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Abstract

These notes correspond to research lectures on Partial Differential Equations for Neuro-

sciences given at CIRM, 04-08/07/2017, during the Summer School on PDE & Probability for

Life Sciences. They give a self-content overview of pattern formation in the primary visual

cortex allowing one to explain psychophysical experiments and recordings of what is referred to

as geometric visual hallucinations in the neuroscience community. The lecture is divided into

several parts including a rough presentation on the modeling of cortical areas via neural field

equations. Other parts deal with notions of equivariant bifurcation theory together with center

manifold results in infinite-dynamical systems which will be the cornerstone of our analysis.

Finally, in the last part, we shall use all the theoretical results to provide a comprehensive

explanation of the formation of geometric visual hallucinations through Turing patterns.

Turing originally considered the problem of how animal coat patterns develop, suggesting

that chemical markers in the skin comprise a system of diffusion-coupled chemical reactions

among substances called morphogens [13]. He showed that in a two-component reaction-diffusion

system, a state of uniform chemical concentration can undergo a diffusion-driven instability

leading to the formation of a spatially inhomogeneous state. Ever since the pioneering work

of Turing on morphogenesis, there has been a great deal of interest in spontaneous pattern

formation in physical and biological systems. In the neural context, Wilson and Cowan [17]

proposed a non-local version of Turing’s diffusion-driven mechanism, based on competition be-

tween short-range excitation and longer-range inhibition. Here interactions are mediated, not

by molecular diffusion, but by long-range axonal connections. Since then, this neural version of

the Turing instability has been applied to a number of problems concerning cortical dynamics.

Examples in visual neuroscience include the ring model of orientation tuning, cortical models of

geometric visual hallucinations (that will be studied here) and developmental models of cortical

maps.presentreview theoretical approaches to studying spontaneous pattern formation in neural

field models, always emphasizing the important role that symmetries play.

Most of the material on center manifold is taken from the book of Haragus & Iooss [7] and on

equivariant bifurcations from the book of Chossat & Lauterbach [2]. One other complementary

reference is the book of Golubitsky-Stewart-Schaeffer [6]. On pattern formation, we refer to the

very interesting book of Hoyle [9].
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1 Modeling cortical visual areas

1.1 Some properties of the visual cortex

In this very first section, we roughly describe the visual pathway (see Figure 1 for a sketch) and

identify the specific visual area that we will be modeling, namely the primary visual cortex (V1 in

short) which is the very first visual area receiving information from the retina through the lateral

Geniculate body (LGN in short).

Figure 1: Sketch of the human visual pathway.

We first give a list of experimental observations that will be used in our modeling assumptions later

on in this section.

• The cortex is a folded sheet of width 2cm.

• It has a layered structure (i.e. 6 identified layers) and is retinotopically organized: the

mapping between the visual field and the cortical coordinates is approximatively log-polar

(see Figure 2).

• From the LGN the information is transmitted to the visual cortex (back of the head) mostly

to the area V1.

• Where does the information go after V1? Mainly: V2,V4, MT, MST... (there are 30 visual

areas that are different by their architecture, connectivity or functional properties).

• V1 is spatially organized in columns that share the same preferred functional properties

(orientation, ocular dominance, spatial frequency, direction of motion, color etc...).

• Local excitatory/inhibitory connections are homogeneous, whereas long-range connections

(mainly excitatory neurons) are patchy, modulatory and anisotropic.
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Figure 2: Retinotopic organization of the primary visual cortex. To one point in the visual field (left image)

corresponds one point in the primary visual cortex (right image). The associated map transformation is

approximatively log-polar (roughly f(z) = log
(
z+0.33
z+0.66

)
). In fact the left and right part of the visual field

should be shifted in cortical space, but we did not intend to represent it on this cartoon.

1.2 Neural fields models

In this section, we start by proposing a local models for n interacting neural masses that we will

then generalize by taking a formal continuum limit. We suppose that each neural population i is

described by its average membrane potential Vi(t) or by its average instantaneous firing

rate νi(t) with νi(t) = Si(Vi(t)), where Si is of sigmoidal form (think of a tangent hyperbolic

function). Then, a single action potential from neurons in population j, is seen as a post-synaptic

potential PSPij(t− s) by neurons in population i (s is the time of the spike hitting the synapse

and t the time after the spike). The number of spikes arriving between t and t+ dt is νj(t)dt, such

that the average membrane potential of population i is:

Vi(t) =
∑

j

∫ t

t0

PSPij(t− s)Sj(Vj(s))ds.

We further suppose that a post-synaptic potential has the same shape no matter which presynaptic

population caused it, this leads to the relationship

PSPij(t) = wijPSPi(t),

where wij is the average strength of the post-synaptic potential and if wij > 0 (resp. wij < 0)

population j excites (resp. inhibts) population i. Now, if we assume that PSPi(t) = e−t/τiH(t) or

equivalently

τi
dPSPi(t)

dt
+ PSPi(t) = δ(t)

we end up with a system of ODEs:

τi
dVi(t)

dt
+ Vi(t) =

∑

j

wijSj(Vj(t)) + Iiext(t),

which can be written in vector form:

dV

dt
(t) = −MV(t) + W · S(V(t)) + Iext(t).
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Here the matrix M is set to the diagonal matrix M := diag
[
(1/τi)i=1,··· ,n

]
.

So far we have not made any assumptions about the topology of the underlying neural network, that

is, the structure of the weight matrix W with components wi,j . If one looks at a region of cortex

such as primary visual cortex (V1), one finds that it has a characteristic spatial structure, in which

a high density of neurons (105mm−3 in primates) are distributed according to an approximately

two-dimensional (2D) architecture. That is, the physical location of a vertical column of neurons

within the two-dimensional cortical sheet often reflects the specific information processing role of

that population of neurons. In V1, we have already seen that there is an orderly retinotopic mapping

of the visual field onto the cortical surface, with left and right halves of the visual field mapped

onto right and left visual cortices respectively. This suggests labeling neurons according to their

spatial location in cortex. This idea of labeling allows one to formally derive a continuum neural

field model of cortex. Let Ω ⊂ Rd, d = 1, 2, 3 be a part of the cortex that is under consideration.

If we note V(r, t) the state vector at point r of Ω and if we introduce the n × n matrix function

W(r, r′, t), we obtain the following time evolution for V(r, t)

∂V(r, t)

∂t
= −MV(r, t) +

∫

Ω
W(r, r′, t)S(V(r′, t))dr′ + Iext(r, t). (1)

Here, V(r, t) represents an average membrane potential at point r ∈ Ω in the cortex and time t. We

refer to the celebrated paper of Wilson-Cowan [16] for further discussion on the above derivation.

Remark 1.1. Following the same basic procedure, it is straightforward to incorporate into the

neural field equation (1) additional features such as synaptic depression, adaptive thresholds or

axonal propagation delays.

1.3 Geometric visual hallucinations

Geometric visual hallucinations are seen in many situations, for example, after being exposed to

flickering lights, after the administration of certain anesthetics, on waking up or falling asleep,

following deep binocular pressure on one’s eyeballs, and shortly after the ingesting of drugs such

as LSD and marijuana (this will be our modeling assumption). We refer to Figure 3 for various

reproductions of experienced visual hallucinations. We would like to propose a cortical model which

allows one to explain the formation of such geometric visual hallucinations. Our main assumption

is that these hallucinations are solely produced in the primary visual cortex and should reflect the

spontaneous emergence of spatial organisation of the cortical activity that we identify to the average

membrane potential from the previous section. It is thus natural to apply the retinotopic map to

see how such visual patterns look like in V1. For example, in the case of funnel and spiral (see

Figure 3 (a)-(b)), we can deduce that the corresponding patterns in the visual cortex are stripes as

shown in Figure 4. Applying the same procedure to other types of visual hallucination would lead

to the conclusion that corresponding patterns in the visual cortex could spots organized on planar

lattice (square or hexagonal).
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model describes the overall changes in arc shape and apparent
speed as it propagates across cortex; this behavior is generic for
weakly excitable media and can be mimicked by reaction-diffusion
models (Dahlem & Hadjikhani, 2009). A temporary scotoma
(blind region) is left in the wake of the fortification arc’s move-
ment. Mapping the serrated arcs to cortical coordinates reveals that
each serration covers about 1 mm of cortex and that the arc moves
at a constant and rather stately speed of 2–3 mm/min on cortex
(Grüsser, 1995; Lashley, 1941; Richards, 1971; Wilkinson, Fein-
del, & Grivell, 1999), requiring 20–25 min to traverse one entire
side of striate cortex.

Richards (1971) suggested that the angularity of fortifications
was consistent with activation of hexagonally packed orientation
hypercolumns as a trigger wave swept through them (see Figure 2).
The packing that Richards predicted is strikingly similar to the
cortical iso-orientation pinwheel organization ultimately revealed
by neuroanatomy (Bonhoeffer & Grinvald, 1991; Swindale, Mat-
subara, & Cynader, 1987). For other developments in fortification
models, see Dahlem, Engelman, Löwel, and Müller (2000); Reggia
and Montgomery (1996); and Schwartz (1980). When the psycho-
physics of migraine are compared to the topographical mapping
qualities of visual cortices, the likely cortical loci of migraine
percepts are Areas V1, V3a, and V8. Jagged arcs are consistent
with the orientation processing in V1, but there is no reason to
assume that other visual areas cannot be activated during migraine,
and if activated, there is no reason to assume that this activity
could not affect V1 via feedback. (Indeed, based on studies of
cortical spreading depression, the condition could spread over the
entire occipital lobe of the affected hemisphere but could have
difficulty crossing prominent fissures between cortical areas, like
the parieto-occipital sulcus.) Sacks (1995a) reported a range of
phenomena consistent with the activation of many sensory areas.
Interestingly, Hadjikhani et al. (2001) had a subject with an un-
usual exercise-induced aura—a drifting crescent-shaped cloud of
TV-like noise—shown by functional magnetic resonance imaging
(fMRI) to originate in V3a. (This percept resembled the twinkling
textures induced adjacent to a centrally viewed patch of TV noise;
Tyler & Hardage, 1998.) Hadjikhani et al. suggested that classic
fortification illusions may arise in V1 and color effects in V8.
Functional imaging also shows cortical thickening abnormalities in
areas V3a and MT of the brains of migraineurs, which is interest-
ing because MT is important in motion perception and migraineurs
are especially susceptible to visual motion-induced sickness
(Granziera, DaSilva, Snyder, Tuch, & Hadjikhani, 2006).

