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1 Introduction

Consider a N -parameter analytic family of analytic plane vector fields Xλ, λ ∈
(RN , 0), such that X0 has a k-saddle cycle (a hyperbolic k-graphic) "k , as on
Figure 1. The cyclicity Cycl("k, Xλ) of "k is, roughly speaking, the maximal
number of limit cycles of Xλ which tend to "k as λ → 0. The first results on
the cyclicity of one-saddle connection (also called homoclinic connection) go
back to Andronov and Leontovich in 1937 (but they were published only in
1959 [1]). The cyclicity Cycl("1) has been studied later in full generality by
Roussarie [17, 18], see also [19, 12] for an extensive list of references.
The main technical tool of the Roussarie’s method is an asymptotic expansion

of the Dulac map (transport map near the saddle point)

x → dλ(x)

in terms of xk, xkω(x, ε) where ω(x, ε) is the so called Ecalle-Roussarie com-
pensator

ω(x, ε) = x−ε − 1
ε

, ω(x, 0) = − ln x, x ∈ (R+, 0)
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and ε = ε(λ) is the trace of the vector field Xλ at the saddle point. Let Pλ be the
Poincaré first return map, associated to "1 and Xλ. The most delicate case to be
studied is when "1 is of infinite co-dimension (P0 = id). For λ ∼ 0 the map
Pλ is composed by a Dulac map (near the saddle point) and an analytic map (the
transport map along the homoclinic orbit). The usual derivation-division algo-
rithm then provides an upper bound for the cyclicity in terms of the number of
the coefficients of the asymptotic series of the displacement map Pλ − id , which
vanish as λ = 0. The same method was applied more recently to one-parameter
deformations of Hamiltonian two-saddle loops (called also heteroclinic Hamilto-
nian connections), under the non-generic assumption that one of the separatrices
of "2 remains unbroken [4, 3]. Recall that a k-saddle cycle "k is said to be
Hamiltonian, provided that there is a neighborhood of "k in which X0 allows an
analytic first integral with only Morse critical points.

Figure 1: Hamiltonian k-saddle cycles.

The purpose of the present paper is to extend these results to the case of
an arbitrary analytic perturbation of a Hamiltonian two-loop "2, having two
hyperbolic equilibrium points.
Our approach is different, as we do not use the asymptotic series of the cor-

responding Dulac maps d1λ and d2λ , shown on Figure 4. Recall that in the one-
parameter case λ = ε ∈ (R, 0), the displacement function d1ε − d2ε can be
approximated by an appropriate Abelian integral I (.) (or more generally, an
iterated path integral) depending on a parameter t as follows

d1ε (t) − d2(t)ε = εd I (t) + . . . , ε ∼ 0.

Therefore to count the zeros of d1ε − d2ε (corresponding to limit cycles) it is
enough to count the zeros of I (.), which can be done by making use of the
so called “Petrov trick” (based on the argument principle), see [15] and the
references given there.
The above considerations hold true at least far from the singular points of

the vector field Xλ. As discovered in [4, 3], however, not all limit cycles in a
neighborhood of a two-saddle loop can be approximated in such a way. The
missing “alien” limit cycles are moreover non-avoidable in generic N -parameter
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deformations Xλ with N ≥ 4. For this reason, we apply the argument princi-
ple directly to the displacement map d1ε (.) − d2(.)ε in an appropriate complex
domain, in order to obtain an estimate to the number of its complex zeros (cor-
responding to complex limit cycles).
The main technical result of the paper is Lemma 2, which claims that the zero

locus of the imaginary part of the Dulac map is a real analytic curve of R2 = C
at the origin. This makes possible to investigate the number of the zeros of
the imaginary part of d1λ − d2λ along the zero locus of the imaginary part of d1λ .
Indeed, the intersection numbers of two analytic curves is easily computed. The
proof of our main result, Theorem 1, is then completed by making use of the
Petrov trick.
In the course of the proof of Theorem 1 we assume, for the sake of simplicity,

that our deformations depend on a single small parameter ε. General multi-
parameter deformations λ → Xλ of X0 are then studied along the same lines,
as it follows from the Hironaka’s desingularization theorem. We explain this in
Appendix B.2, see Theorem 4.
Deformations of an arbitrary (possibly non-Hamiltonian) two-loop of infinite

co-dimension (Pλ = id) can be studied in a similar way, and will be considered
in another paper.

