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Abstract

These notes correspond to research lectures on Partial Differential Equations for Neuro-
sciences given at CIRM, 04-08/07/2017, during the Summer School on PDE & Probability for
Life Sciences. They give a self-content overview of pattern formation in the primary visual
cortex allowing one to explain psychophysical experiments and recordings of what is referred to
as geometric visual hallucinations in the neuroscience community. The lecture is divided into
several parts including a rough presentation on the modeling of cortical areas via neural field
equations. Other parts deal with notions of equivariant bifurcation theory together with center
manifold results in infinite-dynamical systems which will be the cornerstone of our analysis.
Finally, in the last part, we shall use all the theoretical results to provide a comprehensive
explanation of the formation of geometric visual hallucinations through Turing patterns.

Turing originally considered the problem of how animal coat patterns develop, suggesting
that chemical markers in the skin comprise a system of diffusion-coupled chemical reactions
among substances called morphogens [13]. He showed that in a two-component reaction-diffusion
system, a state of uniform chemical concentration can undergo a diffusion-driven instability
leading to the formation of a spatially inhomogeneous state. Ever since the pioneering work
of Turing on morphogenesis, there has been a great deal of interest in spontaneous pattern
formation in physical and biological systems. In the neural context, Wilson and Cowan [17]
proposed a non-local version of Turing’s diffusion-driven mechanism, based on competition be-
tween short-range excitation and longer-range inhibition. Here interactions are mediated, not
by molecular diffusion, but by long-range axonal connections. Since then, this neural version of
the Turing instability has been applied to a number of problems concerning cortical dynamics.
Examples in visual neuroscience include the ring model of orientation tuning, cortical models of
geometric visual hallucinations (that will be studied here) and developmental models of cortical
maps.presentreview theoretical approaches to studying spontaneous pattern formation in neural
field models, always emphasizing the important role that symmetries play.

Most of the material on center manifold is taken from the book of Haragus & Iooss [7] and on
equivariant bifurcations from the book of Chossat & Lauterbach [2]. One other complementary
reference is the book of Golubitsky-Stewart-Schaeffer [6]. On pattern formation, we refer to the

very interesting book of Hoyle [9].
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1 Modeling cortical visual areas

1.1 Some properties of the visual cortex

In this very first section, we roughly describe the visual pathway (see Figure 1 for a sketch) and
identify the specific visual area that we will be modeling, namely the primary visual cortex (V1 in
short) which is the very first visual area receiving information from the retina through the lateral
Geniculate body (LGN in short).

Visual field of left eye Visual field of right eye

Temporal half
of right retina

Optic tract
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Primary visual
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cortex)

Figure 1: Sketch of the human visual pathway.

We first give a list of experimental observations that will be used in our modeling assumptions later

on in this section.

e The cortex is a folded sheet of width 2cm.

e It has a layered structure (i.e. 6 identified layers) and is retinotopically organized: the
mapping between the visual field and the cortical coordinates is approximatively log-polar

(see Figure 2).

e From the LGN the information is transmitted to the visual cortex (back of the head) mostly
to the area V1.

e Where does the information go after V17 Mainly: V2,V4, MT, MST... (there are 30 visual

areas that are different by their architecture, connectivity or functional properties).

e V1 is spatially organized in columns that share the same preferred functional properties

(orientation, ocular dominance, spatial frequency, direction of motion, color etc...).

e Local excitatory/inhibitory connections are homogeneous, whereas long-range connections

(mainly excitatory neurons) are patchy, modulatory and anisotropic.



Figure 2: Retinotopic organization of the primary visual cortex. To one point in the visual field (left image)

corresponds one point in the primary visual cortex (right image). The associated map transformation is

2+0.66
should be shifted in cortical space, but we did not intend to represent it on this cartoon.

approzimatively log-polar (roughly f(z) = log (”0'33)). In fact the left and right part of the visual field

1.2 Neural fields models

In this section, we start by proposing a local models for n interacting neural masses that we will
then generalize by taking a formal continuum limit. We suppose that each neural population i is
described by its average membrane potential V;(¢) or by its average instantaneous firing
rate v;(t) with v;(t) = S;(Vi(t)), where S; is of sigmoidal form (think of a tangent hyperbolic
function). Then, a single action potential from neurons in population j, is seen as a post-synaptic
potential PSP;;(t — s) by neurons in population i (s is the time of the spike hitting the synapse
and ¢ the time after the spike). The number of spikes arriving between ¢ and ¢ + dt is v;(t)dt, such

that the average membrane potential of population ¢ is:
t
Vi) =3 [ PSPyt 5)5(Vi(s)ds
- to
J

We further suppose that a post-synaptic potential has the same shape no matter which presynaptic

population caused it, this leads to the relationship
PSPU(t) = wijPSPi(t),

where w;; is the average strength of the post-synaptic potential and if w;; > 0 (resp. w;; < 0)
population j excites (resp. inhibts) population i. Now, if we assume that PSP;(t) = e "7 H(t) or

equivalently
dPSP;(t
R P3O | psir) = s
we end up with a system of ODEs:

avi(t)
T

+Vi(t) = Zwijsj(%(t)) + 1L, (),

which can be written in vector form:

dv

g = "MV(1) + W-S(V(1)) + Leas(1).



Here the matrix M is set to the diagonal matrix M := diag [(1/71-)1.:17“_ n}

So far we have not made any assumptions about the topology of the underlying neural network, that
is, the structure of the weight matrix W with components w; ;. If one looks at a region of cortex
such as primary visual cortex (V1), one finds that it has a characteristic spatial structure, in which
a high density of neurons (10°mm™3 in primates) are distributed according to an approximately
two-dimensional (2D) architecture. That is, the physical location of a vertical column of neurons
within the two-dimensional cortical sheet often reflects the specific information processing role of
that population of neurons. In V1, we have already seen that there is an orderly retinotopic mapping
of the visual field onto the cortical surface, with left and right halves of the visual field mapped
onto right and left visual cortices respectively. This suggests labeling neurons according to their
spatial location in cortex. This idea of labeling allows one to formally derive a continuum neural
field model of cortex. Let Q € R?, d = 1,2,3 be a part of the cortex that is under consideration.
If we note V(r,t) the state vector at point r of Q and if we introduce the n x n matrix function

W(r, 1/, t), we obtain the following time evolution for V(r, )

AV (r, 1)

pram —MV(r,t) + /QW(r,r’,t)S(V(r’,t))dr’ + Tepe(r, 1). (1)

Here, V(r,t) represents an average membrane potential at point r € € in the cortex and time t. We

refer to the celebrated paper of Wilson-Cowan [16] for further discussion on the above derivation.

Remark 1.1. Following the same basic procedure, it is straightforward to incorporate into the
neural field equation (1) additional features such as synaptic depression, adaptive thresholds or

azxonal propagation delays.

1.3 Geometric visual hallucinations

Geometric visual hallucinations are seen in many situations, for example, after being exposed to
flickering lights, after the administration of certain anesthetics, on waking up or falling asleep,
following deep binocular pressure on one’s eyeballs, and shortly after the ingesting of drugs such
as LSD and marijuana (this will be our modeling assumption). We refer to Figure 3 for various
reproductions of experienced visual hallucinations. We would like to propose a cortical model which
allows one to explain the formation of such geometric visual hallucinations. Our main assumption
is that these hallucinations are solely produced in the primary visual cortex and should reflect the
spontaneous emergence of spatial organisation of the cortical activity that we identify to the average
membrane potential from the previous section. It is thus natural to apply the retinotopic map to
see how such visual patterns look like in V1. For example, in the case of funnel and spiral (see
Figure 3 (a)-(b)), we can deduce that the corresponding patterns in the visual cortex are stripes as
shown in Figure 4. Applying the same procedure to other types of visual hallucination would lead
to the conclusion that corresponding patterns in the visual cortex could spots organized on planar

lattice (square or hexagonal).
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Figure 3: Various reported visual hallucinations. Redrawn from Tyler (1978), Oster (1970) and Siegel (1977).