The slow movement of the fortification arcs suggests a
diffusive-triggering process. The closest physiological analogue to
the spread of a migraine fortification arc (and its accompanying
scotoma) is a wave of cortical spreading depression, triggered in
animal preparations by an infusion of potassium. The depression
aspect is a matter of temporal scale: Initially, the spreading wave
of extracellular potassium renders affected neurons briefly hyper-
excitable, but as potassium concentration increases, the neurons
become so depolarized that further action is suppressed for a
longer period. In humans, Wilkinson (2004) suggested that a
“wavefront of neural excitation operating on intrinsic cortical
networks is presumed to underlie the positive hallucinations and
the subsequent neuronal depression, the scotoma” (p. 308). Had-
jikhani et al. (2001) found eight aspects of fMRI imagery
during migraine corresponding to known aspects of cortical

Figure 1. Some characteristic elementary visual hallucinations. A–D: These
LSD flashbacks painted by Oster (1970) come in circular, radial and spiral
geometries, three of the most common percepts cataloged by Klüver (1966) for
many hallucinatory conditions. E: A proliferation of identical phosphenes (poly-
opia) induced by THC and arranged in a spiral geometry (Siegel & Jarvik, 1975).
F–G: Some more complicated lattice-like patterns produced by THC intoxication
(Siegel & Jarvik, 1975) and by binocular pressure on the eyes (Tyler, 1978). H:
Superposition of fortification patterns produced by migraine; actual patterns flash
and move across retina (Richards, 1971). Panels A–D from “Phosphenes,” by G.
Oster, 1970, Scientific American, 222(2), p. 82. Reprinted with permission. Copy-
right 1970 Scientific American, a division of Nature America, Inc. All rights
reserved. Panels E–F from “Drug-Induced Hallucinations in Animals and Man,”
by R. K. Siegel and M. E. Jarvik, in R. K. Siegel and L. J. West (Eds.),
Hallucinations (pp. 117 & unnumbered page [Color Plate 6] following p. 146),
1975, New York, NY: John Wiley & Sons. Copyright 1975 by John Wiley &
Sons. Reprinted with permission. Panel G from “Some New Entopic Phenomena,”
by C. W. Tyler, 1978, Vision Research, 18, p. 1637. Copyright 1978, with
permission from Elsevier. Panel H from “The Fortification Illusions of Migraines,”
by W. Richards, 1971, Scientific American, 224(5), p. 90. Copyright 1971 by W.
Richards. Reprinted with permission.
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Figure 3: Various reported visual hallucinations. Redrawn from Tyler (1978), Oster (1970) and Siegel (1977).

With these conclusions, we can envision to propose a model which would produce Turing patterns

in the sense of spatially periodic patterns on the visual area V1. We are going to see these patterns

as spontaneous symmetry breaking bifurcated solutions of a neural field equation of the form of

(1). Indeed, we assume that at rest, i.e. without any drug consumption and with closed eyes,

the cortical activity is stationary and homogenous. Actually, to simplify the presentation, we will

suppose that the activity is zero across V1. The ingestion of drug will be traduced by the increase

of a parameter µ which will modify the nonlinear firing rate function S. Hopefully, passing a critical

value µc the rest sate will become to be unstable with respect to doubly periodic perturbations and

a bifurcation will occur. Because of the symmetries that we will impose on our network, we will

see emerging new branches of solutions (with less symmetry than the rest state which has always

all the symmetries of the network). These new solutions will be interpreted as geometric visual

hallucinations once seen in the visual field.

Further modeling assumptions. One important remark is that the visual hallucinations that

we consider here are static and thus we have to suppose that the topology of our network does

not change in time, i.e. W(r, r′, t) = W(r, r′). We also assume that the primary visual cortex

does not receive any input from other cortical areas and so the external input Iext is set to zero:

Iext(r, t) = 0. We will suppose that the cortical activity V(r, t) is one-dimensional and we will

denote it u(r, t) from now to emphasize its a scalar function. Regarding the assumption on the

dependance of the function S with respect to the parameter µ, we will simply use S(u) := S(u, µ)

with S(0, µ) = 0 for all µ and DuS(0, µ) = µs1 for some s1 > 0. Finally, we idealize the visual

cortex Ω to the Euclidean plane R2, this is motivated by the essential two-dimensional structure
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of the visual cortex where we neglect the width. This hypothesis also allows us to impose some

symmetry assumptions on the network topology, i.e. the connectivity kernel W. Namely, we want

Euclidean invariance for the connectivity kernel and one natural way to achieve it is to suppose

that W(r, r′) = w(‖r− r′‖), where ‖ · ‖ is the usual Euclidean norm. Finally, we will suppose that

local excitatory (i.e. w(0) > 0) and laterally inhibitory (i.e. w(r) < 0 for r large enough).

of a retinal point (xR, yR) ˆ (rR, ≥R), then z ˆ x ‡ iy
ˆ ln( rR exp‰i≥Rä) ˆ ln rR ‡ i≥R. Thus x ˆ ln rR, y ˆ ≥R.

(c) Form constants as spontaneous cortical patterns
Given that the retinocortical map is generated by the

complex logarithm (except near the fovea), it is easy to
calculate the action of the transformation on circles, rays,
and logarithmic spirals in the visual ¢eld. Circles of
constant rR in the visual ¢eld become vertical lines in V1,
whereas rays of constant ≥R become horizontal lines.
Interestingly, logarithmic spirals become oblique lines in
V1: the equation of such a spiral is just ≥R ˆ a ln rR

whence y ˆ ax under the action of zR ! z. Thus form
constants comprising circles, rays and logarithmic spirals
in the visual ¢eld correspond to stripes of neural activity
at various angles in V1. Figures 6 and 7 show the map
action on the funnel and spiral form constants shown in
¢gure 2.

A possible mechanism for the spontaneous formation of
stripes of neural activity under the action of hallucinogens
was originally proposed by Ermentrout & Cowan (1979).
They studied interacting populations of excitatory and
inhibitory neurons distributed within a two-dimensional
(2D) cortical sheet. Modelling the evolution of the system
in terms of a set of Wilson^Cowan equations (Wilson &
Cowan 1972, 1973) they showed how spatially periodic
activity patterns such as stripes can bifurcate from a
homogeneous low-activity state via a Turing-like
instability (Turing 1952). The model also supports the
formation of other periodic patterns such as hexagons
and squaresöunder the retinocortical map these

generate more complex hallucinations in the visual ¢eld
such as chequer-boards. Similar results are found in a
reduced single-population model provided that the inter-
actions are characterized by a mixture of short-range
excitation and long-range inhibition (the so-called
`Mexican hat distribution’).

(d) Orientation tuning in V1
The Ermentrout^Cowan theory of visual hallucinations

is over-simpli¢ed in the sense that V1 is represented as if it
were just a cortical retina. However, V1 cells do much
more than merely signalling position in the visual ¢eld:
most cortical cells signal the local orientation of a contrast
edge or baröthey are tuned to a particular local orienta-
tion (Hubel & Wiesel 1974a). The absence of orientation
representation in the Ermentrout^Cowan model means
that a number of the form constants cannot be generated
by the model, including lattice tunnels (¢gure 42), honey-
combs and certain chequer-boards (¢gure 1), and cobwebs
(¢gure 4). These hallucinations, except the chequer-
boards, are more accurately characterized as lattices of
locally orientated contours or edges rather than in terms of
contrasting regions of light and dark.

In recent years, much information has accumulated
about the distribution of orientation selective cells in V1,
and about their pattern of interconnection (Gilbert 1992).
Figure 8 shows a typical arrangement of such cells,
obtained via microelectrodes implanted in cat V1. The ¢rst
panel shows how orientation preferences rotate smoothly
over V1, so that approximately every 300 mm the same
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(a)

(b)

Figure 6. Action of the retinocortical map on the funnel form
constant. (a) Image in the visual ¢eld; (b) V1 map of the image.

(a)

(b)

Figure 7. Action of the retinocortical map on the spiral form
constant. (a) Image in the visual ¢eld; (b) V1 map of the image.
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is over-simpli¢ed in the sense that V1 is represented as if it
were just a cortical retina. However, V1 cells do much
more than merely signalling position in the visual ¢eld:
most cortical cells signal the local orientation of a contrast
edge or baröthey are tuned to a particular local orienta-
tion (Hubel & Wiesel 1974a). The absence of orientation
representation in the Ermentrout^Cowan model means
that a number of the form constants cannot be generated
by the model, including lattice tunnels (¢gure 42), honey-
combs and certain chequer-boards (¢gure 1), and cobwebs
(¢gure 4). These hallucinations, except the chequer-
boards, are more accurately characterized as lattices of
locally orientated contours or edges rather than in terms of
contrasting regions of light and dark.

In recent years, much information has accumulated
about the distribution of orientation selective cells in V1,
and about their pattern of interconnection (Gilbert 1992).
Figure 8 shows a typical arrangement of such cells,
obtained via microelectrodes implanted in cat V1. The ¢rst
panel shows how orientation preferences rotate smoothly
over V1, so that approximately every 300 mm the same
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(a)

(b)

Figure 6. Action of the retinocortical map on the funnel form
constant. (a) Image in the visual ¢eld; (b) V1 map of the image.

(a)

(b)

Figure 7. Action of the retinocortical map on the spiral form
constant. (a) Image in the visual ¢eld; (b) V1 map of the image.Figure 4: Action of the retinocortical map on the funnel and spiral form constant. (a) Image in the visual

field; (b) V1 map of the image.

We are thus let to study the following neural field equation

∂u(r, t)

∂t
= −u(r, t) +

∫

R2

w(‖r− r′‖)S(u(r′, t), µ)dr′, (2)

where we have rescaled time to suppose that M can be taken to be equal to identity matrix (i.e.

