derivative of the input, as V ′(x) = −J1(|x|)+I ′(x) ≤ 0 for all x ∈ R (see Fig. 4.1(b)).

The second and more difficult case is when the front is non-monotonous, in which
case it can cross the threshold θ an arbitrary number of times. In this paper, we study
the specific case when the profile of the front crosses the threshold exactly three times,
at x = −a, x = 0 and x = a for a > 0 (see Fig. 4.3). The analysis in the case where
the front crosses the threshold more than three times can easily been extended from
our analysis. The profile V(x) of the front now satisfies

V(x) =

∫ −a
−∞
J1(|x− y|)dy +

∫ a

0

J1(|x− y|)dy + I(x),

2In the absence of input, there exists a continuum of solutions if one does not specify the location
of the crossing value
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(a) Profile of V(x). (b) Zoom around x = 0.

Figure 4.3. Profile of the non-monotonous front for typical values of the parameters: we = 1.7,
wi = 1.2, σe = 3 and σi = 2. Here, the value of the crossing is a ≈ 0.422.

or equivalently

(4.4) V(x) =

∫ x

x−a
J1(|y|)dy +

∫ ∞
x+a

J1(|y|)dy + I(x).

Setting x = ±a and x = 0 in equation (4.4), we respectively find an implicit equation
for a:

(4.5) 0 =

∫ 2a

a

J1(y)dy +
I(−a)− I(a)

2
,

and the same compatibility condition (4.3) as the one found for monotonous fronts.

4.1. Linear stability analysis for monotonous fronts. In order to charac-
terize the linear stability of monotonous front V(x) with only one crossing at x = 0,
we analyze the spectrum of the linearized operator around the front. Following the
analysis of the previous section, it is relatively easy to show that formal differentia-
tion of the Heaviside function f yields to the linearized operator Ld around the front
solution:
(4.6)

Ldϕ(x, t) = −ϕ(x, t) +
1

|V ′(0)|

∫
Rd−1

Jd(‖x− (0, ỹ)‖)ϕ((0, ỹ), t− τ(x− (0, ỹ)))dỹ.

In the following sections, we study the spectrum of this operator gaining first
insight with the one dimensional case and then turning to more difficult problem of
general dimensions.

4.1.1. One-dimensional neural fields. In one dimension, the linear operator
can be reduced further to

(4.7) L1ϕ(x, t) = −ϕ(x, t) +
1

|V ′(0)|
J1(|x|)ϕ(0, t− τ(x)).

Similarly to the case of pulses, we consider complex perturbations in the class of
functions ϕ(x, t) = eλtp(x), for λ ∈ C and p(x) a bounded continuous function on R
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decaying to zero at infinity, and obtain the dispersion relationship:

(4.8) eλτD (λ+ 1)p(x) =
J1(|x|)
|V ′(0)|

p(0)e−λ
|x|
c .

Eigenvalues of the linearized operator are complex solutions λ of this transcendental
equation.

First, we notice that, once again, the point spectrum is given by the solutions to
the equation

λ+ 1 = 0,

and does not contribute to any instability. To find the point spectrum, we estimate
the dispersion relation at x = 0 and obtain the equation

(4.9) eλτD (λ+ 1) =
J1(0)

|V ′(0)|
=

J1(0)

J1(0)− I ′(0)
.

Here, we have used the fact that at x = 0, V ′(0) = −J1(0) + I ′(0) < 0. A that point,
we can already note that relationship (4.9) is independent of the propagation delay c.

Case I0 = 0. For neural fields equation with no input, the dispersion relation
(4.9) further simplifies to

eλτD (λ+ 1) = 1.

Writing λ = α+ iω and taking the modulus of both sides of this equation, we obtain
the relation

eατD
√

(1 + α)2 + ω2 = 1,

which stands only if α ≤ 0 since τD ≥ 0. Checking that the case α = 0 implies ω = 0
(reflecting the translational invariance of the system), this shows that monotonous
stationary fronts are always spectrally stable in the absence of stimulus and neither
constant nor propagation delays can destabilize the system.