With these conclusions, we can envision to propose a model which would produce Turing patterns
in the sense of spatially periodic patterns on the visual area V1. We are going to see these patterns
as spontaneous symmetry breaking bifurcated solutions of a neural field equation of the form of
(1). Indeed, we assume that at rest, i.e. without any drug consumption and with closed eyes,
the cortical activity is stationary and homogenous. Actually, to simplify the presentation, we will
suppose that the activity is zero across V1. The ingestion of drug will be traduced by the increase
of a parameter p which will modify the nonlinear firing rate function S. Hopefully, passing a critical
value p. the rest sate will become to be unstable with respect to doubly periodic perturbations and
a bifurcation will occur. Because of the symmetries that we will impose on our network, we will
see emerging new branches of solutions (with less symmetry than the rest state which has always
all the symmetries of the network). These new solutions will be interpreted as geometric visual

hallucinations once seen in the visual field.

Further modeling assumptions. One important remark is that the visual hallucinations that
we consider here are static and thus we have to suppose that the topology of our network does
not change in time, i.e. W(r,r’,t) = W(r,r’). We also assume that the primary visual cortex
does not receive any input from other cortical areas and so the external input I.,; is set to zero:
Teat(r,t) = 0. We will suppose that the cortical activity V(r,t) is one-dimensional and we will
denote it u(r,t) from now to emphasize its a scalar function. Regarding the assumption on the
dependance of the function S with respect to the parameter p, we will simply use S(u) := S(u, u)
with S(0,u) = 0 for all g and D,S(0, ) = psy for some s; > 0. Finally, we idealize the visual

cortex €2 to the Euclidean plane R?, this is motivated by the essential two-dimensional structure



of the visual cortex where we neglect the width. This hypothesis also allows us to impose some
symmetry assumptions on the network topology, i.e. the connectivity kernel W. Namely, we want
Euclidean invariance for the connectivity kernel and one natural way to achieve it is to suppose
that W(r,r") = w(||r — r'||), where || - || is the usual Euclidean norm. Finally, we will suppose that

local excitatory (i.e. w(0) > 0) and laterally inhibitory (i.e. w(r) < 0 for r large enough).

%
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Figure 4: Action of the retinocortical map on the funnel and spiral form constant. (a) Image in the visual
field; (b) V1 map of the image.

We are thus let to study the following neural field equation

aug; t) = —u(r,t) + /R2 w(|r — r'[)S(u(r’, t), p)dr’, @)

where we have rescaled time to suppose that M can be taken to be equal to identity matrix (i.e.
1 in our scalar case). We can check that u(r,t) = 0 is always a solution because of our hypothesis
on the nonlinearity S (recall that we suppose that S(0, u) = 0 for all x). Let us linearize the above

equation (2) around this rest state:

e = mutn) b [l = e Q

In order to get the continuous part of the spectrum, we look for special solutions of the form

u(r,t) = eMelKT for some given vector k € R?, and we obtain the dispersion relation
Ak, ) = =1+ psyw([|k[]), (4)

where w is the Fourier transform of w. Here, we made a slight abuse of notation by explicitly

writing @ as a function of || - ||. We show in Figure 5 how such a dispersion relation is modified as



Figure 5: Schematic visualization of the connectivity kernel w satisfying our assumptions (locally excitatory

and laterally inhibitory) together the corresponding dispersion relation given in equation (4).

1 is increased. As a consequence, in what will follow, we suppose that there exists a unique couple
(fte, ke) € (0,00)2 such that the following conditions hold.

Hypothesis 1.1 (Dispersion relation). The dispersion relation (4) of the linearized equation (3)

satisfies:

(i) Alke, pie) = 0 and A(|[K]|, pe) # O for all |[k|[ # k;
(ii) for all u < pie, we have M(||k||, ) < 0 for all k € R?;

(i1i) k — Ak, pe) has a mazimum at k = k.

We clearly see that the above hypotheses imply that for p > p., there will be an annulus of unstable
eigenmodes while for p < p. the rest state is linearly stable. We can already see what will be the

main difficulties to overcome:

e there is continuous spectrum due to the Euclidean symmetry of the problem;

e a whole circle of eigenmodes becomes neutrally unstable at © = u. so that the center part of

the spectrum is infinite-dimensional;

e passed i > L., the rest state is unstable to an annulus of unstable eigenmodes so that the

dynamics nearby should be intricate.

Main idea. We restrict ourselves to the function space of doubly periodic functions such that the
spectrum of the linearized operator is discrete with finitely many eigenvalues on the center part.
We also only study the dynamics of (2) in a neighborhood of u ~ 0 and p ~ p. where one can rely
on various techniques such as the construction of center manifolds and equivariant bifurcations, as

our reduced problem will still have some symmetries reminiscent of the Euclidean ones.



2 Center manifolds in infinite-dimensional dynamical systems

Center manifolds are fundamental for the study of dynamical systems near critical situations and in
particular in bifurcation theory. Starting with an infinite-dimensional problem, the center manifold
theorem will reduce the study of small solutions, staying sufficiently close to 0, to that of small
solutions of a reduced system with finite dimension. The solutions on the center manifold are
described by a finite-dimensional system of ordinary differential equations, also called the reduced
system. The very first results on center manifolds go back to the pioneering works of Pliss [12]
and Kelley [10] in the finite-dimensional setting. Regarding extensions to the infinite-dimensional
setting we can refer to [8, 11, 15] and references therein together with the recent comprehensive book
of Haragus & Iooss [7] from which these notes are partially taken from. Center manifold theorems
have proved its full strength in studying local bifurcations in infinite-dimensional systems and led to
significant progress in understanding of some nonlinear phenomena in partial differential equations,
including applications in pattern formation, water wave problems or population dynamics. In this
lecture, we will see how to apply such results in the context of geometric visual hallucinations that

can be interpreted as pattern forming states on the visual cortex.

2.1 Notations and definitions

Consider two (complex or real) Banach spaces X and ). We shall use the following notations:

o €F(V,X) is the Banach space of k-times continuously differentiable functions F : Y — X

equipped with the norm on all derivatives up to order k,

[Fllgr = max (Sup (HDjF(y)Hf(yf,X))) :
7=0,....k yeY

e Z(Y,X) is the Banach space of linear bounded operators L : ) — X', equipped with operator

norm:
1Ll y,x) = sup (|[Lullx),
l[ully=1
it Y =X, we write Z()) = Z(Y, X).
e For a linear operator L : Y — X, we denote its range by imL:

imL={Lue X |ueY}CX,

and its kernel by kerL:
kerL={ue Y |Lu=0} C ).

e Assume that Y — X with continuous embedding. For a linear operator L € £ (), X), we
denote by p(L), or simply p, the resolvent set of L:

p={ e C| ANid—-L:Y — X is bijective }.



The complement of the resolvent set is the spectrum o (L), or simply o,

o=C\{p}.

Remark 2.1. When L is real, both the resolvent set and the spectrum of L are symmetric with

respect to the real axis in the complex plane.

2.2 Local center manifold
Let X, and Z be Banach spaces such that:
Z—Y—>X

with continuous embeddings. We consider a differential equation in X of the form:

du
5= Lu+ R(u) (5)

in which we assume that the linear part L and the nonlinear part R are such that the following
holds.

Hypothesis 2.1 (Regularity). We assume that L and R in (5) have the following properties:
(i) Le L(Z,X);
(i3) for some k > 2, there exists a neighborhood V C Z of 0 such that R € €*(V,Y) and
R(0) =0, DR(0)=0.