1 in our scalar case). We can check that u(r, t) = 0 is always a solution because of our hypothesis

on the nonlinearity S (recall that we suppose that S(0, µ) = 0 for all µ). Let us linearize the above

equation (2) around this rest state:

∂u(r, t)

∂t
= −u(r, t) + µs1

∫

R2

w(‖r− r′‖)u(r′, t)dr′. (3)

In order to get the continuous part of the spectrum, we look for special solutions of the form

u(r, t) = eλteik·r for some given vector k ∈ R2, and we obtain the dispersion relation

λ(‖k‖, µ) = −1 + µs1ŵ(‖k‖), (4)

where ŵ is the Fourier transform of w. Here, we made a slight abuse of notation by explicitly

writing ŵ as a function of ‖ · ‖. We show in Figure 5 how such a dispersion relation is modified as

7
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w(r)

r

(a) λ(k)

k

kc

increasing µ

(b)

Figure 24. Neural basis of the Turing mechanism. (a) Mexican hat interaction function showing
short-range excitation and long-range inhibition. (b) Dispersion curves λ(k) = −1 + µŵ(k)
for Mexican hat function. If the excitability µ of the cortex is increased, the dispersion curve
is shifted upward leading to a Turing instability at a critical parameter µc = ŵ(kc)

−1 where
ŵ(kc) = [maxk{ŵ(k)}]. For µc < µ < ∞ the homogeneous fixed point is unstable.

cortical plane, that is, they are doubly-periodic with respect to some regular planar lattice
(square, rhomboid or hexagonal). This is a common property of pattern forming instabilities
in systems with Euclidean symmetry that are operating in the weakly nonlinear regime [157].
In the neural context, Euclidean symmetry reflects the invariance of synaptic interactions with
respect to rotations, translations and reflections in the cortical plane. The emerging patterns
spontaneously break Euclidean symmetry down to the discrete symmetry group of the lattice,
and this allows techniques from bifurcation theory to be used to analyze the selection and
stability of the patterns. The global position and orientation of the patterns are still arbitrary,
however, reflecting the hidden Euclidean symmetry.

Hence, suppose that we restrict the space of solutions (5.8) to that of doubly-periodic
functions corresponding to regular tilings of the plane. That is, p(r + ℓ) = p(r) for all ℓ ∈ L
where L is a regular square, rhomboid or hexagonal lattice. The sum over n is now finite with
N = 2 (square, rhomboid) or N = 3 (hexagonal) and, depending on the boundary conditions,
various patterns of stripes or spots can be obtained as solutions. Amplitude equations for the
coefficients cn can then be obtained using perturbation methods [84]. However, their basic
structure can be determined from the underlying rotation and translation symmetries of the
network model. In the case of a square or rhombic lattice, we can take k1 = kc(1, 0) and
k2 = kc(cos ϕ, sin ϕ) such that (to cubic order)

dcn

dt
= cn

[
µ − µc − #0|cn|2 − 2#ϕ

∑

m̸=n

|cm|2
]
, n = 1, 2, (5.9)

where #ϕ depends on the angle ϕ. In the case of a hexagonal lattice we can take
kn = kc(cos ϕn, sin ϕn) with ϕ1 = 0,ϕ2 = 2π/3,ϕ3 = 4π/3 such that

dcn

dt
= cn[µ − µc − #0|cn|2 − ηc∗

n−1c∗
n+1] − 2#ϕ2 cn

(
|cn−1|2 + |c2

n+1|
)
, (5.10)

where n = 1, 2, 3 (mod 3). These ordinary differential equations can then be analyzed to
determine which particular types of pattern are selected and to calculate their stability
[19, 20, 84]. The results can be summarized in a bifurcation diagram as illustrated in
figure 31(a) for the hexagonal lattice with h > 0 and 2#ϕ2 > #0.

58

Figure 5: Schematic visualization of the connectivity kernel w satisfying our assumptions (locally excitatory

and laterally inhibitory) together the corresponding dispersion relation given in equation (4).

µ is increased. As a consequence, in what will follow, we suppose that there exists a unique couple

(µc, kc) ∈ (0,∞)2 such that the following conditions hold.

Hypothesis 1.1 (Dispersion relation). The dispersion relation (4) of the linearized equation (3)

satisfies:

(i) λ(kc, µc) = 0 and λ(‖k‖, µc) 6= 0 for all ‖k‖ 6= kc;

(ii) for all µ < µc, we have λ(‖k‖, µ) < 0 for all k ∈ R2;

(iii) k → λ(k, µc) has a maximum at k = kc.

We clearly see that the above hypotheses imply that for µ > µc, there will be an annulus of unstable

eigenmodes while for µ < µc the rest state is linearly stable. We can already see what will be the

main difficulties to overcome:

• there is continuous spectrum due to the Euclidean symmetry of the problem;

• a whole circle of eigenmodes becomes neutrally unstable at µ = µc so that the center part of

the spectrum is infinite-dimensional;

• passed µ > µc, the rest state is unstable to an annulus of unstable eigenmodes so that the

dynamics nearby should be intricate.

Main idea. We restrict ourselves to the function space of doubly periodic functions such that the

spectrum of the linearized operator is discrete with finitely many eigenvalues on the center part.

We also only study the dynamics of (2) in a neighborhood of u ' 0 and µ ' µc where one can rely

on various techniques such as the construction of center manifolds and equivariant bifurcations, as

our reduced problem will still have some symmetries reminiscent of the Euclidean ones.

8



2 Center manifolds in infinite-dimensional dynamical systems

Center manifolds are fundamental for the study of dynamical systems near critical situations and in

particular in bifurcation theory. Starting with an infinite-dimensional problem, the center manifold

theorem will reduce the study of small solutions, staying sufficiently close to 0, to that of small

solutions of a reduced system with finite dimension. The solutions on the center manifold are

described by a finite-dimensional system of ordinary differential equations, also called the reduced

system. The very first results on center manifolds go back to the pioneering works of Pliss [12]

and Kelley [10] in the finite-dimensional setting. Regarding extensions to the infinite-dimensional

setting we can refer to [8, 11, 15] and references therein together with the recent comprehensive book

of Haragus & Iooss [7] from which these notes are partially taken from. Center manifold theorems

have proved its full strength in studying local bifurcations in infinite-dimensional systems and led to

significant progress in understanding of some nonlinear phenomena in partial differential equations,

including applications in pattern formation, water wave problems or population dynamics. In this

lecture, we will see how to apply such results in the context of geometric visual hallucinations that

can be interpreted as pattern forming states on the visual cortex.

2.1 Notations and definitions

Consider two (complex or real) Banach spaces X and Y. We shall use the following notations:

• C k(Y,X ) is the Banach space of k-times continuously differentiable functions F : Y → X
equipped with the norm on all derivatives up to order k,

‖F‖C k = max
j=0,...,k

(
sup
y∈Y

(
‖DjF (y)‖L (Yj ,X )

)
)
.

• L (Y,X ) is the Banach space of linear bounded operators L : Y → X , equipped with operator

norm:

‖L‖L (Y,X ) = sup
‖u‖Y=1

(‖Lu‖X ) ,

if Y = X , we write L (Y) = L (Y,X ).

• For a linear operator L : Y → X , we denote its range by imL:

imL = {Lu ∈ X | u ∈ Y} ⊂ X ,

and its kernel by kerL:

kerL = {u ∈ Y | Lu = 0} ⊂ Y.

• Assume that Y ↪→ X with continuous embedding. For a linear operator L ∈ L (Y,X ), we

denote by ρ(L), or simply ρ, the resolvent set of L:

ρ = {λ ∈ C | λid− L : Y → X is bijective }.

9



The complement of the resolvent set is the spectrum σ(L), or simply σ,

σ = C \ {ρ}.

Remark 2.1. When L is real, both the resolvent set and the spectrum of L are symmetric with

respect to the real axis in the complex plane.

2.2 Local center manifold

Let X ,Y and Z be Banach spaces such that:

Z ↪→ Y ↪→ X

with continuous embeddings. We consider a differential equation in X of the form:

du

dt
= Lu+ R(u) (5)

in which we assume that the linear part L and the nonlinear part R are such that the following

holds.

Hypothesis 2.1 (Regularity). We assume that L and R in (5) have the following properties:

(i) L ∈ L (Z,X );

(ii) for some k ≥ 2, there exists a neighborhood V ⊂ Z of 0 such that R ∈ C k(V,Y) and

R(0) = 0, DR(0) = 0.

Hypothesis 2.2 (Spectral decomposition). Consider the spectrum σ of the linear operator L, and

write:

σ = σ+ ∪ σ0 ∪ σ−
in which

σ+ = {λ ∈ σ | Reλ > 0}, σ0 = {λ ∈ σ | Reλ = 0}, σ− = {λ ∈ σ | Reλ < 0}.

We assume that:

(i) there exists a positive constant γ such that

inf
λ∈σ+

(Reλ) > γ, sup
λ∈σ−

(Reλ) < −γ;

(ii) the set σ0 consists of a finite number of eigenvalues with finite algebraic multiplicities.
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Hypothesis 2.3 (Resolvent estimates). Assume that there exist positive constants ω0 > 0, c > 0

and α ∈ [0, 1) such that for all ω ∈ R with |ω| ≥ ω0, we have that iω belongs to the resolvent set of

L and

‖(iω − L)−1‖L (X ) ≤
c

|ω| ,

‖(iω − L)−1‖L (Y,Z) ≤
c

|ω|1−α .

Remark 2.2. It is important to notice that the above Hypotheses can only be satisfied in the

semilinear case Y ⊂ X with Y 6= X . Usually, a weaker assumption is required for the linear operator

L, but we rather prefer to give the above characterizations as they are easier to verify in practice.

It is also interesting to note that when, X , Y, and Z are all Hilbert spaces, then one needs only to

check that only the first inequality of Hypothesis 2.3 is satisfied. In Hilbert spaces, for operators L

that are sectorial and generate an analytic semigroup, then Hypothesis 2.3 is automatically satisfied.

As a consequence of Hypothesis 2.2 (ii), we can define the spectral projection P0 ∈ L (X ), corre-

sponding to σ0, by the Dunford formula:

P0 =
1

2πi

∫

Γ
(λid− L)−1dλ, (6)

where Γ is a simple, oriented counterclockwise, Jordan curve surrounding σ0 and lying entirely in

{λ ∈ C | |Reλ| < γ}. Then

P2
0 = P0, P0Lu = LP0u ∀u ∈ Z,

and imP0 is finite-dimensional (σ0 consists of a finite number of eigenvalues with finite algebraic

multiplicities). In Particular, it satisfies imP0 ⊂ Z and P0 ∈ L(X ,Z). We define a second projector

Ph : X → X by

Ph = Id−P0

which also satisfies

P2
h = Ph, PhLu = LPhu ∀u ∈ Z,

and

Ph ∈ L (X ) ∩L (Y) ∩L (Z).

