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L. Introduction. In this note we study the topology and the algebraic structure of
the Hamiltonian system corresponding to the following generalized Hénon-Heiles Hamil-
tonian [>1]

f l = a
(1.1 H=5 (P3+Pi+ AG+Ba)—42 4 — = 4
in the integrable case £=6. This system reads

g1="1 ;‘5132'?1?2‘—14'?1

g2=Py P2=q3+6¢3—Bg,
and the second integral of motion is [!]

13) F=qi+ 4913+ 401192~ 123) —4Aq395+(4A—B) (p3+ Ag)) .

Recently Newell, Tabor a. Zeng [?] found a Lax pair and integrated the system
1.2) under the additional assumption A=B=0. Adler a. van Moerbeke []
Also noted that it is an algebraically completely integrable system (i. e. it can be line-
wrized on a family of Abelian surfaces). It turns out that the general case (=6, 4 and
B — arbitrary) is algebraically integrable, too (Theorem 2). In Theorem 1 we solve
-he system (1.2) in terms of hyperelliptic genus-two theta functions of the complex
time. The rich algebraic structure of the problem enables us to describe all generic
bifurcations of invariant Liouville tori and cylinders. This result is formulated in
Theorem 3.

2. Algebraic Structure of the System (1.2). Consider the hyperelliptic genus-two curve
S={w?=z.P(2)}, where

@.1) P(2)=2(z—A) (42— 4A+ B+ 8hz—.

[n this section we suppose that the curve S is non-degenerated, i. e. 4, B, f, h are
such complex constants that (4, B, f, &) ¢B={(4, B, f, h)¢R*: disc (2. P(2))=0}. We
use the notation of [5]. Let v,, v, &,, 8, be a canonical homology basis on S, J(S) be
the Jacobian variety of S, and 8(z,, 2,) be the corresponding Riemann theta function.
Let ¢ be the Abel mapping with respect to the base point P.. (P. is the ‘infinite’
point on §), K=K (P.) be the vector of Riemann constants. Denote by P, the Weier-
strass point on S, corresponding to the root 0 of the polynomial z.P(z).

Theorem 1. Every (complex) solution of the (complex) system (1.2) can be expres-
sed in the following way
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Here £2==(¢¢, 13), where £ and #) are arbitrary constants, playing the role of initial con-
ditions, ¢, and ¢, are suitable constants which depend upon A, B, f, &, a=(a,, a,)
; = H:Cl “d_gz
where =y =g o .
d{,, d{, form a basis of the space of holomorphic differentials on S.
The proof of Theorem 1 is based on the fact that the Hamilton-Jacobi equation

separates in u, v variables, where
¢i=—4uv, gy=u+v+(B—4A4)/4

(t=1/22 is a local parameter around P.), and’

Remark. Denote by Ac the complex invariant manifold Ac={H=#4, F=f}. Then
the solutions described in Theorem 1 lie on Ac for arbitrary constants A4, B, f, &, ¢°
Theorem 2. The Hamiltonian system (1.2) is algebraically completely integrable.

Ac is a smooth complex manifold which is an affine part of an Abelian surface A¢ of

polarization (1,2). Ac=AcU D, where D. is a smooth hyperelliptic genus-two curve.
Ac is a two-sheeted covering of the Jacobian variety J(S), such that D, becomes a
two-sheeted covering of the curve D, the last being a translate of the Riemann’s theta
divisor. The Hamiltonian flows defined by A and F on Ac extend holomorphically to
flows on A¢ which are straight-line motions.

To prove Theorem 2 we follow the procedure used in [6].

3. Topological Amalysis. In this section we consider the system (1.2) as a system of
real differential equations. The constants A, B, f, £ will be real constants. Denote by
Ag the real invariant manifold Ag ={{=%, F=f} of the system (1.2). According to
Theorem 2, if (4, B, f, B)¢R'\ B, then Ap is a smooth real manifold, and hence Ag
may change the topological type only as the point (4, B, f, &) passes through a point
(Ao By fo, ho)€B. _

Definition. A point (Ay, By, fo #o)€¢B is said to be generic provided that in a
neighbourhood of this point B, is a smooth three-dimensional real manifold.

Definition. A bifurcation of the set Ag is said to be generic provided that the
point (A4, B, f, k) passes, transversally to B, through a generic point (Ao, B, fo Ro)EB.