Case I0 > 0. When the input I(x) is turned on, it is possible to destabilize
stationary front solutions through Hopf bifurcations by increasing the constant delay
τD. From our dispersion relationship (4.9), we first see that this can only occur when
the connectivity function satisfies J1(0) < 0. In our numerical example, we will chose
an inverse Mexican hat which naturally satisfies this condition. In that case, Hopf
bifurcations arise if:

(4.10)
J1(0)

J1(0)− I ′(0)
< −1,

and for parameters satisfying the relationship

(4.11)

 ω =

√(
J1(0)

J1(0)−I′(0)

)2

− 1.

τD = 1
ω

(
π − arccos

(
J1(0)−I′(0)
|J1(0)|

))
.

The condition (4.10) together with the fact that V ′(0) < 0 give us a range of al-
lowed values for I0 as a function of the other parameters for which we can find Hopf
instabilities. More precisely we have that

I0 ∈ (Im, IM ) :=

(
−4J1(0)

s
,−8J1(0)

s

)
.
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Figure 4.4. Instabilities of the fronts in the presence of input. (A): bifurcation diagram as a
function of the input amplitude I0 and delay τD for an inverse Mexican hat we = 1.7, wi = 1.2,
σe = 4, σi = 2. The value of s is taken to be −8J1(0). The red line represents the Hopf bifurcation
curve, (B) I0 = 0.7, τD = 0.5: stationary pulse, (C): I0 = 0.7, τD = 2: sloshing instability, (D):
I0 = 1.2, τD = 2: stationary pulse. Color bar within θ ± 10%.

In particular, this informs us that the destabilization curve given by (4.11) (see
Fig 4.4(A)) as a function of I0 (while all other parameters are fixed) emerges from
τD = 0 at a value I0 = Im. At the other boundary of this interval, the correspond-
ing value of ω tends to zero, and therefore the delay τD corresponding to the Hopf
bifurcation diverges to infinity. The curve I0 7−→ τD(I0) given by (4.11) naturally
partitions the parameter space (I0, τD) into 3 regions: no monotonous fronts, station-
ary monotonous fronts and pulsatile fronts. Note that the mode associated to the
Hopf instability is always symmetric (see (4.8)) and that the notion of breathers or
sloshers is not appropriate for monotonous fronts. This is why we use the terminology
pulsatile fronts and panel (C) of Fig 4.4 shows such a periodic front.

4.1.2. General neural fields. We can now extend the previous analysis in the
case of general neural fields as follows in the absence of external input. First, in order
to obtain closed-form formula, we only consider the case of neural fields with constant
delays τD. In that case, the neural field equation is simply given by

(4.12)
∂u

∂t
(x, t) = −u(x, t) +

∫
Rd
Jd(‖x− x′‖)f(u(x′, t− τD))dx′,

for all x = (x, x̃) ∈ R× Rd−1. As seen in the introduction of the section, we suppose
that there exists a stationary planar solution u(x) := V(x) of (4.12), with profile V
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(a) Profile of J2(‖x‖). (b) Profile of J1(|x|).

Figure 4.5. Profiles of J2 and J1 for values of the parameters given by we = 15, wi = 12.5,
σe = 1.5 and σi = 1.3.

solution of

V(x) =

∫
R
J1(|x− x′|)f(V(x′))dx′,

where we again used the fact that J1(x) =
∫
Rd−1 Jd(‖(x, x̃)‖)dx̃. In order to ensure

the existence of a monotonous profile V(x), we suppose that J1(|x|) ≥ 0 for all x ∈ R
while θ is related to other parameters via (4.3) with I0 = 0.

The linear operator given in (4.6) simplifies to

Ldϕ(x, t) = −ϕ(x, t) +
1

|V ′(0)|

∫
Rd−1

Jd(‖x− (0, ỹ)‖)ϕ((0, ỹ), t− τD))dỹ.