We consider the spectral subspaces associated with these two projections:

E0 = imP0 = ker Ph ⊂ Z, Xh = imPh = ker P0 ⊂ X

which provide the decomposition:

X = Xh ⊕ E0.

We also denote

Zh = PhZ ⊂ Z, Yh = PhY ⊂ Y
and denote by L0 ∈ L (E0) and Lh ∈ L (Zh,Xh) the restrictions of L to E0 and Zh. The spectrum

of L0 is σ0 and the spectrum of Lh is σ+ ∪ σ−.
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Theorem 2.1 (Center manifold theorem). Assume that hypotheses 2.1, 2.2 and 2.3 hold. Then

there exists a map Ψ ∈ C k(E0,Zh), with

Ψ(0) = 0, DΨ(0) = 0,

and a neighborhood O of 0 in Z such that the manifold:

M0 = {u0 + Ψ(u0) | u0 ∈ E0} ⊂ Z

has the following properties:

(i) M0 is locally invariant: if u is a solution of equation (5) satisfying u(0) ∈ M0 ∩ O and

u(t) ∈ O for all t ∈ [0, T ], then u(t) ∈M0 for all t ∈ [0, T ].

(ii) M0 contains the set of bounded solutions of (5) staying in O for all t ∈ R.

The manifold M0 is called a local center manifold of (5) and the map Ψ is referred to as the

reduction function.

Let u be a solution of (5) which belongs to M0, then u = u0 + Ψ(u0) and u0 satisfies:

du0

dt
= L0u0 + P0R(u0 + Ψ(u0)). (7)

The reduction function Ψ satisfies:

DΨ(u0)(L0u0 + P0R(u0 + Ψ(u0))) = LhΨ(u0) + PhR(u0 + Ψ(u0)), ∀u0 ∈ E0. (8)

Proof. The proof is in spirit very close to the one presented in the finite-dimensional case where

one needs to work on the function space of exponentially growing functions and modify (truncate)

the nonlinear part R(u) in order to obtain small Lipschitz constant via Rε(u) = χ(u0/ε)R(u)

where χ is a smooth bounded cut-off function taking values in [0, 1]. If we write any solution of (5)

u = u0 + uh, where u0 = P0u ∈ E0 and uh = Pu ∈ Zh, we obtain a system

du0

dt
= L0u0 + P0R

ε(u), (9a)

duh
dt

= Lhuh + PhR
ε(u). (9b)

Then the idea is to use a fixed-point argument for the above system (9). First, we notice that

Hypothesis 2.3 allows us to solve the second equation on the hyperbolic part such that

uh = KhPhR
ε(u),

for a linear map Kh ∈ L (Cη(R,Yh),Cη(R,Zh)), and some η > 0, with

‖Kh‖L (Cη(R,Yh),Cη(R,Zh)) ≤ C(η),
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where C : [0, γ]→ R is continuous. We refer to [7, Appendix B.2] for a proof of the above statement.

We can finally write system (9) as

u0(t) = S0,ε(u, t, u0(0)) := eL0tu0(0) +

∫ t

0
eL0(t−s)P0R

ε(u(s))ds, (10a)

uh = Sh,ε(u) = KhPhR
ε(u), (10b)

where u0(0) ∈ E0 is arbitrary. Note that eL0t exists since E0 is finite-dimensional. We will look for

solutions

u = (u0, uh) ∈ Nη,ε := Cη(R, E0)× C0(R, Bε(Zh)),

with 0 < η ≤ γ and ε ∈ (0, ε0). More precisely, using a fixed point argument for the map

Sε(u, u0(0)) := (S0,ε(u, ·, u0(0)),Sh,ε(u)) ,

which enjoys the properties

• Sε(·, u0(0)) : Nη,ε → Nη,ε is well defined,

• Sε(·, u0(0)) is a contraction with respect to the norm of Cη(R,X ) for ε small enough and any

η ∈ [0, γ),

one can show that system (10) has a unique solution u = (u0, uh) = Λ(u0(0)) ∈ Nη,ε for any

u0(0) ∈ E0. We define the map Ψ of the theorem via

(u0(0),Ψ(u0(0))) := Λ(u0(0))(0), for all u0(0) ∈ E0.

The fixed point argument gives naturally the Lipschitz continuity of the map Ψ. In order to get

the C k regularity of Ψ one needs to use scale of Banach spaces to ensure the regularity of Rε on

exponentially growing functions spaces. More precisely, it can be proved that Rε : Cη(R,Z) →
Cζ(R,Y) is C k for any 0 ≤ η < ζ/k and ζ > 0 which in turn can be used to prove the desired

regularity for Ψ (see [7, 14] for further details).

2.3 Parameter-dependent center manifold

We consider a parameter-dependent differential equation in X of the form

du

dt
= Lu+ R(u, µ) (11)

where L is a linear operator as in the previous section, and the nonlinear part R is defined for

(u, µ) in a neighborhood of (0, 0) ∈ Z × Rm. Here µ ∈ Rm is a paramter that we assume to be

small. More precisely we keep hypotheses 2.2 and 2.3 and replace hypothesis 2.1 by the following:

Hypothesis 2.4 (Regularity). We assume that L and R in (11) have the following properties:

(i) L ∈ L (Z,X ),
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(ii) for some k ≥ 2, there exists a neighborhood Vu ⊂ Z and Vµ ⊂ Rm of 0 such that R ∈
C k(Vu × Vµ,Y) and

R(0, 0) = 0, DuR(0, 0) = 0.

Theorem 2.2 (Parameter-dependent center manifold theorem). Assume that hypotheses 2.4, 2.2

and 2.3 hold. Then there exists a map Ψ ∈ C k(E0 × Rm,Zh), with

Ψ(0, 0) = 0, DuΨ(0, 0) = 0,

and a neighborhood Ou ×Oµ of 0 in Z × Rm such that for µ ∈ Oµ the manifold:

M0(µ) = {u0 + Ψ(u0, µ) | u0 ∈ E0} ⊂ Z

has the following properties:

(i) M0(µ) is locally invariant: if u is a solution of equation (11) satisfying u(0) ∈ M0(µ) ∩ Ou
and u(t) ∈ Ou for all t ∈ [0, T ], then u(t) ∈M0(µ) for all t ∈ [0, T ];

(ii) M0(µ) contains the set of bounded solutions of (11) staying in Ou for all t ∈ R.

Let u be a solution of (11) which belongs to M0(µ), then u = u0 + Ψ(u0, µ) and u0 satisfies:

du0

dt
= L0u0 + P0R(u0 + Ψ(u0, µ), µ)

def
= f(u0, µ) (12)

where we observe that f(0, 0) = 0 and Du0f(0, 0) = L0 has spectrum σ0. The reduction function Ψ

satiafies:

Du0Ψ(u0, µ)f(u0, µ) = LhΨ(u0, µ) + PhR(u0 + Ψ(u0, µ), µ) ∀u0 ∈ E0.

Proof. The idea here is to consider the constant µ as an extra differential equation by saying that

µ solves the equation
dµ

dt
= 0.

Then one augments equation (11) by

dũ

dt
= L̃ũ+ R̃(ũ), ũ = (u, µ),

where L̃ũ := (Lu + DµR(0, 0)µ, 0) and R̃(ũ) = (R(u, µ)−DµR(0, 0)µ, 0). One then only need to

check that Hypotheses 2.1, 2.2 and 2.3 hold for L̃ and R̃.

2.4 Equivariant systems

Hypothesis 2.5 (Equivariant equation). We assume that there exists a linear operator T ∈
L (X ) ∩L (Z), which communtes with vector field in equation (5):

TLu = LTu, TR(u) = R(Tu)

We also assume that the restriction T0 of T to E0 is an isometry.
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Theorem 2.3 (Equivariant center manifold). Under the assumption of theorem 2.1, we further

assume that hypothesis 2.5 holds. Then one can find a reduction function Ψ which commutes with

T:

TΨu0 = Ψ(T0u0), ∀u0 ∈ E0

and such that the vector field in the reduced equation (7) commutes with T0.

Proof. The uniqueness of the center manifold via the fixed point argument ensures that the

manifold M0 is invariant under T provided that system (9) is equivariant under T. This will be

satisfied if the cut-off function χ satisfies

χ(T0u0) = χ(u0) for all u0 ∈ E0,

which can always be achieved by choosing χ to be a smooth function of ‖u0‖2 where ‖ · ‖ stands

for the Euclidean norm on E0. Since T0 is an isometry on E0, the conclusion follows.

Remark 2.3. Analogous results hold for the parameter-dependent equation (11).

2.5 Empty unstable spectrum

Theorem 2.4 (Center manifold for empty unstable spectrum). Under the assumptions of theorem

2.1 and assume that σ+ = ∅. Then in addition to propertries of theorem 2.1, the local center

manifold M0 is locally attracting: any solution of equation (5) that stays in O for all t > 0 tends

exponentially towards a solution of (5) on M0.

3 Normal forms

The normal forms theory consists in finding a polynomial change of variable which improves locally

a nonlinear system, in order to recognize more easily its dynamics. In applications, normal form

transformation are performed after a center manifold reduction.

3.1 Main theorem

We consider a parameter-dependent differential equations in Rn of the form

du

dt
= Lu+ R(u, µ) (13)

in which we assume that L and R satisfy the following hypothesis.

Hypothesis 3.1 (Regularity). Assume that L and R have the following properties:

(i) L is a linear map in Rn;
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(ii) for some k ≥ 2, there exist neighborhoods Vu ⊂ Rn and Vµ ⊂ Rm of 0 such that R ∈
C k(Vu × Vµ,Rn) and

R(0, 0) = 0, DuR(0, 0) = 0.