2 Description of the result

Let X0 be a real plane vector field. Recall that a polycycle of X0 is a topologi-
cal polygon composed of separatrices and singular points. A k-saddle cycle of
X0 (or a hyperbolic k-graphic) denoted "k , is a polycycle composed of k distinct
saddle-type singular points p1, p2, . . . , pk , pk+1 = p1 and separatrices (hete-
roclinic orbits) connecting pi to pi+1. Let σ be a segment transversal to the
polycycle. The k-saddle cycle is said to be Hamiltonian, provided that X0 has
an analytic first integral f having Morse critical points at pi . It follows that "k
bounds an annulus of periodic orbits {(x, y) : f (x, y) = t}t of X0. Thus, a
Hamiltonian 0-saddle cycle is simply a center, a Hamiltonian 1-saddle cycle is
a homoclinic loop bounding a period annulus, a Hamiltonian 2-saddle cycle is a
double heteroclinic loop bounding a period annulus etc., see Figure 1.
One can find a “tubular neighborhood” U ⊂ C2 ∼= R4 of

"k ⊂
{
(x, y) ∈ R2 : f (x, y) = 0

}

such that

• Ū is compact smooth manifold with a (real three-dimensional) border.
• f is analytic in some neighborhood of Ū

Bull Braz Math Soc, Vol. 42, N. 1, 2011
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• the border ∂Ū is transversal to the complex curves {(x, y) ∈ C2 :
f (x, y) = t}, provided that |t | is sufficiently small.

• the intersection ofU with the singular fiber {(x, y) ∈ C2 : f (x, y) = 0} is
a union of k Riemann surfaces Di , each of them homeomorphic to an open
disc. Di intersects transversally Di+1 at pi , i = 1 . . . k, and Di ∩ Dj = ∅
for |i − j | )= 1.

It follows that
f : U → C

defines a locally trivial fibration over a punctured neighborhood of the origin in
C, and each fiber

Ft = U ∩
{
(x, y) ∈ C2 : f (x, y) = t

}
, t )= 0 (1)

is homeomorphic to a genus one surface with k punctures.
A one-parameter analytic deformation of X0 is a a family Xε of real-analytic

plane vector fields, depending analytically on a real parameter ε ∈ (R, 0), and
defined in a suitable neighborhood of the k-saddle cycle "k . The corresponding
foliation Fε has an extension in a complex domain denoted by the same letter,
and defined by

d f + εωε = 0 (2)
where ωε = P(x, y, ε)dx + Q(x, y, ε)dy is a one-form, and P, Q are real-
analytic in x, y, ε in a neighborhood of "k .
Parameterize the segment σ by the “synchronized” local variable t = f |σ and

let γ (t) ⊂ Ft , t > 0 be the continuous family of periodic orbits of X0 which
tend to the polycycle "k ⊂ F0 as t tends to 0. To the family {γ (t)} we associate
the trivial first return map

P0 : σ → σ, P0 = id
which allows an analytic continuation for ε )= 0 to a first return map

Pε : σ → σ

t *→ Pε(t) = t + εdMd(t) + . . .
(3)

The dots above mean a function in t, ε which, for every fixed t such that Pε(t),
ε ∼ 0 is defined, is of the type 0(εd+1). The so called Poincaré-Pontryagin
function function Md may be explicitly computed, see [16, 5, 6].
More generally, let γ (t) ⊂ Ft be any continuous family of closed loops inter-

secting the cross-section σ . For |ε| sufficiently small we define in a similar way
the holonomy map

hε
γ : σ → σ

Bull Braz Math Soc, Vol. 42, N. 1, 2011
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related to the family of loops {γ (t)}t and the deformed foliation Fε. By analogy
to the Poincaré return map we have

hε
γ (t) = t + εdMd(t) + . . .

hε
γ : σ → σ

t *→ hε
γ (t) = t + εdMd(t) + . . .

(4)

where the meaning of the dots is as before, and the number d depends on {γ (t)}t
and Fε.
The holonomy map hε

γ depends on the choice of σ . In contrast to this, the
Poincaré-Pontryagin function Md does not depend on the cross-section σ , it
depends on the free homotopy class of the loop γ (t) only. Further, it can be
expressed in terms of iterated path integrals of length at most d, along suitable
meromorphic differential one-forms. It satisfies therefore a linear differential
equation which has a Fuchs type singularity at t = 0, see [7, 9]. Thus, the
leading term of Md has the form

t p(log t)q .

where p is an eigenvalue of the indicial equation of the Fuchsian equation related
to the regular singular point t = 0.

Definition 1. We shall call p the characteristic number of the holonomy map
hε

γ and denote
ν
(
hε

γ

)
= p.