We now consider complex perturbations in the class of functions ϕ(x, t) = eλt+i`·x̃p(x),
where x = (x, x̃) and ` ∈ Rd−1, for λ ∈ C and p(x) a bounded continuous function
on R decaying to zero at infinity. On this class of functions, we obtain the dispersion
relationship:
(4.13)

eλτD (λ+ 1)p(x) =
1

|V ′(0)|
p(0)

[
weG1(x, σe)Ĝd−1(`, σe)− wiG1(x, σi)Ĝd−1(`, σi)

]
,

for ` ∈ Rd−1, where Ĝd−1 is defined as

Ĝd−1(`, σ) = exp

(
−σ

2‖`‖2

4

)
, ∀` ∈ Rd.

For non zero perturbations p that satisfy p(0) = 0, we have that λ = −1, which gives
the essential spectrum. For perturbations with p(0) 6= 0, we are left to solve the
equation
(4.14)

eλτD (λ+ 1) =
1

|V ′(0)|

[
weG1(0, σe)Ĝd−1(`, σe)− wiG1(0, σi)Ĝd−1(`, σi)

]
:= Ψ(‖`‖).

We observe that Ψ(0) = 1 and Ψ(x) → 0 as x → +∞. One can also easily check by
direct computations that J1(0) > 0 implies Ψ(‖`‖) ≤ 1 for all ` ∈ Rd−1 and that 0 is
the only maximum of Ψ.
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We are interested in changes in the stability of the planar front solutions. Fold
transitions arise under the condition that

Ψ(‖`‖) = 1.

This condition is satisfied only at ` = 0Rd−1 and we recover the translation invariance
in the direction of the front. We know look for destabilization of the planar front
through Hopf bifurcations. A necessary and sufficient condition for the rightmost
characteristic eigenvalue of (4.14) to be purely imaginary and nonzero is the existence
of l0 > 0 such that

Ψ(l0) < −1.

In this case the corresponding frequency ω and associated critical constant delay τD
satisfy the relations

(4.15)

{
ω =

√
Ψ(l0)2 − 1.

τD = 1
ω

(
π − arccos

(
1

|Ψ(l0)|

))
.

Interestingly, this loss of stability due to delays arises only in higher dimensions and
we obtain a full sphere of critical points l0 = ‖`‖, ` ∈ Rd−1, due to the rotational
symmetry in the transverse directions.

We illustrate this analysis in the case of d = 2 with values of the parameters
chosen so that J2 is an inverse Mexican hat connectivity function and J1 is positive
for all values (see Fig. 4.5). More precisely, we fix the values of we, wi, σe and
treat σi as a bifurcation parameter. We obtain a bifurcation diagram in the (σi, τD)
plane with the first Hopf bifurcation curve given by equations (4.15) as shown in
panel (A) of Fig. 4.6. This curve emerges at (σi, τD) = (1.25, 0) and asymptotes
the vertical line σi ≈ 1.334 where τD → +∞. There exists a region in parameter
space where stationary monotonous planar fronts exist and can be destabilized by
increasing the value of the constant delay τD. In that case, transverse modes lead to
the destabilization of the planar front through a Hopf bifurcation and a sequence of
snapshots (see Fig. 4.6(B,D)) over half a period illustrates this periodic behavior. This
feature was not possible in the one dimensional case, as in the absence of stimulus,
stationary fronts are always spectrally stable (see Sec.4.1.1). This clearly indicates
that dimension of the neural fields and delays play a crucial role in the emergence of
structured spatio-temporal cortical activities. This also suggests that the information
obtained in one dimensional models, seen as a simplification of higher dimensional
systems, can sometimes be misleading.

4.2. Linear stability analysis for non-monotonous fronts. In this section,
we study the linear stability of non-monotonous fronts V(x) crossing the threshold θ
exactly three times at x = ±a and x = 0 in the absence of stimulus. In that case, a
is simply defined through equation

0 =

∫ 2a

a

J1(x)dx.