Theorem 3.1 (Normal form theorem). Assume that hypothesis 3.1 holds. Then for any positive

integer p, 2 ≤ p ≤ k, there exist neighborhoods V1 and V2 of 0 in Rn and Rm such that for µ ∈ V2,

there is a polynomial map Φµ : Rn → Rn of degree p with the following properties:

(i) the coefficients of the monomials of degree q in Φµ are functions of µ of class C k−q and

Φ0(0) = 0, DuΦ0(0) = 0

(ii) for v ∈ V1, the polynomial change of variable

u = v + Φµ(v)

transforms equation (13) into the normal form:

dv

dt
= Lv + Nµ(v) + ρ(v, µ)

and the following properties hold:

(a) for any µ ∈ V2, Nµ is a polynomial map Rn → Rn of degree p, with coefficients depending

upon µ, such that the coefficients of the monomials of degree q are of class C k−q and

N0(0) = 0, DvN0(0) = 0

(b) the equality Nµ(etL
∗
v) = etL

∗
Nµ(v) holds for all (t, v) ∈ R× Rn and µ ∈ V2

(c) the map ρ belongs to C k(V1 × V2,Rn) and

ρ(v, µ) = o(‖v‖p) ∀µ ∈ V2

3.2 An example – The Hopf bifurcation

Consider an equation of the form (13) with a single parameter µ ∈ R and satisfying the hypotheses

of the center manifold theorem 2.2. Assume that the center part of the spectrum σ0 of the linear

operator L contains two purely imaginary eigenvalues ±iω, which are simple. Under these assump-

tions, we have σ0 = {±iω} and E0 is two-dimensional spanned by the eigenvectors ζ, ζ̄ associated

with iω and −iω respectively. The center manifold theorem 2.2 gives

u = u0 + Ψ(u0, µ), u0 ∈ E0,

and applying the normal form theorem 3.1 we find

u0 = v0 + Φµ(v0),

16



which gives:

u = v0 + Ψ̃(v0, µ), u0 ∈ E0. (14)

For v0(t) ∈ E0, we write

v0(t) = A(t)ζ +A(t)ζ, A(t) ∈ C

Lemma 3.1. The polynomial Nµ in theorem 3.1 is of the form:

Nµ(A,A) = (AQ(|A|2, µ), AQ(|A|2, µ)),

where Q is a complex-valued polynomial in its argument, satisfying Q(0, 0) = 0 and of the form:

Q(|A|2, µ) = aµ+ b|A|2 +O((|µ|+ |A|2)2).

In applications, one is interested in computing the values of a and b. We explain below a procedure

which allows to obtain explicit formula for these coefficients. First, we write the Taylor expansion

of R and Ψ̃:

R(u, µ) =
∑

1≤q+l≤p
Rql(u

(q), µ(l)) + o((|µ|+ ‖u‖)p)

Ψ̃(v0, µ) =
∑

1≤q+l≤p
Ψ̃ql(v

(q)
0 , µ(l)) + o((|µ|+ ‖v0‖)p)

Ψ̃ql(v
(q)
0 , µ(l)) = µl

∑

q1+q2=q

Aq1A
q2Ψq1q2l

We differentiate equation (14) and obtain:

Dv0Ψ̃(v0, µ)L0v0 − LΨ̃(v0, µ) + Nµ(v0) = Q(v0, µ)

where

Q(v0, µ) = Πp

(
R(v0 + Ψ̃(v0, µ), µ)−Dv0Ψ̃(v0, µ)Nµ(v0)

)

Here Πp represents the linear map that associates to map of class C p the polynomial of degree p

in its Taylor expansion. We then replace the Taylor expansions of R and Ψ̃ and by identifying the

terms of order O(µ), O(A2) and O(|A|2) we obtain:

−LΨ001 = R01

(2iω − L)Ψ200 = R20(ζ, ζ)

−LΨ110 = 2R20(ζ, ζ̄)

Here the operators L and (2iω − L) are invertible so that Ψ001,Ψ200 and Ψ110 are uniquely deter-

mined. Next we identify the terms of order O(µA) and O(A|A|2)

(iω − L)Ψ101 = −aζ + R11(ζ) + 2R20(ζ,Ψ001)

(iω − L)Ψ210 = −bζ + 2R20(ζ,Ψ110) + 2R20(ζ̄,Ψ200) + 3R30(ζ, ζ, ζ̄)

Since iω is a simple isolated eigenvalue of L, the range of (iω − L) is of codimension one so we

can solve these equations and determine Ψ101 and Ψ210, provided the right hand sides satisfy one

solvability condition. This solvability condition allows to compute coefficients a and b.
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• If L has an adjoint L∗ acting on the dual space X ∗, the solvability condition is that the right

hand sides be orthogonal to the kernel of the adjoint (−iω − L∗) of (iω − L). The kernel of

(−iω − L∗) is just one-dimensional, spanned by ζ∗ ∈ X ∗ with 〈ζ, ζ∗〉 = 1. Here 〈·, ·〉 denotes

the duality product between X and X ∗. We find:

a = 〈R11(ζ) + 2R20(ζ,Ψ001), ζ∗〉
b = 〈2R20

(
ζ̄,Ψ200

)
+ 2R20 (ζ,Ψ110) + 3R30(ζ, ζ, ζ̄), ζ∗〉

• If the adjoint L∗ does not exist, we use a Fredholm alternative since both equations have the

form:

(iω − L)Ψ = R, with R ∈ X

We project with P0 and Ph on the subspaces E0 and Xh and we obtain

(iω − L0)P0Ψ = P0R

(iω − Lh)PhΨ = PhR

The operator (iω−Lh) is invertible, then the second equation has a unique solution. The first

equation is two-dimensional, there is a solution Ψ0 provided the solvability condition holds

〈R0, ζ
∗
0 〉 = 0

where ζ∗0 ∈ E0 is the eigenvector in the kernel of the adjoint (−iω − L∗0) in E0 chosen such

that 〈ζ, ζ∗0 〉 = 1. If P∗0 is the adjoint of P0 and setting ζ∗ = P∗0ζ
∗
0 the solvability condition

becomes 〈R, ζ∗〉 = 0 which leads to the same formula for a and b as above.

4 Steady-state bifurcation with symmetry – General results

We first start this section by stating some basic definitions and results on groups and their rep-

resentations. In most of the following, G will be a finite group or a closed subgroup of O(n), the

group of n× n orthogonal matrices with real entries, acting isometrically in Rn. Such a subgroup

is also a submanifold of the Lie group O(n) and is therefore itself a Lie group.

Some Examples:

• Zk = Z/kZ, the k-cyclic group, is isomorphic to Ck, the group generated by the 2 by 2 matrix

ρk :=

(
cos 2π

k sin 2π
k

− sin 2π
k cos 2π

k

)
.

The group Ck acts isometrically in R2.

• We note Dk the group generated by ρk and by the reflection

κ :=

(
1 0

0 −1

)
.
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This is the symmetry group of a regular polygon with k vertices (k-th dihedral group). Its

order is |Dk| = 2k.

• S1 = R/2πZ is isomorphic to SO(2), the group of 2 by 2 rotation matrices. The group

generated by SO(2) and the reflection matrix σ is O(2), the symmetry group of the circle.

We shall also be led to consider the non compact Euclidean group E(n) = O(n) n Rn (at least in

the case n = 2) and we refer to subsection 4.3 for further definitions.

4.1 Definitions

4.1.1 Irreducible representations

Definition 4.1. A representation of a group Γ in a finite-dimensional or a Banach space X is

a continuous homomorphism τ : Γ→ GL(X ) from Γ to the group of invertible linear maps in X .

Therefore a representation τ verifies that τ(γ1γ2) = τ(γ1)τ(γ2), in particular τ(γ−1) = τ−1(γ) and

τ(e) = idX . Note also that if ker(τ) = {0}, the image of Γ under τ is a group isomorphic to Γ and

we call it the transformation group associated with Γ. We denote by Γ this group.

Example: Let C (Rn) be a space of functions Rn → R (e.g. continuous functions) and let Γ be a

subgroup of O(n). Then the relation τ(γ) ·u(x) = u
(
γ−1x

)
defines a representation of Γ in C (Rn).

Definition 4.2. A representation is irreducible if the only subspaces of X which are invariant

by τ(γ) for all γ ∈ Γ are {0} and X itself.

Examples: Ck, Dk, SO(2), 0(2) act irreducibly in R2.

Definition 4.3. Two representations τ and τ ′ of the same group Γ are called equivalent if there

exists a matrix M ∈ GL(Rn) (or an endomorphism M ∈ GL(X )) such that τ ′ = M ◦ τ ◦M−1.

It is important to remark that representations of finite or compact groups can always be de-

composed into direct sums of irreducible ones. This decomposition might not be unique because

equivalent representations can occur several times, allowing for many choices of the corresponding

representation spaces. This problem of non-uniqueness can be overcome by grouping irreducible

representations in equivalence classes. This leads to a block decomposition of a representation

which is unique and called the isotypic decomposition of representation.

Lemma 4.1 (Schur’s lemma). Let τ , ρ be two complex irreducible representations of a compact

group Γ in X , Y respectively. Let A : X → Y be a linear map such that A τ(γ) = ρ(γ)A for all

γ ∈ Γ. Then:

(i) if τ and ρ are equivalent, then X ∼ Y and A = c · id for some c ∈ C;
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(ii) if τ and ρ are not equivalent, then A = 0.

Proof. Note first that the kernel as well as the range of a linear map which commutes with a

group representation are invariant under this representation. To prove the first part, note that A

has at least one eigenvalue c. Hence ker(A − c · id) 6= {0}. This kernel is Γ invariant, therefore

by irreducibility assumption, it is equal to X . Now dimX = dimY by the equivalence of τ and

ρ. It follows that A = c · id. Suppose now A is invertible, then τ and ρ are clearly equivalent.

Therefore assume A is not invertible. By the argument above, ker A = X and imA = Y, which

imply A = 0.

Definition 4.4. A representation τ of a compact group Γ in a (finite dimensional) space X is

absolutely irreducible if all linear maps A which commute with τ are scalar multiples of the

identity.

By Schur’s lemma, any irreducible representation in a complex space is absolutely irreducible, but

this is not true in general for representations in a real space.