Hypothesis 2.2 (Spectral decomposition). Consider the spectrum o of the linear operator L, and
write:

oc=o0oyUogUo_

in which
oy ={A€o|RerA>0}, op={r€oc|ReA=0}, o_={Neco|Re)<0}
We assume that:
(i) there exists a positive constant vy such that

inf (ReX) >, sup (Re\) < —v;
A€oy AEo_

(ii) the set oy consists of a finite number of eigenvalues with finite algebraic multiplicities.

10



Hypothesis 2.3 (Resolvent estimates). Assume that there exist positive constants wy > 0, ¢ > 0
and o € [0,1) such that for all w € R with |w| > wo, we have that iw belongs to the resolvent set of
L and

c
l(w—L) g <
(X) w]
. _ c
| (iw — L) 1”2(37,2) < W

Remark 2.2. [t is important to notice that the above Hypotheses can only be satisfied in the
semilinear case Y C X with Y # X. Usually, a weaker assumption is required for the linear operator
L, but we rather prefer to give the above characterizations as they are easier to verify in practice.
It is also interesting to note that when, X, Y, and Z are all Hilbert spaces, then one needs only to
check that only the first inequality of Hypothesis 2.3 is satisfied. In Hilbert spaces, for operators L

that are sectorial and generate an analytic semigroup, then Hypothesis 2.3 is automatically satisfied.

As a consequence of Hypothesis 2.2 (ii), we can define the spectral projection Py € Z(X), corre-
sponding to og, by the Dunford formula:

1
Pyo=— [ (\id — L)~ td)\
0 20 F( I ) ) (6)

where I is a simple, oriented counterclockwise, Jordan curve surrounding o and lying entirely in
{A € C | |Re\| <~v}. Then

P2=P,, PyLu=LPyu YucZ,

and imPy is finite-dimensional (o( consists of a finite number of eigenvalues with finite algebraic
multiplicities). In Particular, it satisfies imPy C Z and Py € L(X, Z). We define a second projector
P,: X = X by

Py, =1d—- Py

which also satisfies
P2 =P,, P,Lu=LPju Yue Z,

and

Pr,e L(X)NLY)NZL(Z).
We consider the spectral subspaces associated with these two projections:
& =imPg=kerP, C Z, A =imP, =kerPyC X
which provide the decomposition:
X=X, &.

We also denote
Zn=PprZcCcZ, Yh=Ppryc)y

and denote by Ly € Z(&) and Ly, € £ (25, X},) the restrictions of L to & and Zj,. The spectrum
of Ly is og and the spectrum of Ly is o4 Uo_.

11



Theorem 2.1 (Center manifold theorem). Assume that hypotheses 2.1, 2.2 and 2.3 hold. Then
there exists a map U € €*(Ey, 23,), with

v(0)=0, DY(0)=0,
and a neighborhood O of 0 in Z such that the manifold:
Mo = {ug+ V(ug) | up € &} C Z
has the following properties:

(i) My is locally invariant: if u is a solution of equation (5) satisfying u(0) € Mo N O and
u(t) € O for allt € [0,T], then u(t) € Mg for all t € [0,T).
(ii) Mo contains the set of bounded solutions of (5) staying in O for all t € R.

The manifold My is called a local center manifold of (5) and the map ¥ is referred to as the

reduction function.

Let u be a solution of (5) which belongs to My, then u = ug + ¥(ug) and ug satisfies:

du
T; = Louo + PoR(uo + ¥(uo))- (7)

The reduction function U satisfies:
D¥ (ug)(Louo + PoR(up + ¥(up))) = Lp¥(uo) + PrR(uo + ¥(uo)), Vuo € &. (8)

Proof. The proof is in spirit very close to the one presented in the finite-dimensional case where
one needs to work on the function space of exponentially growing functions and modify (truncate)
the nonlinear part R(u) in order to obtain small Lipschitz constant via R(u) = x(uo/€)R(u)
where x is a smooth bounded cut-off function taking values in [0, 1]. If we write any solution of (5)

u = ug + up, where ug = Pou € & and uj, = Pu € Z,, we obtain a system

duo

d
% = Lyup, + PpR(u). (9b)

Then the idea is to use a fixed-point argument for the above system (9). First, we notice that

Hypothesis 2.3 allows us to solve the second equation on the hyperbolic part such that
up, = KpPrR(u),
for a linear map K, € 2 (€,(R, V1), 6, (R, Z3)), and some n > 0, with

1Kl 2@, @)%, w20 < CN),
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where C : [0,~] — R is continuous. We refer to [7, Appendix B.2] for a proof of the above statement.

We can finally write system (9) as

uo(t) = Soc(u, t, ug(0)) := eXolug(0) + /O t =P R (u(s))ds, (10a)

up = Sh?e(u) = KhPhRE(u), (10b)

where uy(0) € & is arbitrary. Note that elo? exists since & is finite-dimensional. We will look for

solutions

u = (uO,Uh) S N”he = an(R,go) X CKU(R, Be(Zh)>7
with 0 < n <~ and € € (0,¢y). More precisely, using a fixed point argument for the map
Se(ua UO(O)) = (SO,E(U> ) UO(O))v Sh,e(u)) )

which enjoys the properties

e Sc(-,up(0)) : Nyj.e = N e is well defined,

e S.(-,up(0)) is a contraction with respect to the norm of €,(R, X') for € small enough and any
n€10,7),

one can show that system (10) has a unique solution v = (ug,up) = A(ug(0)) € N for any
uo(0) € &. We define the map ¥ of the theorem via

(u0(0), ¥(up(0))) := A(uo(0))(0),  for all ug(0) € &.

The fixed point argument gives naturally the Lipschitz continuity of the map W. In order to get
the €* regularity of ¥ one needs to use scale of Banach spaces to ensure the regularity of R¢ on
exponentially growing functions spaces. More precisely, it can be proved that R : €,(R, Z) —
%:(R,Y) is €* for any 0 < n < ¢/k and ¢ > 0 which in turn can be used to prove the desired
regularity for U (see [7, 14] for further details). ]

2.3 Parameter-dependent center manifold

We consider a parameter-dependent differential equation in X of the form

i—? =Lu+ R(u, p) (11)

where L is a linear operator as in the previous section, and the nonlinear part R is defined for
(u, p) in a neighborhood of (0,0) € Z x R™. Here u € R™ is a paramter that we assume to be
small. More precisely we keep hypotheses 2.2 and 2.3 and replace hypothesis 2.1 by the following:

Hypothesis 2.4 (Regularity). We assume that L and R in (11) have the following properties:

(i) Le 2(2,X),

13



(it) for some k > 2, there exists a neighborhood V, C Z and V,, C R™ of 0 such that R €
EE(Vy x V,, V) and
R(0,0) =0, D,R(0,0)=0.

Theorem 2.2 (Parameter-dependent center manifold theorem). Assume that hypotheses 2.4, 2.2
and 2.3 hold. Then there exists a map ¥ € €*(Ey x R™, Z},), with

v(0,0) =0, D,¥(0,0)=0,
and a neighborhood O, x O, of 0 in Z x R™ such that for p € O, the manifold:
Mo(p) = {uo + ¥(uo, p) | uo € &} C 2

has the following properties:

(i) Mo(w) is locally invariant: if u is a solution of equation (11) satisfying w(0) € Mo(p) N Oy
and u(t) € O, for allt € [0,T], then u(t) € Mo(u) for all t € [0,T);

(i) Mo(p) contains the set of bounded solutions of (11) staying in O, for all t € R.

Let u be a solution of (11) which belongs to Mo(u), then u = ug + ¥(ug, i) and ug satisfies:

du de
(Tto = Louo + PoR(uo + ¥ (uo, 1), 1) e f(uo, 1) (12)

where we observe that f(0,0) =0 and Dy, f(0,0) = Lo has spectrum og. The reduction function ¥
satiafies:
Dy ¥ (uo, p) f(uo, 1) = Lp ¥ (uo, ) + PrR(ug + W(uog, ), 1)  Vuo € &o.