We denote E = {±a, 0}. For non-monotonous fronts, the linear operator Ld is modified
according to
(4.16)

Ldϕ(x, t) = −ϕ(x, t) +
∑
ξ∈E

1

|V ′(ξ)|

∫
Rd−1

Jd(‖x− (ξ, ỹ)‖)ϕ((ξ, ỹ), t− τ(x− (ξ, ỹ)))dỹ.
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Figure 4.6. Stability of planar stationary fronts for an inverse Mexican hat connectivity:
we = 15, wi = 12.5, σe = 1.5 as constant delay τD and σi are varied. (A) Bifurcation diagram in
the (σi, τD) plane with the first Hopf bifurcation curves given by equations (4.15) (red curve). This
curve emerges at σi = 1.25 (τD = 0) and asymptotes the line σi ≈ 1.334 (τd → ∞). Blue region:
non monotonous front, Green: stationary planar front (C) and Yellow: transversely breathing front
(D). (B) Five snapshots over half a period of the transversely pulsatile planar front at σi = 1.3 and
τD = 2, seen from above. Movies of the evolution are provided in supplementary material.

In order to simplify our presentation, we only consider the case of one-dimensional
non-monotonous fronts. As a consequence, in one dimension, L1 further reduces to

(4.17) L1ϕ(x, t) = −ϕ(x, t) +
∑
ξ∈E

1

|V ′(ξ)|
J1(|x− ξ|)ϕ(ξ, t− τ(x− ξ)).
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As usual, we are interested in studying perturbations of the form ϕ(x, t) = eλtp(x),
for λ ∈ C and p(x) a bounded continuous function on R decaying to zero at infinity.
Replacing this Ansatz into ∂tϕ = L1ϕ we obtain
(4.18)

eλτD (λ+1)p(x) =
J1(x)

|V ′(0)|
p(0)e−λ

|x|
c +
J1(|x− a|)
|V ′(a)|

p(a)e−λ
|x−a|
c +

J1(|x+ a|)
|V ′(−a)|

p(−a)e−λ
|x+a|
c ,

Estimating equation (4.18) at x = ±a and x = 0 yields the system

(4.19)

G(λ)− γ1J1(0) −γ2J1(a)e−
λa
c −γ1J1(2a)e−

2λa
c

−γ1J1(a)e−
λa
c G(λ)− γ2J1(0) −γ1J1(a)e−

λa
c

−γ1J1(2a)e−
2λa
c −γ2J1(a)e−

λa
c G(λ)− γ1J1(0)


p(−a)
p(0)
p(a)

 = 0

where we defined G(λ) := eλτD (λ+ 1) and

γ1 :=
1

J1(0) + J1(2a)− J1(a)
> 0,

γ2 :=
1

J1(0)− 2J1(a)
> 0.

This matrix system has the form

M =

m1 m2 m3

m4 m5 m4

m3 m2 m1

 ,

so that its determinant can be factored as det(M) = (m1 −m3)(m1m5 − 2m2m4 +
m3m5). System (4.19) has non trivial solutions if and only if det(M) = 0, which leads
to two relationships:

(4.20) G(λ) = γ1

(
J1(0)− J1(2a)e−

2λa
c

)
,

and

(4.21) G(λ)2 − α(a, c)G(λ) + β(a, c) = 0,

where

α(a, c) := (γ1 + γ2)J1(0) + γ1J1(2a)e−
2λa
c ,

β(a, c) := γ1γ2

[
J1(0)2 +

(
J1(0)J1(2a)− 2J1(a)2

)
e−

2λa
c

]
.

Modes associated to the first relationship (4.20) are proportional to

(4.22) pasym(x) = J1(|x− a|)e−λ
|x−a|
c − J1(|x+ a|)e−λ

|x+a|
c ,

and are asymmetric perturbations, while the modes associated to the second relation-
ship (4.21) have the form

(4.23) psym(x) = J1(|x− a|)e−λ
|x−a|
c + J1(|x+ a|)e−λ

|x+a|
c + 2J1(|x|)e−λ

|x|
c ,

and are symmetric perturbations. These two eigenfunctions are plotted in Fig. 4.7 for
a specific choice of parameter.
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(a) Asymmetric Perturbation (b) Symmetric Perturbation

Figure 4.7. Form of the eigenfunctions related to the front destabilization for the inverse Mex-
ican hat (we = 1.7, wi = 1.2, σe = 3 and σi = 2): (a) asymmetric perturbation pasym corresponding
to sloshing fronts and (b) symmetric perturbations psym corresponding to breathing fronts.