4.1.2 Equivariant vector fields

Definition 4.5. Let X , Y be two vector spaces with representations τ and ρ resp. of a group Γ. A

continuous map f : X → Y is Γ-equivariant if f(τ(γ)x) = ρ(γ)f(x) for all γ ∈ Γ and x ∈ X .

Later on in this section, we will be dealing with differential equations

dx

dt
= f(x) (15)

where f is Γ-equivariant. Obviously, a first consequence of the Γ-equivariance is that if x(t) is a

solution of (15), then τ(γ)x(t) is also a solution for all t. From one solution we therefore obtain a

Γ-orbit of identical solutions up to symmetry, which are obtained by applying the transformations

τ(τ) to it. One can say more.

Definition 4.6. We give the following definitions:

(i) Let x ∈ X , we define Σ = Γx = {γ ∈ Γ | τ(γ)x = x}. Σ is the isotropy subgroup of x.

Note that the isotropy group of τ(γ)x is γΣγ−1, and when one talks about classification of

isotropy subgroups (for a given action), it means ”classification of conjugacy classes”.

(ii) Given an isotropy subgroup Σ, let Fix(Σ) := {x ∈ X | τ(σ)x = x for all σ ∈ Σ}. This is a

linear subspace of X .

(iii) Let x ∈ X , the set Γ · x = {τ(γ)x, γ ∈ Γ} is called the Γ-orbit of x.
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It is easily seen that any two points in the Γ-orbit of a point x have conjugated isotropy subgroups.

The conjugacy classes of the isotropy subgroups of G for its action (representation) in X are called

the isotropy types of this action.

Example. Let D3 act in R2 by its natural action. The isotropy subgroups are {id}, which fixes

all points in R2, the two-element groups of reflection across the axes of symmetry of an equilateral

triangle (these axes are the subspaces Fix(Σ) for these subgroups), and Γ itself which fixes only the

origin. Given a point away from the axes of symmetry, its D3-orbit consists of 6 points. If however

we consider a point on one of the axes of symmetry, then its D3-orbit consists only of 3 points.

The orbit of the origin is the origin itself. This is a general fact:

Lemma 4.2. If Γ is finite, the number of elements in Γ ·x is equal to |Γ|/|Γx|. If Γ is a (compact)

Lie group, then Γ · x is a submanifold of X with dimension equal to dim(Γ)− dim(Γx).

The following lemma is fundamental.

Lemma 4.3. Let f be Γ-equivariant. Then for any isotropy subgroup σ, f : Fix(Σ)→ Fix(Σ).

Proof. Observe that given x ∈ Fix(Σ) and σ ∈ Σ, we have that τ(σ)f(x) = f(τ(σ)x) = f(x).

Therefore given an initial condition in Fix(Σ), the full trajectory belongs to the subspace Fix(Σ).

We write N(Σ) := {γ ∈ Γ | γΣγ−1 = Σ} the normalizer of a subgroup Σ of Γ.

Lemma 4.4. The maximal subgroup of Γ acting faithfully (with no other fixed-point than 0) in

Fix(Σ) is N(Σ)/Σ.

Proof. We write the action of Γ as (γ, x) 7→ γx to simplify notation. Let x ∈ Fix(Σ), then

γx ∈ Fix(Σ) ⇒ σγx = γx for all σ ∈ Σ. Hence γ−1σγx = x and γ−1σγ ∈ Σ. The result follows

immediately.

Therefore the group orbit of a point x ∈ Fix(Σ) is obtained by letting Fix(Σ) act on x.

Let x be an equilibrium point for equation (15). If Γ is a Lie group, Γ · x is a manifold with

dimension equal to dim(Γ)− dim(Γx). It may also happen that the vector field f(x) be tangent to

Γ · x. If this happens, then f(y) is tangent to Γ · x at any point y ∈ Γ · x. In that case Γ · x is a

flow-invariant manifold. This motivates the following definition.

Definition 4.7. A trajectory of an equivariant dynamical system which lies in the group orbit of a

point is called a relative equilibrium.

Equilibria are particular cases of relative equilibria. What is in general the dynamics of a relative

equilibrium? Let x(t) = Φt(x0) be the solution with initial condition x0. Here Φt denotes the Γ-

equivariant 1-parameter group of transformations associated with the vector field f . For a relative

equilibrium, at each t, there exists a group element γt such that Φt(x0) = τ(γt)x0. Moreover
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γt+t′ = γtγt′ by the group property of Φt. It follows that the set {γt, t ∈ R} is a one-parameter,

abelian subgroup of Γ. The closure of an abelian subgroup in a compact Lie group is a torus. We

conclude that the trajectories of a relative equilibrium fill tori in the Γ-orbit. The dimension of a

torus group in a (compact) group Γ cannot exceed a value which defines the ”maximal torus” in Γ.

For example if Γ = O(2) then obviously the maximal torus is S1 (a circle). But if Γ = SO(3) or

O(3) then the maximal torus has also dimension 1, despite the fact that dim SO(3) = 3. Therefore

in these cases, the trajectories are closed (circles) and the relative equilibria are (at most) periodic

orbits. One can even be more restrictive: since the trajectory of relative equilibrium lies inside a

subspace Fix(Σ), the dimension of its closure cannot exceed the dimension of the maximal torus in

the group N(Σ)/Σ.

4.2 Equivariant Branching Lemma

Recall, that in the previous section we have considered parameter-dependent differential equations

in X of the form
du

dt
= Lu+ R(u, µ) = F(u, µ) (16)

where L is a linear operator, and the nonlinear part R is defined for (u, µ) in a neighborhood of

(0, 0) ∈ Z×Rm. Here µ ∈ Rm is a parameter that we assume to be small. We suppose that F is Γ-

equivariant with respect to a representation τ of the group Γ. If we apply the parameter-dependent

center manifold 2.3 theorem for the equivariant differential equation (16), the reduced equation on

E0 has the general form:
du0

dt
= f(u0, µ),

with

τ(γ)f(u0, µ) = f(τ(γ)u0, µ), ∀u0 ∈ E0 and ∀γ ∈ Γ.

Since E0 is a real space of dimension n, we may regard f as a map f : Rn × Rm → Rn. Moreover,

Γ acts on Rn and f is equivariant for this action.

Suppose now that the action of Γ on Rn possesses an isotropy subgroup Σ with a one-dimensonal

fixed point space Fix(Σ). If we look for solutions in Fix(Σ), the reduced equation on the center

manifold restricts to a scalar equation. Recall that if Γ acts absolutely irreducibly on E0 then the

linearization of f at the origin is a multiple of the identity and we have Duf(0, µ) = c(µ)In where

In is the identity map of Rn.

Theorem 4.1 (Steady-state Equivariant Branching Lemma). We suppose that the assumptions

of theorem 2.2 hold. Assume that the compact group Γ acts linearly and that F is Γ-equivariant.

We suppose that Γ acts absolutely irreducibly on E0. We also suppose that L has 0 as an isolated

eigenvalue with finite multiplicity. If Σ is an isotropy subgroup of Γ with dim Fix(Σ) = 1 and if

c′(0) 6= 0, then it exists a unique branche of solutions with symmetry Σ.
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As a consequence, if the Hypotheses in Theorem (4.1) are satisfied we have the following charac-

terization for each isotropy subgroup Σ of Γ such that dim Fix(Σ) = 1 in E0, where either one of

the following situations occurs (where f(u0, µ) is the reduced vector field in Fix(Σ)):

(i) Suppose Σ = Γ. If Dµf(0, 0) 6= 0, there exists one branch of solution u0(µ). If in addition

D2
uuf(0, 0) 6= 0, then u2 = O(‖µ‖) (saddle-node bifurcation).

(ii) Suppose Σ < Γ and the normalizer N(Σ) acts trivially in Fix(Σ). Then f(u0, µ) = u0h(u0, µ)

and if D2
uµf(0, 0) 6= 0 there exists a branch of solution u0(µ). If in addition D2

uuf(0, 0) 6= 0,

then u0 = O(‖µ‖) (transcritical bifurcation).

(iii) Suppose Σ < Γ and the normalizer N(Σ) acts as −1 in Fix(Σ) (i.e. N(H)/H ' Z2) . Then

f(u0, µ) = u0h(u0, µ) with h an even function of u0. If D2
uµf(0, 0) 6= 0 there exists a branch

of solution ±u0(µ) such that if D3
uuuf(0, 0) 6= 0, then u2

0 = O(‖µ‖) (pitchfork bifurcation).

Usually, we use the following terminology:

• If dim Fix(Σ) = 1, then Σ is a maximal isotropy subgroup.

• When Σ < Γ, the bifurcating solutions in Fix(Σ) have lower symmetry than the basic solution

u = 0. This effect is called spontaneous symmetry breaking.

4.3 The Euclidean group & Planar lattices

4.3.1 Defintion

In real n-dimensional affine space Rn we chose an origin O and a coordinate frame so that any

point P is determined by its coordinates (x1, . . . , xn). The distance between P and Q is given by

d(P,Q)2 =
∑n

i=1(xi− yi)2. This gives Rn a Euclidean structure. The Euclidean Group E(n) is the

group of all linear or affine linear isometries acting on Rn: all linear transformations which preserve

the distances. It can be shown that any such transformation is a composition of an orthogonal

transformation O, i.e. an isometry which keeps the origin O fixed, and a translation by a vector `

where ` is a vector of Rn. The group of isometries which keeps the origin O fixed is isomorphic to

the real orthogonal group O(n) of n×n orthogonal matrices with real entries. Given any γ ∈ E(n)

we write γ = (O, e) ∈ O(n)× Rn. The composition of law is then:

γ ◦ γ′ = (OO′,O`+ `′)

This shows that the non compact Euclidean group E(n) is the semi-product O(n)nRn. From now

on, we will only focus on the two-dimensional case n = 2.
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4.3.2 Group action

The group E(2) acts on R2 in the following way,

γ · r = Or + `, for any γ = (O, `) and r ∈ R2.

For future references, we will use the following notations




θ · r = Rθr (rotation)

κ · r = κr (reflection)

` · r = r + ` (translation)

where

Rθ :=

(
cos θ sin θ

− sin θ cos θ

)
, κ :=

(
1 0

0 −1

)
,

and ` is any vector in R2.