In the Hamiltonian case the number ν(Pε) is rational, because the correspond-
ing monodromy operator is quasi-unipotent [10].
To formulate the main result of the paper consider, more specifically, the case

k = 2 (a double heteroclinic loop). As it follows from [9], the function Md is in
fact an Abelian integral and can be written as

Md(t) = 1
td−1

∫

γ0(t)
ω̃

for suitable analytic one-form ω̃.
Let δ1(t), δ2(t) be two continuous families of closed loops vanishing at the

saddle points p1 and p2. We suppose that orientations of the loops “agree” in the
sense that the intersection indices of the homotopy classes of δ1(t), δ2(t) with
the homotopy class of the periodic orbit γ (t) is one and the same.

Bull Braz Math Soc, Vol. 42, N. 1, 2011
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The cyclicity Cycl("2,Fε) of the 2-saddle cycle "2 with respect to the de-
formed foliation Fε is the maximal number of limit cycles which bifurcate from
"2 near ε = 0, see [19] for a precise definition. An upper bound for the cyclicity
Cycl("2,Fε) is given in terms of the characteristic numbers of the holonomies
associated to "2 as follows

Theorem 1.

Cycl
(
"2,Fε

)
≤ 1+ ν

(
Pε

)
+max

{
ν
(
hε

δ1

)
, ν

(
hε

δ2

)}
+ ν

(
hε

δ1
◦ hε

δ2

)
. (5)

It is tempting to conjecture that in general the cyclicity Cycl("2,Fε) is
bounded by a similar expression in terms of the characteristic numbers of the
holonomies associated to "k . Indeed, in the homoclinic case, k = 1, by repeat-
ing the proof of Theorem 1 one obtains

Cycl("1,Fε) ≤ ν(Pε) + ν(hδ1).

We have, typically
Pε(t) = t + εM1(t) + . . .

and if

M1(t) = f1(t) log(t) + f2(t) )≡ 0, f1(t) = O(t p), f2(t) = O(tq)

for some analytic functions f1, f2, then

Cycl("1,Fε) ≤ min{p, q} + q.
By the Roussarie’s theorem [17, Theorem C] the exact upper bound in a real
domain in this case is 2p if p < q , and 2q − 1 if p ≥ q. This suggests
that the bound of Theorem 1 can be improved. In fact, the bound (5) holds
true for the number of complex limit cycles accumulating on "2 in a suitable
neighborhood of it.

Example. Suppose that d = 1 in (3), that is to say M1(t) =
∫
γ (t) ω0 where

{γ (t)}t>0 is the family of real periodic orbits of F0 = {d f = 0}. Then we have
M1(t) =

(
f1(t) + f2(t)

)
log(t) + f3(t)

where the functions f1, f2, f3 are analytic in a neighborhood of t = 0,

f1(t) =
∫

δ1(t)
ω0, f2(t) =

∫

δ2(t)
ω0

hδ1(t) = t + ε f1(t) + . . . , hδ2(t) = t + ε f2(t) + . . .

hδ1 ◦ hδ2(t) = t + ε( f1(t) + f2(t)) + . . .

Bull Braz Math Soc, Vol. 42, N. 1, 2011



“main” — 2011/1/6 — 12:26 — page 7 — #7

HAMILTONIAN TWO-SADDLE CYCLES OF PLANAR VECTOR FIELDS 7

(i) (ii)

Figure 2: The Dulac map.

Suppose further that

f3(t) = O(t p), f1(t) = O(t p1), f2(t) = O(t p2), f1(t) + f2(t) = O(tq).

Theorem 1 implies that the cyclicity of "2 is bounded by

1+min{p, q} +max{p1, p2} + q.

In the case p1 = p2 = q = p for instance, this gives

Cycl("2,Fε) ≤ 1+ 3p.

In this situation, and under the strong hypothesis that one of the connections of
"2 remains unbroken, it has been proved in [4, Theorem 8] that

Cycl("2,Fε) ≤ 2p − 1+ p(p − 1)
2

.

3 The Dulac map

Let Fε be a real analytic foliation defined by (2) in a neighborhood of a hyper-
bolic Morse critical point of the function f . For all sufficiently small |ε| the
foliation Fε has a singular point of saddle type, to which we associate a Dulac
map (or the transitionmap), as on Figure 2 (i). More precisely, for all sufficiently
small |ε| the foliationFε has two separatrix solutions, which are transversal ana-
lytic curves, depending analytically on ε. We may suppose that they are the axes
{x = 0} and {y = 0} as on Figure 2 (ii). Let σ, τ be two complex cross-sections
(complex discs) to the two separatrices, parameterized by z = f |σ and z = f |τ .
In these coordinates the Dulac map is the germ of analytic map

dε :
(
R+

∗ , 0
)

→
(
R+

∗ , 0
)

Bull Braz Math Soc, Vol. 42, N. 1, 2011
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defined as follows: if z ∈ σ ∩ R+
∗ then dε(z) ∈ τ ∩ R+

∗ is the intersection with
τ of the orbit γε(z) of (2), passing through z ∈ σ . This geometric definition
of dε allows to control to a certain extent its analytic continuation in a complex
domain.