Proof. The idea here is to consider the constant p as an extra differential equation by saying that
u solves the equation
d
H_o.
dt

Then one augments equation (11) by

% =Li+R(@), @=(up),
where L := (Lu + D,R(0,0),0) and R(a) = (R(u, p) — D,R(0,0)x,0). One then only need to
check that Hypotheses 2.1, 2.2 and 2.3 hold for L and R. ]

2.4 Equivariant systems

Hypothesis 2.5 (Equivariant equation). We assume that there ezists a linear operator T €
ZL(X)NZL(Z), which communtes with vector field in equation (5):

TLu = LTu, TR(u) = R(Tu)

We also assume that the restriction Ty of T to & is an isometry.

14



Theorem 2.3 (Equivariant center manifold). Under the assumption of theorem 2.1, we further
assume that hypothesis 2.5 holds. Then one can find a reduction function ¥ which commutes with
T:

TUug = qf(ToUo), Yug € &

and such that the vector field in the reduced equation (7) commutes with Ty.

Proof. The uniqueness of the center manifold via the fixed point argument ensures that the
manifold M, is invariant under T provided that system (9) is equivariant under T. This will be

satisfied if the cut-off function x satisfies
X(Toug) = x(ug) for all ug € &,

which can always be achieved by choosing x to be a smooth function of ||ug|> where | - || stands

for the Euclidean norm on &y. Since Ty is an isometry on &, the conclusion follows. |

Remark 2.3. Analogous results hold for the parameter-dependent equation (11).

2.5 Empty unstable spectrum

Theorem 2.4 (Center manifold for empty unstable spectrum). Under the assumptions of theorem
2.1 and assume that o4 = &. Then in addition to propertries of theorem 2.1, the local center
manifold My is locally attracting: any solution of equation (5) that stays in O for all t > 0 tends

exponentially towards a solution of (5) on My.

3 Normal forms

The normal forms theory consists in finding a polynomial change of variable which improves locally
a nonlinear system, in order to recognize more easily its dynamics. In applications, normal form

transformation are performed after a center manifold reduction.

3.1 Main theorem

We consider a parameter-dependent differential equations in R™ of the form

d
Lt R(u, p) (13)
dt

in which we assume that L and R satisfy the following hypothesis.

Hypothesis 3.1 (Regularity). Assume that L and R have the following properties:

(i) L is a linear map in R";
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(it) for some k > 2, there exist neighborhoods V,, C R™ and V,, C R™ of 0 such that R €
EF(Vy x Vy, R™) and
R(0,0) =0, D,R(0,0)=0.

Theorem 3.1 (Normal form theorem). Assume that hypothesis 3.1 holds. Then for any positive
integer p, 2 < p < k, there exist neighborhoods V1 and Vo of 0 in R™ and R™ such that for p € Vo,
there is a polynomial map ®, : R™ — R"™ of degree p with the following properties:

(i) the coefficients of the monomials of degree q in ®,, are functions of . of class € 1 and

(ii) for v € Vi, the polynomial change of variable
u=uv+®,(1v)

transforms equation (13) into the normal form:

d
di; = Lv + Ny (v) + p(v, )
and the following properties hold:

(a) for any p € Vo, N, is a polynomial map R™ — R™ of degree p, with coefficients depending

upon 1, such that the coefficients of the monomials of degree q are of class €9 and
Ny(0) =0, D,Ny(0)=0

(b) the equality N, (T v) = "N, (v) holds for all (t,v) € R x R" and p € Vs
(c) the map p belongs to €F (V1 x Vo, R") and

p(v, ) = o([[v||P) Vi e Vs

3.2 An example — The Hopf bifurcation

Consider an equation of the form (13) with a single parameter p € R and satisfying the hypotheses
of the center manifold theorem 2.2. Assume that the center part of the spectrum o of the linear
operator L contains two purely imaginary eigenvalues +iw, which are simple. Under these assump-
tions, we have o = {#iw} and & is two-dimensional spanned by the eigenvectors ¢, associated

with iw and —iw respectively. The center manifold theorem 2.2 gives
U:UO‘I"I’(UOaﬂ), Up € 507
and applying the normal form theorem 3.1 we find

ug = v + @, (vo),
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which gives:
u =19+ VU(vo, p), ug € &o. (14)

For vy (t) € &, we write

w(t) = A(WC + AWDC, A(t) € C
Lemma 3.1. The polynomial N, in theorem 3.1 is of the form:
Nu(A, A) = (AQ(|AP, 1), AQ(A]%, 1),
where Q is a complex-valued polynomial in its argument, satisfying Q(0,0) =0 and of the form:

QUAP, 1) = ap+ blAP + O((Ju| + |A]%)?).

In applications, one is interested in computing the values of a and b. We explain below a procedure
which allows to obtain explicit formula for these coefficients. First, we write the Taylor expansion
of R and U:

R(u,p) = > Ry(u@, 1)+ o((|u] + |u])")

1<q+I<p
Vo, )= > T, u®) + o((ul + vol)?)
1<q+I<p
qjl]l(v(()q)a :u(l)) = :ul Z AnA" \IIQUJQZ

q1+92=q

We differentiate equation (14) and obtain:
DUO{IVJ(U(), /‘L)LOUO - LE](UOa /‘L) + NM(UO) = Q(UO> ,LL)
where

Q(on, 1) = Ty (R(vo + ¥(0o, ), 1) — Dug® (v, 1) Nou(v0))
Here II, represents the linear map that associates to map of class €” the polynomial of degree p
in its Taylor expansion. We then replace the Taylor expansions of R and ¥ and by identifying the
terms of order O (1), O(A?) and O(|AJ?) we obtain:
—L¥Yp1 = Rn
(2iw —L)Wa00 = Ra0(¢,0)
—L¥10 = 2Rg(¢, ()
Here the operators L and (2iw — L) are invertible so that Woo1, Wogp and ¥1j¢ are uniquely deter-
mined. Next we identify the terms of order O(uA) and O(A|A|?)
(lw—-L)¥in = —a¢+ Ri1(¢) + 2Rao(¢, Yoor)
(iw—L)¥20 = —b¢+2R20(¢, Yi10) + 2Ra0(C, Yaoo) + 3R30(¢, ¢, €)

Since iw is a simple isolated eigenvalue of L, the range of (iw — L) is of codimension one so we
can solve these equations and determine Wig; and Wa1g, provided the right hand sides satisfy one

solvability condition. This solvability condition allows to compute coefficients a and b.
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e If L has an adjoint L* acting on the dual space X'*, the solvability condition is that the right
hand sides be orthogonal to the kernel of the adjoint (—iw — L*) of (iw — L). The kernel of
(—iw — L*) is just one-dimensional, spanned by ¢* € X* with (¢,(*) = 1. Here (-,-) denotes
the duality product between X and X*. We find:

a = (Ri11(¢) + 2R20(¢, Yoo1),¢™)
b = (2Rao (¢, Ya00) + 2Rao (¢, ¥r10) + 3R30(¢, ¢, €), ¢F)

o If the adjoint L* does not exist, we use a Fredholm alternative since both equations have the
form:

(w—-L)¥ =R, withReX

We project with Py and P, on the subspaces & and A} and we obtain

(iw — Lo)PoV
(iw — Ly,) Py ¥

PoR
P,R

The operator (iw —Ly) is invertible, then the second equation has a unique solution. The first

equation is two-dimensional, there is a solution ¥y provided the solvability condition holds

(Ro,¢5) =0

where (§ € & is the eigenvector in the kernel of the adjoint (—iw — L) in & chosen such
that (¢,(}) = 1. If P§ is the adjoint of Py and setting ¢* = P{¢; the solvability condition

becomes (R, (*) = 0 which leads to the same formula for a and b as above.