Dafinition. Two intersections BN {A=A4,, B=B,} and BN{A=A4,, B=B,} are topo-
logically equivalent, if there exist continuous functions A= A(s), B=2B(s), s¢[0, 1], such
that A(0)=A,, B(0)=B,, A(1)=A4,, B(l)=B, and all intersections B {A=A(s), B=B(s)}
(s €[0, 1]) are homeomorphic to each other.

Consider the sets My, M,..., M, If M, M; consists of one point for |i—j|=1,

and it is the empty set for |i—j|=1,0, then we denote M;VMV ... \/M,= 'Ul M;.

Denote also by mT+nC a disjoint union of m tori and n cylinders and by P a set
homeomorphic to a non-trivial bundle with base — the circle S* and a fibre S'V .S

Consider the following bifurcations: 7—S'—@, C—R!'—=@, T—P—-T, C—(S'V S?)
Y R1—2C, C—(S'V SV SHYXR'—3C, 2C—S'X(R'VR)—2C,, T+C—S1X(S'VR)—C,
T+2C—S'X (R S*VRH—2C.

Theorem 4. The set R*\ B consists of 14 open, connected, non-intersecting each
other domains. All topologically different intersections B[ {A=const, B=const} are
given in Fig. 1. The topological type of AR does not change in each of the above 14
domains, and it is described in the Table. Any generic bifurcation of connected compo-
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rients of Ag can be found
among the bifurcations con-
sidered above. Their precise
description is also given in
the Table.

Remark. Here we explain
the Table and Fig. 1, Each of
the 20 intersections BN {4=
const, B=const.} shown in
Fig.1 corresponds to an arbi-
trary point (4, B) lying in one
of the 20 subsets, shown in
Fig. 2 (10 half-lines and 10
open ‘triangular’ domains).
According to Theorem 4 the
intersections BN {A = 4,,
B:Bl}’ and B ﬂ {A= Ag,
B=B,} are topologically equ-
ivalent iff the points (4,, B,)
and (Ay, B,) liein one and the
same domain, shown in Fig .2,
Itisseenfrom Fig. 1 that the
set R\ B consists of 14 open

domains. The notation i — if
.in the Table meansa generic
bifurcation between two sub-
domains of R* \_B numbered
by i and j in Fig. 1. If the
point (A, B,f, k) passes trans-
versally through a point (4,,
- By, fos o) €B then the integer
k is equal to the number of
the branchof the curve {disc
(PR)=0}N{A=A4, B=B8}
c=R{f, h} (see Fig. 3) in
which the point (f,, &) lies.
For the sake of brevity we
denote 2C — C in the Table
instead of 2C—(S'Vv Sty
XR'— C, etc...

The proof of Theorem 4
is based on the following ob-
servation : Consider the anti-
holomorphic involution t on
S, 1: 8§—=S:(w,2)>(w, 2)
t induces an antiholomorphic
involution on J(S), and hence-
on Ac= Ac U D... The real
invariant manifold is embed-

ded linearly in Ac,and hence

2

20 -
i
b a=c=d
1
3 4

2 I
{disc (,"’.{:_'))':0} n{A=const, B= consi}

Fig. 3.

its closure consists of real two-dimensional tori. It turns out that each of these tori
coincides with a stationary component of the antiholomorphic involution t on

i~

Ac. In order to determine whether a given stationary component corresponds to a
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Table

List of all Generic Bifurcations

12 [ o end 1--8 1210 ‘ 1210 ‘ £-+13
|
s 2—C
Co@ C—»2C
2C+C Co i 2C->T+2C 2->C C—9C 2C—+T+2C
20~2C
26 | 22 257 ‘ oLg 239 | 211
: @—+T Cc~C
C— C—>T+C C~C C—0¢ C—3C C—2C
C—@
=. :
oL12 | 2312 2214 I 2214 ‘ 34 l 345
C~C o C~C
g:g C—->3C . —-T4+C FT O~ D~
| )
3-8 . 313 i 46 ‘ 4—11 | 5—6 ‘ 57
|
Z~C @—C
i Z—-C Zj—+C
LS - Ko O YRR I
[
514 ‘ 7—8 \ 8—9 _! 9—10 1011 ‘ 10—12
|
I'—-j 20~2C
GC C->2C Cc—>2C
@—C C—o5 2C—2C
=T T—-T 2C~92C 2C—+2C C—03 20C
1213 13—14 ‘ 23
20~2C Ir-T
2 92C—C C— (5
ci—T

torus or to a cylinder in Ag, we have to determine whether this component intersects
the curve D, or not.
The generic bifurcations are studied in a similar way (after going to the limits).
Acknowledgements are due to Emil Horozov for non-formal discussions.
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