3.1 Analytic continuation

The Dulac map is analytic and hence allows an analytic continuation on some
open subset of the universal covering σ• of σ \ {0}. The domain of the continu-
ation depends on ε, and obviously d0(z) ≡ z.
Let us parameterize the universal covering σ• by polar coordinates ρ > 0,

ϕ ∈ R, z = ρ expϕ.

Theorem 2. There exists ε0 > 0 and a continuous function

ρ : R → R+
∗

ϕ *→ ρ(ϕ)

such that the Dulac map allows an analytic continuation in the domain
{
ε, ρ,ϕ) ∈ C× σ• : |ε| < ε0, 0 < ρ < ρ(ϕ)

}
(6)

The proof of the above Theorem in the 0-parameter case is well known, and
in the multi-parameter case it is the same. For convenience of the reader it will
be given in Appendix A. This proof shows even more: the analytic continuation
of the Dulac map in the domain (6) can be accomplished in a geometric way as
follows.
Let {γ0(z)}z , γ0(z) ⊂ Fz be a continuous family of loops connecting σ• to

τ•. For z ∈ σ ∩ R+
∗ we suppose that γ0(z) is the real orbit of d f = 0 contained

in the first quadrant x ≥ 0, y ≥ 0. We note that, although the family {γ0(z)}z is
not unique, the relative homotopy class of each loop γ0(z) is uniquely defined
for all z ∈ σ•. It follows from the proof of Theorem 2 that {γ0(z)}z allows a
deformation to a family of paths {γε(z)}z , connecting σ• to τ•, tangent to the
leaves of Fε, and defined for all ε, z in the domain (6).

3.2 The Poincaré-Pontryagin integral

In what follows a crucial role will be played by the integral
∫
γ0

ω0, and its
generalizations. Namely, let

K ⊂
{
(ρ,ϕ) ∈ σ• : 0 < ρ < ρ(ϕ)

}

Bull Braz Math Soc, Vol. 42, N. 1, 2011
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be a compact set, where ρ(ϕ) is as in Theorem 2. As
∫
γε(z) ωε is continuous in

z, ε and
dε(z) − z =

∫

γε(z)
d f = ε

∫

γε(z)
ωε

then the following Lemma holds

Lemma 1 (Pontryagin [16]).

dε(z) = z + ε

∫

γ0(z)
ω0 + O(ε2) (7)

uniformly in z ∈ K .
The function

∫
γ0(z) ω0 is the so called Poincaré-Pontryagin integral associ-

ated to the deformed foliation Fε. It follows from the argument principle that,
that if |ε| is sufficiently small, the number of the zeros of dε(z) − z in the
compact K is bounded by the number of the zeros of the Poincaré-Pontryagin
integral

∫
γ0(z) ω0 in K (counted with multiplicity). It might happen, however,

that the Poincaré-Pontryagin integral vanishes identically. In all cases there is
an integer d ≥ 1 and an analytic function Md )= 0 in a neighborhood of K ,
such that

dε(z) = z + εdMd(z) + O
(
εd+1

)
(8)

uniformly in z ∈ K , provided that the Dulac map is not the identity map. Md
is the so called higher order Poincaré-Pontryagin function and its zeros in K
bound as before the number of the zeros of dε(z) − z. As we already mentioned
in section 2, there is an integral representation for Md as an iterated integral of
length at most d along γ0(z).
Our aim is to obtain a bound for the zeros of dε(z)− z in a domain K which is

open and connected. Even if the estimate (7), (8) do allow an extension to such
a domain K , the argument principle can not be directly used. For this purpose
we consider rather the imaginary part of the Dulac map.

3.3 The zero locus of the imaginary part of the Dulac map

We shall describe the zero locus of the imaginary part of the Dulac map dε in an
appropriate sector

Hε =
{
z ∈ C : Im dε(z) = 0

}
∩D (9)

D =
{
0 < ρ < ρ(ϕ), 0 < ϕ <

3π
2

}
.

Bull Braz Math Soc, Vol. 42, N. 1, 2011
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The surprising fact about Hε is that it is a smooth real-analytic plane curve in
D ⊂ R2 = C. Even better, the curveHε can be conveniently approximated in
terms of higher order Poincaré-Pontryagin functions.
The foliation F0 has a first integral defining a fibration with fibers Ft , see (1).