First, we study the relationship (4.20) and look for possible Hopf bifurcations. In
the purely synaptic delay case (c→ +∞), we obtain the closed relationships:

(4.24)

 ω =

√
(γ1(J1(0)− J1(2a)))

2 − 1

τD = 1
ω

(
π − arccos

(
1

γ1|J1(0)−J1(2a)|

))
,

provided that

γ1(J1(0)− J1(2a)) < −1,

or equivalently

2J1(0) < J1(a).

In the propagation delay case, we wish again to draw bifurcation curves in the (τD, c)
plane. We have:

(4.25) e−
2iaω
c =

J1(0)− γ−1
1 eiωτD (iω + 1)

J1(2a)
:= Y(τD, ω)

Equating modulus and argument gives :

(4.26)

 |Y(τD, ω)| = 1

c =
2aω

2nπ − arg(Y(τD, ω))
, n ∈ N.

We now return to relationship (4.21). In the purely synaptic case, this relationship
is in fact a second order polynomial equation for G(λ) of the form:

(4.27) G(λ)2 − α∞(a)G(λ) + β∞(a) = 0

where

α∞(a) = lim
c→∞

α(a, c), and β∞(a) = lim
c→∞

β(a, c).
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Complex numbers λ± solutions of (4.27) thus satisfy:

G(λ±) =
α∞(a)±

√
α∞(a)2 − 4β∞(a)

2
:= Θ±(a).

There again, we write λ± = iω± and then equate modulus and argument to study
possible Hopf bifurcations. We obtain the two following solutions for (ω±, τD±):

(4.28)


ω± =

√
|Θ±(a)|2 − 1

τD± ≡ 1
ω±

(
arg (Θ±(a))− arccos

(
1

|Θ±(a)|

))
(mod 2π

ω±
),

provided that the following condition is satisfied:

|Θ±(a)| > 1.

In the propagation delay case, we isolate the term e−2λa/c in equation (4.21) to obtain
the formula:

e−2λa/c =
G(λ)2 − (γ1 + γ2)J1(0)G(λ) + γ1γ2J1(0)2

γ1J1(2a)G(λ) + γ1γ2 (2J1(a)2 − J1(0)J1(2a))
:= Z(τD, λ).

Taking the modulus and argument of the above equation for λ = iω yields the implicit
relationships for c and τD

(4.29)

 |Z(τD, iω)| = 1,

c =
2aω

2nπ − arg(Z(τD, iω))
.

for some n ∈ N.
We represent in figure 4.8 the two bifurcation curves obtained from the two rela-

tionships of the above analysis: equations (4.29) (red curve) and (4.26) (blue curve)
in the (c, τD) plane. We first note that the second relationship (4.29) always provides
the first Hopf curve as it is bellow the blue curve for all values of c. We also remark
that the first relationship (4.26) produces a curve with several loops accumulating
when c→ 0. These curves naturally divide the (c, τD) plane into three regions where
the fronts can be stationary and stable or unstable with a pulsatile behavior with
destabilizing modes being either symmetric (see panel (C) of Fig. 4.8) or asymmetric
(see panel (D) of Fig. 4.8). Finally, we remark that constant delays are always needed
in order to destabilize, through a Hopf bifurcation, non-monotonous stationary fronts
such as the ones studied here.