4 Steady-state bifurcation with symmetry — General results

We first start this section by stating some basic definitions and results on groups and their rep-
resentations. In most of the following, G’ will be a finite group or a closed subgroup of O(n), the
group of n X n orthogonal matrices with real entries, acting isometrically in R™. Such a subgroup
is also a submanifold of the Lie group O(n) and is therefore itself a Lie group.

Some Examples:
o Zi = Z/kZ, the k-cyclic group, is isomorphic to Cy, the group generated by the 2 by 2 matrix
cos 2?” sin 2{
k= . .
g —sin28 cos 2

The group C}, acts isometrically in R2.

e We note Dy, the group generated by pr and by the reflection

(0 4)
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This is the symmetry group of a regular polygon with k vertices (k-th dihedral group). Its
order is |Dg| = 2k.

e S! = R/277Z is isomorphic to SO(2), the group of 2 by 2 rotation matrices. The group
generated by SO(2) and the reflection matrix o is O(2), the symmetry group of the circle.

We shall also be led to consider the non compact Euclidean group E(n) = O(n) x R™ (at least in

the case n = 2) and we refer to subsection 4.3 for further definitions.

4.1 Definitions

4.1.1 Irreducible representations

Definition 4.1. A representation of a group I" in a finite-dimensional or a Banach space X is

a continuous homomorphism 7 : T' — GL(X) from T to the group of invertible linear maps in X .

Therefore a representation 7 verifies that 7(7172) = 7(71)7(72), in particular 7(y~1) = 77(v) and
7(e) = idyx. Note also that if ker(7) = {0}, the image of I" under 7 is a group isomorphic to I" and

we call it the transformation group associated with I'. We denote by I" this group.

Example: Let ¢ (R") be a space of functions R” — R (e.g. continuous functions) and let T" be a
subgroup of O(n). Then the relation 7(v) -u(z) = u (y"'x) defines a representation of I' in €' (R").

Definition 4.2. A representation is irreducible if the only subspaces of X which are invariant
by T(y) for all v € T are {0} and X itself.

Examples: Cy, D, SO(2), 0(2) act irreducibly in R

Definition 4.3. Two representations T and 7’ of the same group I' are called equivalent if there
exists a matriz M € GL(R™) (or an endomorphism M € GL(X)) such that 7/ = M o710 M1

It is important to remark that representations of finite or compact groups can always be de-
composed into direct sums of irreducible ones. This decomposition might not be unique because
equivalent representations can occur several times, allowing for many choices of the corresponding
representation spaces. This problem of non-uniqueness can be overcome by grouping irreducible
representations in equivalence classes. This leads to a block decomposition of a representation

which is unique and called the isotypic decomposition of representation.

Lemma 4.1 (Schur’s lemma). Let 7, p be two complex irreducible representations of a compact
group T in X, ) respectively. Let of : X — Y be a linear map such that o/ 71(v) = p(v)</ for all
vy eTI'. Then:

(i) if T and p are equivalent, then X ~ ) and &/ = c-id for some c € C;
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(ii) if T and p are not equivalent, then o/ = 0.

Proof. Note first that the kernel as well as the range of a linear map which commutes with a
group representation are invariant under this representation. To prove the first part, note that &
has at least one eigenvalue c. Hence ker(«/ — ¢ -id) # {0}. This kernel is I' invariant, therefore
by irreducibility assumption, it is equal to X. Now dim X = dim )Y by the equivalence of 7 and
p. It follows that &/ = ¢ -id. Suppose now & is invertible, then 7 and p are clearly equivalent.
Therefore assume <7 is not invertible. By the argument above, ker &/ = X and im«/ = ), which
imply o7 = 0. [ |

Definition 4.4. A representation T of a compact group T' in a (finite dimensional) space X is
absolutely irreducible if all linear maps o/ which commute with T are scalar multiples of the

identity.

By Schur’s lemma, any irreducible representation in a complex space is absolutely irreducible, but

this is not true in general for representations in a real space.

4.1.2 Equivariant vector fields

Definition 4.5. Let X, ) be two vector spaces with representations T and p resp. of a group I'. A
continuous map f: X — Y is T'-equivariant if f(r(v)x) = p(7)f(x) for ally €T and z € X.

Later on in this section, we will be dealing with differential equations
dx
= — f(r 15
= fa) (15)
where f is I-equivariant. Obviously, a first consequence of the I'-equivariance is that if x(t) is a
solution of (15), then 7(y)x(t) is also a solution for all . From one solution we therefore obtain a
I"-orbit of identical solutions up to symmetry, which are obtained by applying the transformations

7(7) to it. One can say more.

Definition 4.6. We give the following definitions:

(i) Let x € X, we define ¥ =T% = {y € T' | 7(y)xr = x}. ¥ is the isotropy subgroup of z.

1

Note that the isotropy group of T(y)x is yE~y~ ", and when one talks about classification of

isotropy subgroups (for a given action), it means ”classification of conjugacy classes”.

(ii) Given an isotropy subgroup ¥, let Fix(X) := {x € X | 7(0)x = x for all 0 € ¥}. This is a

linear subspace of X.

(i1i) Let x € X, the setT'-x = {7(v)z, v € '} is called the T'-orbit of x.
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It is easily seen that any two points in the I'-orbit of a point x have conjugated isotropy subgroups.
The conjugacy classes of the isotropy subgroups of G for its action (representation) in X are called

the isotropy types of this action.

Example. Let D3 act in R? by its natural action. The isotropy subgroups are {id}, which fixes
all points in R2, the two-element groups of reflection across the axes of symmetry of an equilateral
triangle (these axes are the subspaces Fix(3) for these subgroups), and I itself which fixes only the
origin. Given a point away from the axes of symmetry, its D3s-orbit consists of 6 points. If however
we consider a point on one of the axes of symmetry, then its Ds-orbit consists only of 3 points.

The orbit of the origin is the origin itself. This is a general fact:

Lemma 4.2. If T is finite, the number of elements in T'- x is equal to |U|/|T*|. IfT is a (compact)
Lie group, then T - x is a submanifold of X with dimension equal to dim(I") — dim(I'").

The following lemma is fundamental.

Lemma 4.3. Let f be I'-equivariant. Then for any isotropy subgroup o, f: Fix(¥) — Fix(X).
Proof. Observe that given = € Fix(X) and o € ¥, we have that 7(0) f(x) = f(7(0)z) = f(z). =

Therefore given an initial condition in Fix(X), the full trajectory belongs to the subspace Fix(X).
We write N(2) := {y € ' | y2v~! = ¥} the normalizer of a subgroup ¥ of T

Lemma 4.4. The maximal subgroup of T' acting faithfully (with no other fized-point than 0) in
Fix(X) is N(X)/%.

Proof. We write the action of I' as (y,z) — vz to simplify notation. Let z € Fix(3), then

1 1

vz € Fix(¥) = oyx = va for all 0 € ¥. Hence v~ “oyxr = x and v~ oy € ¥. The result follows

immediately. ]

Therefore the group orbit of a point x € Fix(X) is obtained by letting Fix(X) act on x.

Let x be an equilibrium point for equation (15). If I is a Lie group, I' - x is a manifold with
dimension equal to dim(I") — dim(I'*). It may also happen that the vector field f(x) be tangent to
I'- z. If this happens, then f(y) is tangent to I' - x at any point y € I' - . In that case I' - x is a

flow-invariant manifold. This motivates the following definition.

Definition 4.7. A trajectory of an equivariant dynamical system which lies in the group orbit of a

point is called a relative equilibrium.