Finally, for any γ ∈ E(2), its action on a function u(r) is given by

γ[u(r)] := u(γ−1 · r),

which defines the representation τ with τ(γ) · u(r) = γ[u(r)] = u(γ−1 · r).

4.3.3 Planar lattices

Let `1, `2 be a basis of R2. The set

L := {m1`1 +m2`2 | (m1,m2) ∈ Z2}

is a discrete subgroup of R2. It is called a lattice group because the orbit of a point in R2, under

the action of L forms a periodic lattice of points in R2. We define the dual lattice of lattice L

by

L∗ := {m1k1 +m2k2 | (m1,m2) ∈ Z2}
with `i · kj = δi,j .

The largest subgroup of O(2) which keeps the lattice invariant is called the holohedry of the

lattice. We summarize in Table 1 the different holohedries of the plane. As a consequence, the

restriction of E(2) on a square lattice is the symmetry group Γ = D4nT2 where T2 is the two-torus

and D4 = 〈ρ4, κ〉 where ρ4 is the rotation center at 0 and of angle π/2.

4.3.4 Some further results on the square lattice

First, let us consider the vector space

V =



v =

2∑

j=1

zje
2iπkj ·r + c.c | zj ∈ C, ‖kj‖ = 1




∼= C2,

where the isomorphism between V and C2 is given by v → z = (z1, z2).
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Name Holohedry Basis of L Basis of L∗
Hexagonal D6 `1 = ( 1√

3
, 1), `2 = ( 2√

3
, 0) k1 = (0, 1), k2 = (

√
3

2 ,−1
2)

Square D4 `1 = (1, 0), `2 = (0, 1) k1 = (1, 0), k2 = (0, 1)

Rhombic D2 `1 = (1,− cot θ), `2 = (0, cot θ) k1 = (1, 0), k2 = (cos θ, sin θ)

Table 1: Lattices in two dimension. 0 < θ < π
2 and θ 6= π

3 .

Lemma 4.5. The action of Γ = D4 n T2 on V is given by:




ρ4(z) = (z̄2, z1),

κ(z) = (z1, z̄2),

Θ(z) = (e−2iπθ1z1, e
−2iπθ2z2),

(17)

where Θ = θ1`1 + θ2`2 with θ1, θ2 ∈ [0, 1[.

Proof. Let v ∈ V and (z1, z2) ∈ C2 such that:

v(r) = z1e
2iπk1·r + z2e

2iπk2·r + c.c

We have:

ρ4[v(r)] = v
(
ρ−1

4 · r
)

= z1e
2iπk1·(ρ−1

4 r) + z2e
2iπk2·(ρ−1

4 r) + c.c

= z1e
2iπ(ρ4k1)·r + z2e

2iπ(ρ4k2)·r + c.c

= z1e
2iπk2·r + z2e

−2iπk1·r + c.c

= z̄2e
2iπk1·r + z1e

2iπk2·r + c.c

which implies that ρ4(z) = (z̄2, z1). We repeat the same procedure for κ and Θ.

For the square lattice, we can also find all isotropy subgroups Σ (up to conjugation) with dim Fix(Σ) =

1 and they are reported in Table 2.

Σ Generators of Σ Fix(Σ) dim Fix(Σ) Name

D4 ρ4, κ z1 = z2 ∈ R 1 Sport or Square

O(2)× Z2 ρ2
4, κ, [0, θ2] z1 ∈ R, z2 = 0 1 Roll

Table 2: Isotropy subgroups Σ (up to conjugation) with dim Fix(Σ) = 1.

Finally, we will conclude this section by computing a Taylor expansion of Γ-equivariant vector fields

up to order three. Let suppose that we have a vector field of the form

f(z) = (f1(z), f2(z)) ,
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that is equivarient with respect to the action (17). This means that for all γ ∈ Γ we have

γf(z) = f(γz).

For example, for γ = ρ4, this yields to the compatibility condition

(
f2(z1, z2), f1(z1, z2)

)
= (f1(z̄2, z1), f2(z̄2, z1)) .

Let consider first only first order terms

f1(z1, z2) = µ1z1 + c1z̄1 + c2z2 + c3z̄2,

f2(z1, z2) = µ2z2 + d1z̄2 + d2z1 + d3z̄1,

where µj are bifurcation parameters, and the cj and dj are constants. Applying first, the compati-

bility condition for translation Θ, we find that all coefficients cj and dj must be zero for j = 1, 2, 3.

Then applying the rotation tells us that µ1 = µ2 = µ where µ is real. As we should have had

suspected find that to linear order

f1(z1, z2) = µz1,

f2(z1, z2) = µz2.

Because of the translation equivariance, one can check that f(z) cannot possess any quadratic terms

and only cubic terms of the form

z1|z1|2, z1|z2|2, z2|z1|2, z2|z2|2,

transform in the appropriate way. As a consequence, to cubic order, the vector field should have

the form

f1(z1, z2) = µz1 + a1z1|z1|2 + a2z1|z2|2,
f2(z1, z2) = µz2 + b1z2|z1|2 + b2z2|z2|2,

where aj and bj are constants. The reflection equivariance leads to a1 and a2 being real, while the

rotation equivariance implies b1 = a2 and b2 = a1. So in the end, the D4 n T2-equivariant vector

field truncated at cubic order is

f1(z1, z2) = µz1 + a1z1|z1|2 + a2z1|z2|2,
f2(z1, z2) = µz2 + a1z2|z2|2 + a2z2|z1|2,

where µ, a1 and a2 are real.
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5 Application – Pattern formation in the visual cortex

Let us recall that we study equation (2) which is of the form

∂u(r, t)

∂t
= −u(r, t) +

∫

R2

w(‖r− r′‖)S(u(r′, t), µ)dr′,

with the following hypotheses.

Hypothesis 5.1 (Nonlinearity). We suppose that the nonlinear function S satisfies the following

assumptions:

(i) (u, µ) 7→ S(u, µ) is analytic on R2 with |S(u, µ)| ≤ sm and 0 ≤ DuS(u, µ) ≤ µsm for all

(u, µ) ∈ R× (0,+∞) for some sm > 0;

(ii) S(0, µ) = 0 for all µ ∈ R and DuS(0, µ) = µs1 for some s1 > 0.

Note that the first set of assumptions (analyticity of S with respect to both variables) is very strong

and could be weakened to S ∈ C k(R2,R) for some k ≥ 2. But, in practice, the following sigmoidal

function is used often

S(u, µ) = tanh(µu),

so that we decided to stick with such a strong assumption. The second one ensures that S is a

bounded non decreasing function with uniform Lipschitz constant. The last set of hypotheses has

already been discussed in the first section of these notes.

Hypothesis 5.2 (Kernel & Dispersion relation). We suppose that w ∈ H2(R2) ∩ L1
η(R2) is such

that the dispersion relation λ(‖k‖, µ) = −1 + µs1ŵ(‖k‖) satisfies:

(i) λ(kc, µc) = 0 and λ(‖k‖, µc) 6= 0 for all ‖k‖ 6= kc;

(ii) for all µ < µc, we have λ(‖k‖, µ) < 0 for all k ∈ R2;

(iii) k → λ(k, µc) has a maximum at k = kc.

The condition that w ∈ H2(R2) ensures by Sobolev embedding that w ∈ L∞(R2) and the extra

condition that w ∈ L1
η(R2) :=

{
u ∈ L1(R) | (r 7→ eη‖r‖u(r) ∈ L1(R2)

}
is only there to ensures

smoothness properties of the Fourier transform ŵ. Finally, the set of assumptions (i) − (iii) have

been explained in length in the first section (see Figure 5). From now on, we assume that the

hypotheses on the nonlinearity and the kernel are satisfied. It is possible to show that the Cauchy

problem associated to the neural field equation (2) is well posed on various Banach spaces and

that solutions are unique and global in time. Because our bifurcation problem is for the moment

infinite-dimensional, we are going to restrict ourselves to solutions which are doubly periodic on a

square lattice and in order to slightly simplify our notation we are going to suppose that kc = 1 so

that `1 = k1 = (1, 0) and `2 = k2 = (0, 1) are the generators of the square lattice L and its dual
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L∗. As our function is defined on R2 and as we wish to work on a commutative algebra for the

function space, we will set our problem on Z =
{
u ∈ H2(D) | u(r + `) = u(r), ∀` ∈ L

}
, where D is

the fundamental domain on the square lattice, from which we will have

‖uv‖Z . ‖u‖Z‖v‖Z .

The above property is really important as it makes Z a commutative algebra with respect to

pointwise multiplication. We denote X = L2(D). It is worth mentioning that any function in X
can be decomposed as a sum of Fourier modes that lie on the dual lattice:

u(r, t) =
∑

k∈L∗
zk(t)e2iπr·k + c.c. .

Let us now write the neural field equation (2) into the following form

du

dt
= Lu+ R(u, ε), ε := µ− µc, (18)

where

Lu(r) := −u(r) + µcs1

∫

R2

w(‖r− r′‖)u(r′)dr′, (19a)

R(u, ε) :=

∫

R2

w(‖r− r′‖)S(u(r′, t), µc + ε)dr′ − µcs1

∫

R2

w(‖r− r′‖)u(r′)dr′. (19b)

It is straightforward to check that the following properties are satisfied.

Lemma 5.1. Suppose that all the above hypotheses on w and S are satisfied, then we have:

(i) L ∈ L (Z,X ) is compact and sectorial on Z and thus satisfies ‖(iω − L)−1‖L (X ) ≤ c
|ω| for

some constant c and |ω| large enough;

(ii) for all k ≥ 0, we have that R ∈ C k(Z × R,Z);

(iii) the spectrum σ of L is discrete and the set σ0 consists of a finite number of eigenvalues with

finite algebraic multiplicities;

(iv) both L and R are equivariant with respect to the group action of Γ = D4 n T2 via γ[u(r)] :=

u(γ−1 · r) for any γ ∈ Γ;

(v) the representation τ : Z → Z with τ(γ) · u = γ[u] is absolutely irreducible.

The dimension of the bifurcation problem depends on the number of points k ∈ L∗ that lie on the

critical circle of radius kc = 1. Here, we work with the fundamental representation of D4 n T2 so

that there exists two critical orthonormal vectors k1 = (1, 0) and k2 = (0, 1) that lie on the critical

circle so that the corresponding center manifold if 4-dimensional.