5. Discussion. In this paper, we showed, using neural fields formalism, that the
delays inherent to the transmission of information in the cortex can induce instabil-
ities yielding to localized pulsatile activity. Such behaviors, related to the presence
of delay-induced Hopf bifurcations, intrinsically depend on a number of parameters
of the model such as the shape of the connectivity function, the threshold of the
firing rate function or the strength of the input applied to the network. Moreover,
these phenomena fundamentally depend on the dimension of the neural field. The
cortical sheet is essentially two-dimensional, yet most studies investigate the behavior
of neural fields in one dimension as a benchmark for evidencing the role of differ-
ent parameters in the response of neural fields. Here, we investigated the behavior
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Figure 4.8. Stability of the front with propagation delays for an inverse Mexican hat connec-
tivity: we = 1.7, wi = 1.2, σe = 3 and σi = 2. (A) Bifurcation diagram in the (c, τD) plane with the
first Hopf bifurcation curves given by equations (4.29) (red curve) and (4.26) (blue curve). These
two curves asymptote the value of the delay corresponding to the purely synaptic case: τD ≈ 0.126
for (4.29) and τD ≈ 0.199 for (4.26). (B) c = 1, τD = 0: stationary front, (C): c = 1, τD = 0.2:
pulsatile front, (D) c = 1, τD = 0.5: asymmetric complex pulsatile activity.

of neural fields, receiving spatially-dependent input, in the presence of delays, in an
overarching formalism independent of the dimension of the space on which the neural
field is posed. This allowed to uncover the dependence of observed phenomena on the
dimension of the neural field.

For localized input, we showed that the resulting pulse (or bump) solution may
loose stability through a Hopf bifurcation due to the delays. In the one-dimensional
neural field with inverse Mexican hat connectivity (locally inhibitory, laterally excita-
tory), we showed that the minimal constant delay necessary to destabilize the pulse
solution tends to zero when the input strength approaches the minimal value of the
input triggering a super-threshold pulse. In other words, if the input amplitude is not
large enough, the resulting pulse is very sensitive to the presence of delays, and even
small delays, as those involved in the synaptic transmission of information, can desta-
bilize the formation of the pulse, yielding pulsatile activity. This phenomenon also
has implications in numerical simulations: indeed, time-discretization of the neural-
field equations intrinsically involve delays, and the phenomenon of destabilization of
the pulse for arbitrarily small delays prevents from finding stable numerical schemes
in these regions of parameters. Interestingly, this phenomenon is essentially one-
dimensional: delays corresponding to the destabilization of the pulse in dimension
higher than one are lowerbounded by a constant value, and pulses arising in dimen-
sion two for instance are much more stable. Moreover, we have seen that the shape
of the interaction kernel shapes the form of the destabilization. Even in the class of
inverse Mexican hat connectivity, different amplitudes and extents of the interaction
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show qualitatively distinct properties. In particular, while breathing pulses appear
as the symmetric deformation mode destabilizes in most cases, asymmetric modes,
corresponding to sloshing pulses, may or may not destabilize, depending on the shape
of the interconnection map, and particularly on the amplitude of the connectivity
kernel.

Similar phenomena were observed for front solutions. Fronts are essentially one-
dimensional phenomena: along one direction, the solution goes from a high value to a
low-value. These fronts may be monotonous or not, depending on the properties of the
interaction kernel. In the monotonous case, we showed that fronts are unconditionally
stable in one dimension. It may be natural to think therefore that the projection of the
solution on the front axis in higher dimension may also remain stable, and therefore
that no destabilization may arise even in dimension higher than one. However, in
higher dimensions, more phenomena may arise. In particular, an instability may arise
in transverses directions of the fronts. We show that such transversal instabilities do
arise, and take the example of a two-dimensional neural field model. These phenomena
are not limited to fronts. Similar phenomena may arise for partially localized input,
such as in the case of elongated pulses. This is a natural perspective of the present
work.