Equilibria are particular cases of relative equilibria. What is in general the dynamics of a relative
equilibrium? Let x(t) = ®(z¢) be the solution with initial condition zy. Here ®; denotes the I'-
equivariant 1-parameter group of transformations associated with the vector field f. For a relative

equilibrium, at each ¢, there exists a group element 7; such that ®;(xg) = 7(7v:)xg. Moreover
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Yewr = Yye by the group property of ®;. It follows that the set {v;, ¢t € R} is a one-parameter,
abelian subgroup of I'. The closure of an abelian subgroup in a compact Lie group is a torus. We
conclude that the trajectories of a relative equilibrium fill tori in the I'-orbit. The dimension of a
torus group in a (compact) group I' cannot exceed a value which defines the "maximal torus” in T".
For example if I' = O(2) then obviously the maximal torus is S! (a circle). But if I' = SO(3) or
O(3) then the maximal torus has also dimension 1, despite the fact that dim SO(3) = 3. Therefore
in these cases, the trajectories are closed (circles) and the relative equilibria are (at most) periodic
orbits. One can even be more restrictive: since the trajectory of relative equilibrium lies inside a
subspace Fix(X), the dimension of its closure cannot exceed the dimension of the maximal torus in
the group N(X)/X.

4.2 Equivariant Branching Lemma

Recall, that in the previous section we have considered parameter-dependent differential equations
in X of the form p

d—Q: = Lu+ R(u, p) = F(u, ) (16)
where L is a linear operator, and the nonlinear part R is defined for (u, u) in a neighborhood of
(0,0) € ZxR™. Here p € R™ is a parameter that we assume to be small. We suppose that F is I'-
equivariant with respect to a representation 7 of the group I'. If we apply the parameter-dependent
center manifold 2.3 theorem for the equivariant differential equation (16), the reduced equation on

&p has the general form:
d’LL()

E = f(u()a M)?
with
T(Y) f(uo, ) = f(7(y)uo, ), Yug € & and ¥y € T.

Since & is a real space of dimension n, we may regard f as a map f : R® x R”™ — R". Moreover,

I" acts on R™ and f is equivariant for this action.

Suppose now that the action of I' on R™ possesses an isotropy subgroup > with a one-dimensonal
fixed point space Fix(X). If we look for solutions in Fix(X), the reduced equation on the center
manifold restricts to a scalar equation. Recall that if I' acts absolutely irreducibly on & then the
linearization of f at the origin is a multiple of the identity and we have D, f(0, u) = ¢(u)I,, where
I, is the identity map of R”.

Theorem 4.1 (Steady-state Equivariant Branching Lemma). We suppose that the assumptions
of theorem 2.2 hold. Assume that the compact group I' acts linearly and that F is I'-equivariant.
We suppose that I' acts absolutely irreducibly on &. We also suppose that L has 0 as an isolated
eigenvalue with finite multiplicity. If 3 is an isotropy subgroup of T' with dimFix(X) = 1 and if

d(0) # 0, then it exists a unique branche of solutions with symmetry 3.
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As a consequence, if the Hypotheses in Theorem (4.1) are satisfied we have the following charac-
terization for each isotropy subgroup ¥ of I' such that dim Fix(¥) = 1 in &, where either one of

the following situations occurs (where f(ug, u) is the reduced vector field in Fix(X)):

(i) Suppose ¥ =T'. If D, f(0,0) # 0, there exists one branch of solution ug(p). If in addition
D2, £(0,0) # 0, then u? = O(||u||) (saddle-node bifurcation).

(ii) Suppose ¥ < I' and the normalizer N(X) acts trivially in Fix(X). Then f(uo, ) = uoh(uo, 1)
and if D7, f(0,0) # 0 there exists a branch of solution ug(x). If in addition D2, f(0,0) # 0,

then up = O(||p||) (transcritical bifurcation).

(iii) Suppose ¥ < I' and the normalizer N(X) acts as —1 in Fix(X) (i.e. N(H)/H ~ Z3) . Then
f(uo, 1) = uph(ug, ) with h an even function of ug. If D?Wf(O, 0) # 0 there exists a branch
of solution +ug(p) such that if D3, f(0,0) # 0, then u? = O(||u||) (pitchfork bifurcation).

Usually, we use the following terminology:

e If dim Fix(X) = 1, then ¥ is a maximal isotropy subgroup.

e When ¥ < T, the bifurcating solutions in Fix(X) have lower symmetry than the basic solution

u = 0. This effect is called spontaneous symmetry breaking.

4.3 The Euclidean group & Planar lattices
4.3.1 Defintion

In real n-dimensional affine space R, we chose an origin O and a coordinate frame so that any
point P is determined by its coordinates (z1,...,z,). The distance between P and @ is given by
d(P,Q)? = > (z; —y;)?. This gives R,, a Euclidean structure. The Euclidean Group E(n) is the
group of all linear or affine linear isometries acting on R,: all linear transformations which preserve
the distances. It can be shown that any such transformation is a composition of an orthogonal
transformation O, i.e. an isometry which keeps the origin O fixed, and a translation by a vector £
where ¢ is a vector of R™. The group of isometries which keeps the origin O fixed is isomorphic to
the real orthogonal group O(n) of n x n orthogonal matrices with real entries. Given any v € E(n)

we write v = (O, e) € O(n) x R™. The composition of law is then:
yoq = (00, 00+ 1)

This shows that the non compact Euclidean group E(n) is the semi-product O(n) x R™. From now

on, we will only focus on the two-dimensional case n = 2.
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4.3.2 Group action
The group E(2) acts on R? in the following way,
y-r=0Or+/, forany v = (0, /) and r € R?.

For future references, we will use the following notations

f-r = Rpr (rotation)
k-r = kr (reflection)
¢-r = r+/{ (translation)

where

cos@ sinf 1 0
Rg = . 5 R = )
—sinf cosf 0 -1

and / is any vector in R2.

Finally, for any v € E(2), its action on a function u(r) is given by

Y[u(r)] :==u(y"" 1),

which defines the representation 7 with 7(7) - u(r) = y[u(r)] = u(y~! - r).
4.3.3 Planar lattices

Let ¢1,¢5 be a basis of R?. The set

L:= {mlfl + mals | (ml, mg) € Z2}

is a discrete subgroup of R?. It is called a lattice group because the orbit of a point in Ry, under

the action of .Z forms a periodic lattice of points in Ry. We define the dual lattice of lattice .

by
ﬁ* = {mlkl + m2k2 ’ (m17m2) € ZQ}

with Ez . kj = (S@j.

The largest subgroup of O(2) which keeps the lattice invariant is called the holohedry of the

lattice. We summarize in Table 1 the different holohedries of the plane. As a consequence, the

restriction of E(2) on a square lattice is the symmetry group I' = Dy x T? where T? is the two-torus

and Dy = (p4, k) where py is the rotation center at 0 and of angle 7/2.

4.3.4 Some further results on the square lattice

First, let us consider the vector space

2
V=(qv= szeQi“kj'r +cc|zeClkj|=1) =
j=1

where the isomorphism between V and C? is given by v — z = (21, 22).
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Name Holohedry Basis of £ Basis of L*
Hexagonal | Dy 0 =(Z51), b = (3,0) ki = (0,1), ko = (%, -1)
Square Dy 0, =(1,0), 5 = (0,1) ki =(1,0), ke = (0,1)
Rhombic D, = (1,—cot @), lo = (0,cot0) | k; = (1,0), ko = (cosb,sinb)

Table 1: Lattices in two dimension. 0 < 6 < 5 and 0 # 7.

Lemma 4.5. The action of ' = Dy x T? on V is given by:

pa(z) = (%2, 21),
K(z) = (21,%), (17)
@(Z) — (€—2i7r01 21, 6—217ﬂ92 ZQ),

where © = 0141 + 0505 with 01,605 € [0, 1[.