Remark 5.1. It is important to note that there exists another absolutely irreducible representation

of D4 n T2 which is 8-dimensional, in that case we say that L is a superlattice (see [3, 5]).
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As a consequence, the kernel E0 of L is given by

E0 =



u ∈ Z | u(r) =

2∑

j=1

zje
2iπkj ·r + c.c for (z1, z2) ∈ C2




∼= C2,

where the identification to C2 is done through the vector space V , defined in the previous section.

We can apply the parameter center manifold theorem with symmetries and say that all small

bounded solutions of (19) can be written as

u(r, t) = u0(r, t) + Ψ(u0(r, t), ε), u0(r, t) =

2∑

j=1

zj(t)e
2iπkj ·r + c.c ,

where (z1(t), z2(t)) satisfy

dz1

dt
= z1

(
c(ε) + a1|z1|2 + a2|z2|2

)
+ h.o.t., (20a)

dz2

dt
= z2

(
c(ε) + a1|z2|2 + a2|z1|2

)
+ h.o.t., (20b)

where h.o.t. stands for higher order terms. Here, c(ε)I4 = Duf(0, ε) where f is the associated

reduced vector field. It is a direct computation to check that in our case

c(ε) =
ε

µc
=
µ− µc
µc

,

such that the condition c′(0) 6= 0 of the Equivariant Branching Lemma is satisfied. As a conse-

quence, for each isotropy subgroup Σ ⊂ Γ with dim Fix(Σ) = 1, there exists a bifurcating branch

of solutions with symmetry Σ. All isotropy subgroups Σ with dim Fix(Σ) = 1 are listed in Table

2. We have already seen that very close to the bifurcation µ ∼ µc, the solutions should be well

approximated, to leading order, by

u(r) ∼= z1e
2iπk1·r + z2e

2iπk2·r + c.c.

In the case of the symmetry branch Σ = D4, we have z1 = z2 = z ∈ R and

u(r) ∼= 2z (cos(2πx) + cos(2πy))

and for Σ = O(2)× Z2, we have z1 = z ∈ R and z2 = 0, and we obtain

u(r) ∼= 2z cos(2πx)

where r = (x, y) ∈ R2.

In Figure 6, we represented each geometric structures using the following strategy. When u(r) > 0

we say that the cortical area is activated (black) and when u(r) < 0 the area is inactive (white). As

a consequence, Figures 6(b) and 6(d) are the first visual hallucinations that we recover from this

mathematical analysis. Now, we would like to know which one of these two possible hallucinations

is stable with respect to the dynamics. The very first task is to compute the constants a1 and a2

which appear in (20).
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(a) D4 (b) D4

(c) O(2)× Z2 (d) O(2)× Z2

Figure 6: Geometrical structures (planforms) corresponding to each isotropy subgroups from Table 2. To

the left, the planforms are represented in V1 and to the right they are given in the retinal field and thus

correspond to possible visual hallucinations.
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We have the following Lemma.

Lemma 5.2. The coefficients a1 and a2 are given by:

a1 = ŵkc

(
s2

2

[
ŵ0

1− ŵ0/ŵkc

+
ŵ2kc

2(1− ŵ2kc/ŵkc)

]
+
s3

2

)

a2 = ŵkc

(
s2

2

[
ŵ0

1− ŵ0/ŵkc

+ 2
ŵk1+k2

1− ŵk1+k2/ŵkc

]
+ s3

)
,

where sk := ∂kuS(0, µc) and ŵk :=
∫
R2 w(‖r‖)e−2iπk·rdr.

Proof. We first remark that:

S(u, µ) = µs1u+
s2

2
u2 +

s3

6
u3 + h.o.t.

Then we define a scalar product on X :

〈u, v〉 =

∫

D
u(r)v̄(r)dr

where v̄(r) is the complex conjugate of v(r) and D = [0, 1] × [0, 1] is the fundamental domain of

the lattice. We denote {
ζ1 = e2iπk1·r

ζ2 = e2iπk2·r

We write

u(r, t) = z1(t)ζ1 + z1(t)ζ1 + z2(t)ζ2 + z2(t)ζ2 + Ψ(z1, z̄1, z2, z̄2, µ),

with the Taylor expansion

Ψ(z1, z̄1, z2, z̄2, µ) =
∑

l1,l2,p1,p2,r>1

zl11 z̄
l2
1 z

p1
2 z̄

p2
2 µ

rΨl1,l2,p1,p2,r.

We obtain after identification at each order the system





0 = −2LΨ2,1,0,0,0 + 2a1ζ1 − 4R2(Ψ1,1,0,0,0, ζ1)− 4R2(Ψ2,0,0,0,0, ζ̄1)− 6R3(ζ1, ζ1, ζ̄1),

0 = −LΨ1,1,1,0,0 + a2ζ2 − 2R2(Ψ0,1,1,0,0, ζ1)− 2R2(Ψ1,0,1,0,0, ζ̄1)− 2R2(Ψ1,1,0,0,0, ζ2)

−6R3(ζ2, ζ1, ζ̄1).

So that we find that




a1 = 〈2R2(Ψ1,1,0,0,0, ζ1) + 2R2(Ψ2,0,0,0,0, ζ̄1) + 3R3(ζ1, ζ1, ζ̄1), ζ1〉,
a2 = 〈2R2(Ψ0,1,1,0,0, ζ1) + 2R2(Ψ1,0,1,0,0, ζ̄1) + 2R2(Ψ1,1,0,0,0, ζ2)

+6R3(ζ2, ζ1, ζ̄1), ζ2〉.

Here, we have set

R2(u1, u2)(r) :=
s2

2

∫

R2

w(‖r− r′‖)u1(r′)u2(r′)dr′, (21)

R3(u1, u2, u3)(r) :=
s3

6

∫

R2

w(‖r− r′‖)u1(r′)u2(r′)u3(r′)dr′. (22)
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Finally, we have to solve the following set of equations





0 = 2LΨ2,0,0,0,0 + 2R2(ζ1, ζ1),

0 = LΨ1,1,0,0,0 + 2R2(ζ1, ζ̄1),

0 = LΨ0,1,1,0,0 + 2R2(ζ2, ζ̄1),

0 = LΨ1,0,1,0,0 + 2R2(ζ1, ζ2),

which solutions are given by





Ψ2,0,0,0,0 = Vect(ζ1, ζ̄1, ζ2, ζ̄2) + s2
2

ŵ2kc
1−µcs1ŵ2kc

ζ2
1 ,

Ψ1,1,0,0,0 = Vect(ζ1, ζ̄1, ζ2, ζ̄2) + 2 s22
ŵ0

1−µcs1ŵ0
,

Ψ0,1,1,0,0 = Vect(ζ1, ζ̄1, ζ2, ζ̄2) + 2 s22
ŵk1+k2

1−µcs1ŵk1+k2
ζ2ζ̄1,

Ψ1,0,1,0,0 = Vect(ζ1, ζ̄1, ζ2, ζ̄2) + 2 s22
ŵk1+k2

1−µcs1ŵk1+k2
ζ2ζ1,

where we used the fact that ŵk1+k2 = ŵk2−k1 and ŵjkc = ŵjk1 = ŵjk2 for j = 1, 2. Then, it is

enough to notice that for example,

〈R2(Ψ1,1,0,0,0, ζ1), ζ1〉 =
s2

2

2

ŵ0ŵkc

1− µcs1ŵ0
,

and use the fact that µcs1ŵkc = 1 to obtain the desired formula for a1 and a2.

Lemma 5.3. For the reduced system (20), we have the following dichotomy:

• The square solution z1 = z2 = z ∈ R with symmetry D4 is stable if and only if a1 < −|a2| < 0.

• The roll solution z1 = z ∈ R, z2 = 0 with symmetry O(2) × Z2 is stable is and only if

a2 < a1 < 0.

These two branches of solutions are mutually exclusive for the stability, i.e. we cannot have at the

same time both solutions stable.

As an extension, to this Lemma, these solutions will remain stable for the full dynamics of equation

(19) within the class of perturbations having the same symmetries as they are normally hyperbolic

for the reduced system (20). Finally, depending on the specific form of the nonlinearity S and the

connectivity kernel w, we expect to see either spots or stripes close to the bifurcation µ ∼ µc.
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6 Conclusion & Perspectives

Take home message. Geometric visual hallucinations can be explained simply by symmetry-

breaking bifurcation (Turing patterns) on the visual cortex abstracted by R2 by the action of

discrete subgroups of the Euclidean group and the correspondance between visual field and visual

cortex with a log-polar map.

What’s missing? In our case study, we have only focused on the square lattice and totally

ignored the hexagonal case. The analysis in that case is slightly more involved and the fundamental

absolutely irreducible representation is now 6-dimensional. We let as an exercice to find all the

axial isotropy subgroups (i.e. all isotropy subgroups with one-dimensional fix space) and conduct

the same analysis as we did here. The results can be found in [1, 3, 5].

Extensions. This study can be extended to incorporate some kind of functional architecture

of the visual cortex, see the beautiful paper [1], where this time the visual cortex is idealized to

R2 × S1. That is, to each point of the visual field we associate a point in the cortex (r, θ) where

θ retains the preferred local orientation. This model has been extended into several directions by

adding more features (spatial frequency and texture), see [5] for a recent review on the subject.

Equivariant bifurcation. Steady-state equivariant bifurcations are now well documented but

in the case of Hopf bifurcations with square or hexagonal symmetries, there are still some open

problem left. One can ask the question to wether such symmetry-breaking bifurcations can be

transposed into non-Euclidean geometry. This question has been partially treated in the case of

hyperbolic geometry (Poincaré disk) in [5], see the references therein.

Disclaimer. One should not take for granted the neural fields formalism. Indeed, any other

evolution equation equivariant with respect to the Euclidean symmetries and having a steady-state

bifurcation would produce exactly the same type of geometric visual hallucinations. The equations

are over simplified and our primary visual cortex does not reduce to a single neural field equation

(see Figure 7). In fact, our analysis only tells us something about the geometry of our network:

i.e. the invariance of connectivity kernel with resect to some action of the Euclidean group of

transformations of the plane.
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@tu(x, t) = �u(x, t) +

Z

R
W (x � y)S(u(y, t))dy

Figure 7
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