The interplay between constant delays and propagation delays was investigated.
Our formalism provide the closed-form formulae for Hopf bifurcation curves as a func-
tion of the speed of the transmission as well as the value of the delay. We investigated
the shape of these curves in one dimension in the case of the pulse and front. We
observed interesting qualitative distinctions between the pulse and front case. In-
deed, while in both case, we observe that in the limit of infinite propagation speed,
the value of the Hopf bifurcation point corresponding to constant delays case is re-
covered, new phenomena appear at low speeds. In the example treated for the pulse
in one dimension, we observe that the propagation delay acts as increasing the effec-
tive delay, and the value of constant delay necessary to destabilize the pulse reaches
zero: below a certain speed, no constant delay is necessary to destabilize the pulse.
More surprising is the emergence of an unstable asymmetric (sloshing) mode at low
values of the speed, while in the system with no propagation delays, the asymmetric
mode is unconditionally stable. Interestingly, these observations do not generalize to
the case of the front. In that case, constant delays are essential to destabilize the
front, and even at very small transmission speeds, the front is stable in the absence
of constant delays. In the case treated, both symmetric and asymmetric modes can
be destabilized by the presence of constant delays, and the Hopf bifurcation curves
do asymptote to these values in the limit of infinite propagation speed. While the
symmetric mode necessitates, at low speed, smaller constant delays to destabilize, the
asymmetric mode yields a complex Hopf bifurcation curve (as a secondary bifurca-
tion), and the stability of the asymmetric mode is a complex function of both constant
delays and information propagation speed.

This work therefore extends previous works on the destabilization of spatially
localized activity in several directions. Most previous studies dealing with localized
pattern formation of activity in neural fields dealt with one dimensional neural fields,
and the destabilization occurred as a consequence of the timescale ratio between neu-
ral activity and an additional variable, typically an the adaptation variable coupled to
the neuronal dynamics following the Pinto and Ermentrout model [16, 17]. Depend-
ing on the timescale of the adaptation variable, destabilization of the localized pulse
may arise, both in the Mexican hat and inverse Mexican hat models [11, 19], and this
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additional variable can destabilize a symmetric and asymmetric mode, nonlinear anal-
ysis was developed showing that on the center manifold, the Pinto-Ermentrout model
can be reduced to the normal form of the Hopf bifurcation, as was indicated by the
linear analysis. It is not surprising that the Pinto-Ermentrout model and the delayed
neural-field equations display qualitatively the same type of behaviors. Indeed, the
adaptation variable acts as a distributed delay term on the activity variable (with an
exponential delay kernel). But in contrast with the synaptic and propagation delay
phenomenon, this delayed interaction corresponds systematically to a negative feed-
back loop whatever the interaction kernel. This is why the Pinto-Ermentrout model
may display breathing and sloshing pulses even when the connectivity is locally ex-
citatory, which is not the case of the one-dimensional delayed neural field with local
excitation we analyzed here.

Reduction to normal form around the bifurcations found is a natural extension
of the present work, and would allow characterizing the stability of the oscillatory
pattern beyond the Hopf bifurcation point. In contrast with [19], the presence of
delays necessitates to work in complex spaces with a specific quadratic form for the
delays [12]. Methods for the reduction to normal form in neural-field equations have
recently been developed [28, 26]. While the first reference uses a L2 approach, the
second uses a semi-group approach (sun star formalism) that seems, to our eyes,
best suited for the present approach. This would allow for instance to uncover the
presence of codimension two bifurcations, such as Bautin bifurcations, corresponding
to changes in the stability of the periodic orbits generated by the Hopf bifurcations.
Such bifurcations do arise for instance in the Pinto-Ermentrout model, as nicely shown
by Folias in [19]. Whether such instabilities do arise in biological tissues remains
to be explored. Of course, both adaptation and transmission delays arise in such
systems. Moreover, stochastic effects add up. In that context, it may be reasonable
to consider neural field equations arising from mean-field reductions of stochastic
neuronal networks [25, 24]. The main difference is the fact that the voltage to rate
transforms will no more be step functions, which will make the system much more
complex to analyze, in particular because of the fact that the equilibria (stationary
pulses and fronts) may no more be explicitly derivable. This study therefore provides a
first step in the direction of understanding the role of constant and propagation delays
in the response of neural fields to localized input, and evidences the importance of
taking into account the dimension on which the system is posed, even in systems
displaying an essentially one-dimensional response.
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