Proof. Let v € V and (21, z2) € C? such that:
v(r) = zle2i”k1'r + z262i”k2'r +c.c
We have:

palo(@)] = v(p;' 1)

_ Zlemnkl-(p;lr) + 2262i7rk2-(p;1r) +ec
= gedimlpaka)r o 2im(pake) T
= gpeditker | oRimkir

— 226217rk1-r +Z16217rkg-r +ecc

which implies that p4(z) = (22, 21). We repeat the same procedure for £ and ©. n

For the square lattice, we can also find all isotropy subgroups ¥ (up to conjugation) with dim Fix(X) =

1 and they are reported in Table 2.

z Generators of X Fix(¥) dim Fix(X) Name
Dy P4, K z1=2 €R 1 Sport or Square
0(2) X Zig pi, K, [O, 92] 271 €ER, 20 =0 1 Roll

Table 2: Isotropy subgroups ¥ (up to conjugation) with dim Fix(X) = 1.

Finally, we will conclude this section by computing a Taylor expansion of I'-equivariant vector fields

up to order three. Let suppose that we have a vector field of the form

f(z) = (f1(2), fa(2)) ,
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that is equivarient with respect to the action (17). This means that for all v € I' we have
Vf(2) = f(yz).
For example, for v = p4, this yields to the compatibility condition
(Faler ), fa(er,22) ) = (fa(zao ) folE ).

Let consider first only first order terms

f1(z1,22) = p1z1 + €121 + c222 + c322,

fa(z1, 22) = poze + di1Za + doz1 + dsz,

where pi; are bifurcation parameters, and the c¢; and d; are constants. Applying first, the compati-
bility condition for translation ©, we find that all coefficients ¢; and d; must be zero for j = 1,2, 3.
Then applying the rotation tells us that pu; = pus = p where u is real. As we should have had

suspected find that to linear order

fi(z1, 22) = pz,
fa(z1, 22) = pza.

Because of the translation equivariance, one can check that f(z) cannot possess any quadratic terms

and only cubic terms of the form
Z1|21\2, 21\22|2, Zz|21|2, 22|Z2\2>

transform in the appropriate way. As a consequence, to cubic order, the vector field should have

the form

fi(z1,22) = pz1 + arz1|z1)* + agz |20,

2(%1,%22) = Hz2 122|121 222(22|
fa( ) + biza|z1[* + bazo| 2o

where a; and b; are constants. The reflection equivariance leads to a1 and az being real, while the
rotation equivariance implies by = a9 and by = aq. So in the end, the D4 X T2-equivariant vector

field truncated at cubic order is

fi(z1,22) = pz1 + arz1|z1)? + agzr |22,

fa(21, 20) = pza + a1 22| 20|* + agza|21 )%,

where pu, a; and ag are real.
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5 Application — Pattern formation in the visual cortex

Let us recall that we study equation (2) which is of the form

du(r,t)
ot

— u(r,t) +/ w(llr — ¥/ [)S(u(r’, 1), j)dr,
R2
with the following hypotheses.

Hypothesis 5.1 (Nonlinearity). We suppose that the nonlinear function S satisfies the following

assumptions:

(i) (u, ) — S(u,p) is analytic on R? with |S(u,p)| < spm and 0 < DyS(u,p) < psm for all
(u, ) € R x (0,400) for some sp, > 0;

(ii) S(0,u) =0 for all uw € R and D,S(0, n) = usy for some sy > 0.

Note that the first set of assumptions (analyticity of S with respect to both variables) is very strong
and could be weakened to S € €*(R? R) for some k > 2. But, in practice, the following sigmoidal
function is used often

S(u, ) = tanh(pu),

so that we decided to stick with such a strong assumption. The second one ensures that S is a
bounded non decreasing function with uniform Lipschitz constant. The last set of hypotheses has

already been discussed in the first section of these notes.

Hypothesis 5.2 (Kernel & Dispersion relation). We suppose that w € H?(R?) N L%(RQ) is such
that the dispersion relation A(||k||, u) = —1 + ps1w(||k||) satisfies:

(1) Mke, pie) = 0 and A(|[k||, pe) # 0 for all [[K[| # ke;
(i3) for all p < pic, we have M(||k||, 1) < 0 for all k € R?;

(iii) k — Ak, pe) has a mazimum at k = k..

The condition that w € H?(R?) ensures by Sobolev embedding that w € L°°(R?) and the extra
condition that w € L%(RQ) = {uel'®) | (r— elrlly(r) e L'(R%*)} is only there to ensures
smoothness properties of the Fourier transform w. Finally, the set of assumptions (i) — (¢i7) have
been explained in length in the first section (see Figure 5). From now on, we assume that the
hypotheses on the nonlinearity and the kernel are satisfied. It is possible to show that the Cauchy
problem associated to the neural field equation (2) is well posed on various Banach spaces and
that solutions are unique and global in time. Because our bifurcation problem is for the moment
infinite-dimensional, we are going to restrict ourselves to solutions which are doubly periodic on a
square lattice and in order to slightly simplify our notation we are going to suppose that k. = 1 so
that ¢ = k; = (1,0) and ¢o = ko = (0, 1) are the generators of the square lattice £ and its dual
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L£*. As our function is defined on R? and as we wish to work on a commutative algebra for the
function space, we will set our problem on Z = {u € H*(D) | u(r + {) = u(r), V¢ € L}, where D is

the fundamental domain on the square lattice, from which we will have

Juvllz < [lull z[lv] 2

The above property is really important as it makes Z a commutative algebra with respect to
pointwise multiplication. We denote X = L?(D). It is worth mentioning that any function in X

can be decomposed as a sum of Fourier modes that lie on the dual lattice:

u(r,t) = Z 2Pk e,

keLl*

Let us now write the neural field equation (2) into the following form

d
d—? =Lu+ R(u,€), €:=p— g, (18)
where
Lu(r) :== —u(r) + pes1 [ w(||r — '|))u(r’)dr’, (19a)
R2

R(u,€) := / w(llr = 'S (u(r',t), pe + €)dr’ — pesy / w(||r —r'|))u(c’)dr'. (19Db)
R2 R2
It is straightforward to check that the following properties are satisfied.

Lemma 5.1. Suppose that all the above hypotheses on w and S are satisfied, then we have:

(i) L € Z(Z,X) is compact and sectorial on Z and thus satisfies ||(iw — L)*lug(x) < & for

= fwl
some constant ¢ and |w| large enough;

(i3) for all k > 0, we have that R € €%(Z x R, Z);

(iii) the spectrum o of L is discrete and the set oy consists of a finite number of eigenvalues with

finite algebraic multiplicities;

(iv) both L and R are equivariant with respect to the group action of T = Dy x T? via v[u(r)] :=
u(y~t-r) for any v €T;

(v) the representation T : Z — Z with 7(7y) - u = y[u| is absolutely irreducible.

The dimension of the bifurcation problem depends on the number of points k € £* that lie on the
critical circle of radius k. = 1. Here, we work with the fundamental representation of D4 x T? so
that there exists two critical orthonormal vectors k; = (1,0) and ko = (0,1) that lie on the critical

circle so that the corresponding center manifold if 4-dimensional.

