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1. Introduction. The central object of the present announcement is the connection
between the asymptotic behaviour of the solutions of a certain type of two-dimensional
systems of ordinary differential equations (ODE) and the existence of rational first
integrals. One of the most successful approaches for the detection of integrability in
the last few years has been the so called singularity analysis (Painlevé method) [&.79].
A system of ODE is said to be of Painlevé type (P-type) or to possess the Painlevé
property if the only movable singularities of its solutions are poles. It turns out that
most of the systems of ODE of P-type are integrable with rational first integrals.
According to recent results of Yoshida [11] if at least one Kowalevski’s exponent of
a similarity invariant system of ODE is not a rational number (and thus the system
is not of P-type) then this system is not algebraically integrable (see [1] for defi-
nitions).

However, if all possible Kowalevski’'s exponents are rational numbers it is still
possible that a system of ODE is not of P-type. We prove that if a two-dimensional
* systems of ODE is not of P-type bzcause the asymptotic expansions around the sin-
gularity contain log (¢) then the system does not possess a rational first integral (Theo-
rem 1 and Theorem 2 of section 3).

in section 2 we formulate two lemmas which connect the integrability of a (n-di-
mensional) system of ODE and the integrability of its reductions — suitable simila-
rity invariant systems of ODE.

2. Meromorphic and Rational First Integrals. Consider the systém of autonomous ODE

@.1) dx;dt=Fys, %3 .0y %), i=1,2,..., 1,

where Fy, Fy, ..., F, are rational functions of x,, x,,..., X, For an arbitrary mono-
mial y= l'I1 xf; let the weighed degree deg(y) of y be % k.8, where g,, g,..,, g,
= i=l1

are rational numbers.
Any analytic function can be represented as a sum of weight-homogeneous po-

lynomials ®= X @, where deg(®,)=i We denote O*=@,, If the above sum is a finite

f==g

one, i. &. &= I @, we denote D=, If d>=51,’52 is a rational (meromorphic) func-

tion we denote ®°=3/P; (O* = ®;/®s). Consider the following two systems of ODE
(2.1% dxfdt=Fi(%y %g..., %), i=1, 2..., n "
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(2'10) dxx’fdf'=F?(x1’ Xgp oo 0 xﬂ)‘ £=1' 2' cean I

Definition. If the system of ODE (2.1%) or (2.1%) is invariant under the similarity
transformation

(2.2) oot ¢, x—~of.x, I=1,2,..5 0

then this system is called reduction of the system (2.1) with respect to the transforma-
tion (2.2).

To check whether the system (2.1) possesses reduction for a given similarity trans-
formation (2.2) it is convenient to substitute (2.2) into (2.1). Thus we obtain the system

(2.3) dx,dt=0o"8 " Fy(af . xy, . ... 05 x,), I= ] 80 b o1

If the system (2.3) reduces to an autonomous system for the limit a—0 (a—ooc) then
the reduced system is (2.1*) ((2.1°)). The last system becomes automatically invariant
under the transformation (2.2) and thus it is reduction of the system (2.1).

As Yoshida [1], § 6, II has noted, there is a connection between the first inte-
grals of the system (2.1) and the first integrals of its reductions — the systems (2.19)
and (2.1%). The following two lemmas constitute the main result of this section.

Lemma 1. If the system (2.1) possesses m rational functionally independent first
integrals then any reduction of the system (2.1) also possesses m rational functionally
independent first integrals.

If we suppose that g, gg ..., &, are positive rational numbers and the system
(2.1%) is reduction of (2.1) then the following (local) version of Lemma 1 holds

Lemma 2. If the system (2.1) possesses m meromorphic functionally independent
first integrals in a neighbourhood of the origine in C" then the system (2.1%) possess-
es m rational functionally independent first integrals.

To prove Lemma 1 we note that if (2.1%) ((2.19) is reduction of (2.1), and @ is
a rational first integral of (2.1), then ®* (®°) is a rational first integral of (2.1%)

(21%). Indeed, if — and 4 are the time derivatives along the phase curves of (2.1)

and (2.1*) respectively, and ‘f;‘:m*aueo then %@*:(—;‘—(D)*EO. In a similar way we prove

that if (2.1%) is reduction of (2.1) then @° is a first integral of (2.1°). To prove tkat the
rational first integrals of (2.1%) or (2.1°) are functionally independent we use the
Ziglin’s algebraic lemma [°], § 12. Lemma 2 is proved along the same lines.

Example. Consider the equations describing the motion of a rigid body about a
fixed point under the action of gravity and gyroscopic forces [2].