Remark 5.1. It is important to note that there exists another absolutely vrreducible representation

of Dy x T? which is 8-dimensional, in that case we say that L is a superlattice (see [3, 5]).
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As a consequence, the kernel & of L is given by
2
Sr=queZ|ur)= szezmkﬂ"r +c.c for (z1,29) € C*p =C?
j=1

where the identification to C? is done through the vector space V, defined in the previous section.
We can apply the parameter center manifold theorem with symmetries and say that all small

bounded solutions of (19) can be written as
2 .
u(r, t) = ug(r,t) + U(ug(r,t),€), uo(r,t) =Y z(H)e*™ ™ +cc,
j=1

where (21(t), z2(t)) satisfy
le

o A (c(e) + a1|z1]* + as|z2]?) + ho.t., (20a)
dzo 9 9
o =2 (cle) + a1|z2]* + az|z1|*) + heo.t., (20b)

where h.o.t. stands for higher order terms. Here, c(€)ly = D, f(0,€) where f is the associated

reduced vector field. It is a direct computation to check that in our case

€ B = He
cle) = — =
e He

9

such that the condition ¢/(0) # 0 of the Equivariant Branching Lemma is satisfied. As a conse-
quence, for each isotropy subgroup ¥ C I' with dim Fix(¥) = 1, there exists a bifurcating branch
of solutions with symmetry ¥. All isotropy subgroups ¥ with dim Fix(X) = 1 are listed in Table
2. We have already seen that very close to the bifurcation u ~ ., the solutions should be well

approximated, to leading order, by
’LL(I‘) ~ ZleQiﬂkl-r + 22€2i7rk2-r +c.c.
In the case of the symmetry branch ¥ = Dy, we have z; = z0 = z € R and
u(r) = 2z (cos(2mx) + cos(2my))
and for ¥ = O(2) x Zg, we have z; = z € R and 29 = 0, and we obtain
u(r) = 2z cos(2mx)

where r = (7,y) € R

In Figure 6, we represented each geometric structures using the following strategy. When u(r) > 0
we say that the cortical area is activated (black) and when u(r) < 0 the area is inactive (white). As
a consequence, Figures 6(b) and 6(d) are the first visual hallucinations that we recover from this
mathematical analysis. Now, we would like to know which one of these two possible hallucinations
is stable with respect to the dynamics. The very first task is to compute the constants a1 and as

which appear in (20).
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(c) O(2) x Zy (d) O(2) x Zy
Figure 6: Geometrical structures (planforms) corresponding to each isotropy subgroups from Table 2. To

the left, the planforms are represented in V1 and to the right they are given in the retinal field and thus

correspond to possible visual hallucinations.
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We have the following Lemma.

Lemma 5.2. The coefficients a1 and ao are given by:

N Wo Wk, 53
a; = wkc<5%|: —— + — — ]+>
1 — o /Wy,  2(1 — Way,/Wk,) 2
. Wo Wi, +k
as —wkc(sg[ el ) S— QA]+S3>,
1 —wo/wk, 1 — Wi, 1k,/ Wk,

where s := 055(0, pe) and @i = [po w(|x|)e > T dr.

Proof. We first remark that:
S(u, p) = psiu+ %Quz + %3“3 + h.o.t.

Then we define a scalar product on X

(u,v) = / u(r)o(r)dr
D
where o(r) is the complex conjugate of v(r) and D = [0,1] x [0, 1] is the fundamental domain of

the lattice. We denote
Cl — eQiTrkl-r
42 — e2i71'k2-r

u(r,t) = 21(t)C1 + 21(8) 1 + 22(8)C2 + 22(8) (2 + Y (21, 21, 22, 22, 1),

We write

with the Taylor expansion
_ _ l1 2l =
\I](Zlv R1, %25 %22, M) = Z le 21221201 Z?HT‘I’ll,lg,pl,pz,w
l1,l2,p1,p2,r>1
We obtain after identification at each order the system
0 = —2LWs000+ 2a1¢1 — 4R2(V1,1,0,0,0,¢1) — 4R2(¥2,0,0,0,0, 1) — 6R3(C1,¢1, 1),

= —LVU; 1100+ a2(s—2Ra(Y011,00,¢1) — 2R2(¥1,0.1,00, 1) — 2R2(¥1.1,000,(2)
—6R3(C2, 1, ¢1)-

So that we find that

ar = (2Ra(¥1,1,000,C1) + 2Ra(¥2,0,000,C1) +3R3(C1, G1, C1), Ca)
ay = <2R2(\I/071,1,O,07 Cl) + 2R2(\I/1707170’0, Cl) + ZRQ(\Ill,l,O,O,Ov CQ)
+6R3(C2, 1, 1), G2)-

Here, we have set

Ra(u,))i= 2 [ w(lr =/ un()ua()ar’ @)
Ra(uy, ug, us)(r) := %3 /R? w(||r — r'|)ur (2")uz (v )us(r')dr’. (22)

31



Finally, we have to solve the following set of equations

= 2LVs5000,0+ 2R2((1, 1),
= L¥y1000+ 2R2(C1, 1),
= L¥g11,00+ 2R2(C2, (1),
= LUi0100+2R2(C1,C2),

o O o O

which solutions are given by

20000 = Vect((r,Cr,¢o,G)+ 21 fi,ll‘f%k 2
11000 = Vect(Cr,Ci,Co,Co)+ 2521:’721%
Tor100 = Vect(Cr,C1,¢2,C2) + 2%%@‘2@7
Ui01,00 = Vect((r,(r, o, G)+ 2721;1):117;?%@@,

where we used the fact that Wy, yx, = Wk,—k, and Wjk, = Wjk, = Wjk, for j = 1,2. Then, it is

77 ’ 2 1 )LLCsle

and use the fact that u.s;wx, = 1 to obtain the desired formula for a; and as. ]

Lemma 5.3. For the reduced system (20), we have the following dichotomy:

e The square solution z1 = z3 = z € R with symmetry Dy is stable if and only if a1 < —l|az| < 0.

e The roll solution z1 = z € R, z9 = 0 with symmetry O(2) x Zy is stable is and only if
ay < ay < 0.

These two branches of solutions are mutually exclusive for the stability, i.e. we cannot have at the

same time both solutions stable.

As an extension, to this Lemma, these solutions will remain stable for the full dynamics of equation
(19) within the class of perturbations having the same symmetries as they are normally hyperbolic
for the reduced system (20). Finally, depending on the specific form of the nonlinearity S and the

connectivity kernel w, we expect to see either spots or stripes close to the bifurcation p ~ ..
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6 Conclusion & Perspectives

Take home message. Geometric visual hallucinations can be explained simply by symmetry-
breaking bifurcation (Turing patterns) on the visual cortex abstracted by R? by the action of
discrete subgroups of the Euclidean group and the correspondance between visual field and visual

cortex with a log-polar map.

What’s missing? In our case study, we have only focused on the square lattice and totally
ignored the hexagonal case. The analysis in that case is slightly more involved and the fundamental
absolutely irreducible representation is now 6-dimensional. We let as an exercice to find all the
axial isotropy subgroups (i.e. all isotropy subgroups with one-dimensional fix space) and conduct

the same analysis as we did here. The results can be found in [1, 3, 5].

Extensions. This study can be extended to incorporate some kind of functional architecture
of the visual cortex, see the beautiful paper [1], where this time the visual cortex is idealized to
R? x S!. That is, to each point of the visual field we associate a point in the cortex (r,#) where
0 retains the preferred local orientation. This model has been extended into several directions by

adding more features (spatial frequency and texture), see [5] for a recent review on the subject.

Equivariant bifurcation. Steady-state equivariant bifurcations are now well documented but
in the case of Hopf bifurcations with square or hexagonal symmetries, there are still some open
problem left. Omne can ask the question to wether such symmetry-breaking bifurcations can be
transposed into non-Euclidean geometry. This question has been partially treated in the case of

hyperbolic geometry (Poincaré disk) in [5], see the references therein.

Disclaimer. One should not take for granted the neural fields formalism. Indeed, any other
evolution equation equivariant with respect to the Euclidean symmetries and having a steady-state
bifurcation would produce exactly the same type of geometric visual hallucinations. The equations
are over simplified and our primary visual cortex does not reduce to a single neural field equation
(see Figure 7). In fact, our analysis only tells us something about the geometry of our network:
i.e. the invariance of connectivity kernel with resect to some action of the Euclidean group of

transformations of the plane.
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Byu(z, t) = —ulz,1) + /R Wz — )S(uly, £))dy

Figure 7
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