24 !.é)=(1m+7«.)><_m+a.e><r
e=eXo,

where ©=(0, @, ®;) is the angular velocity, lo=(Aw,, Bw,, Coy) is the kinetic mo-
mentum, e=(e,, &, €;) is the unit vector along the vertical axes of the inertial frame,
r=(Xp Vo 2o) is the center of mass, & is the mass of the body, 4, B, C are the prin-
cipal moments of inertia and A=Ay, hg Ag) is the gyrostatic moment of intrinsic
cyclic motions in the body (due to symmetric rotors or holes completely filled with

an ideal incompressible fluid). If A=0 we obtain the Euler-Poisson equations [']. Denote
these equations by (2.4°). If deg(o)=1, deg(e)=2,i=1,2, 3, then the system (2.4%
is invariant under similarity transformation (22) and thus it coincides with its
reduction. According to Lemma 2 if the system (2.4°) possesses im first integrals,
meromorphic in a neighbourhood of the origin in C", then it possesses also m rational
first integrals. As the system (2.4°) is rationally integrable (i. e. all first integrals are
rational functions) only in the three well known cases of Euler, Lagrange and Kowa-
levski [!] then it is concluded that the Euler-Poisson equations are meromorphically
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integrable (i. e. the first integrals are meromorphic functions) only in the three cases
mentioned above. A more general result has been shown recently by Ziglin [5]. He
has proved the non-existence of sufficient number meromorphic first integrals for the
system (2.4%) on the invariant hypersurface {e.e=1} (and thus far from the origin in
C?) except in the classical cases of Euler, Lagrange and Kowalevski.

Noting that the system (2.4%) is a reduction of (2.4) we conclude, with the help
of Lemma 1, that the system (2.4) may be rationally integrable only when the corres-
ponding reduction (2.4°) is rationally integrable (see [?] for complete discussion),

3. Logarithmic Singularities and Non-Existence of Rational First Integrals. In what follows
we suppose that the system (2.1°) is reduction of the system (2.1) with respect to the

similarity transformation (2.2) (g;, &, ..., & are rational numbers) and it possesses a
particular solution
(3.1) x1=£‘1.f—g‘, x2=c-3.f_g9, 0wy x,,:(,',,.)f_gﬂ_

After a change of the variables
(3.2) E=le et 0  Ky=load-2) 5.0 =04+ 2) . L 00,

in (2.1) we obtain the following system of ODE for 24, 25, ..., 2,;

(33) b0 s 2y ) I=1,20 00
where Gy, ..., G, are analytic functions with respect to 2y, 25, ..., 2, ¢ in a neigh-

bourhood of the origin in C**'and G, (0,..., 0)=0 fori=1, 2,..., n. According to ['1]
the matrix

aG mn aF? nan
K= (a_z;(ojl . -)0)) 1=(‘E(Cl, 62' sray Cﬂ) +8i.8i)’))

ij= ij=

(8 is the Kronecker delta)
will be called the Kowalevski’'s matrix of the system (2.1). In view of Lemma 1 the
main result of [!] can be formulated in the following way:

Theorem (H. Yoshida ['!], II). If the system of ODE (2.1) is rationally integrable
then every Kowalevski’s exponent (i. e. an eigenvalue of the Kowalevski’s matrix) is a
rational number.

Suppose the Kowalevski's exponents are rational numbers. Let p,, ps..., p, be

k
the positive Kowalevski’s exponents, N= 2 mult(p,) and ¢ is the least common mul-
i=l1

tiple of the denominators of py, py, ..., Pp. '
Lemma 3. Either the system (2.1) possesses a family of solutions of the type

(3.4) x‘.=(c£+§ a,-;.tﬂ‘:').t“gf, i=1,2...05%,
J=1

where the coefficients a,; of the expansion (3.4) depend upon N arbitrary constants
of integration, or the system (2.1) possesses a 1-parameter family of solutions of the

type
(3.5) xf=(c£+ 3 by (atlog t).:ﬁq).rs;, Pt D

such that the coefficients b,; are polynomials of degree j or less in variables (a+log?),
and a is the parameter.

We note that the (formal) asymptotic expansions (3.4) and (3.5) are convergent
for sufficiently small || []]. Till the end of this section the system (2.1) will be a 2-
dimensional one. Suppose that the Kowalevski’s matrix possesses a positive Kowa-
levski’s exponent, Then the following theorem holds
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Theorem 1. If the two-dimensional system of ODE (2.1) possesses a rational first
integral then this system possesses a 1-parameter family of solutions of the type (3.4).

Using Lemma 3 it is not difficult to prove Theorem 1. Indeed, if ® is a rational
first integral of (2.1) but the system does not possess a l-parameter family of solu-
tions (3.4), then there is a 1-parameter family of solutions of the type (3.5). It is clear
that the substitution of this 1-parameter family of solutions into ® must be a function
f(a) of « and f(a)==const. However, if f depends upon a then it has to depend upon
(a4log#) and it is a contradiction ( @ is a first integral).

For the practical use of the above theorem it is convenient to apply the long
known test whether a given system of ODE is of P-type or not (see [f] for example).
However, for our purposes this test has to be slightly modified to include the systems
of the so called ‘weak’ P-type [?] (i. e. movable algebraic points are also allowed).
The last means that besides integer Kowalevski’s exponents rational ones are also pos-
sible. In view of the Yoshida’s theorem and Theorem 1 of the present paper we can
state the following theorem

Theorem 2. If the two-dimensional system of ODE (2.1) does not pass the weak
Painlevé property test [59) then this system does mnot possess a rational first integral.
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