Let δ(t) ⊂ Ft be a continuous family of closed loops δ(t) ⊂ Ft vanishing at
the saddle point when t tends to 0. The orientation of δ(t) is chosen as follows.
Let γ0(t) be the family of loops defined in the Appendix A. For real positive t
they coincide with real orbits of F0 connecting σ+ to τ+. Then, the homotopy
classes of γ0, δ satisfy

γ0
(
teiπ

)
− γ0

(
te−iπ

)
= δ(t). (10)

Therefore, the exact orientation of δ(t) can be computed by the Picard-Lefs-
chetz formula (but we do not need this).
Let τ be, as before, a cross section to the fiber F0, see Figure 2. Consider

the holonomy map hε
δ associated to the family {δ(t)}t and to the deformed

foliation Fε

hε
δ : τ → τ

z *→ z + εdMd(z) + . . .
(11)

The anti-holomorphic involution

(x, y) *→ (x̄, ȳ)

induces, for t ∈ R an anti-holomorphic involution

Ft → Ft

which on its turn sends the free homotopy class of the loop δ(t) to the class of
−δ(t). Therefore the function Md is pure imaginary for real values of t .

Lemma 2. The zero locus Hε of the imaginary part of the Dulac map is a
smooth real-analytic curve of R2 = C of the form

Hε =
{
z = u + iv : v = εd

2i
Md(u) + εd+1R(u, ε), u < 0

}
∩D (12)

where R(u, ε) is an analytic function.
The above Lemma is the main technical result of the present paper. The

analyticity of the zero locusHε is responsible for the algebraic-like behavior of
the Dulac map.

Bull Braz Math Soc, Vol. 42, N. 1, 2011
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Im(dε(z) = 0

σ+

τ+τ−

σ−

dε

Figure 3: The zero locus of the imaginary part of the Dulac map.

Proof of Lemma 2. Consider the cross-sections (complex discs transversal to
the separatrices) σ±, τ± as shown on Figure 3, simultaneously parameterized as
before by the restriction z of the first integral f (x, y) on them. The cross-sections
σ, τ shown on Figure 2 are denoted, from now on, by σ+, τ+. Denote

σ+
≥0 = σ+ ∩ {(x, y) : f (x, y) ≥ 0}, σ+

≤0 = σ+ ∩ {(x, y) : f (x, y) ≤ 0} etc.
Let {γε(z)}z be the continuous family of paths, defined in Appendix A. The point
z ∈ σ+ belongs to the zero locus Hε if and only if the end of the path γε(z)
belongs to τ+

<0. Therefore, such a path allows a decomposition in a product

γε(z) = αε(z) ◦ βε(z)

where αε(z) is a path connecting z ∈ σ+ to a point on σ−
<0 and βε(z) is a path

connecting the latter point to a point on τ+
<0, where βε(z) ⊂ R2. It follows that

Hε is the image of σ−
<0 under the holonomy map

hε

α−1
0

: σ−
<0 → σ+.

This already proves that the closure of Hε ⊂ R2 is a smooth analytic curve.
Once having said this, it is clear that Hε can be conveniently parameterized,
which we do next.

Bull Braz Math Soc, Vol. 42, N. 1, 2011
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To prove (12), let us note that for t ∈ R the two ends of the loop α0(t) are real
and hence this also holds true for the complex-conjugate loop α0(t). The loop
α0(t) ◦ α−1

0 (t) is therefore closed and is homotopic to δ(t) ⊂ Ft defined above.
More explicitely

2iv = hε

α−1
0

(t) − hε

α−1
0

(t)

= hε

α−1
0

(t) − hε

α−1
0

(t)

=
(
hε

α−1
0

◦ hε
α0

− id
)

◦ hε

α−1
0

(t)

=
(
hε

α−1
0 ◦α0

− id
)

◦ hε

α−1
0

(t)

=
(
hε

δ − id
)
◦ hε

α−1
0

(t).

This, together with (11) and

hε

α−1
0

(t) = t + O(ε), hε

α−1
0

(t) = t + O(ε)

implies

u = t + O(ε)

v = εd

2i
(
Md(t) + O(ε)

)

where, by abuse of notation, O(ε) means a function analytic in t, ε, which
vanishes identically for ε = 0. This proves the identity (9). !

4 Cyclicity of two-saddle cycles

In this section we prove Theorem 1. Using the notations introduced in section 2,
we suppose that the vector field X0 has a two-saddle loop "2 and an analytic first
integral f in a neighborhood of it. We suppose that f has Morse critical points
at the two saddle points p1, p2 of X0. Consider the Dulac maps d1ε , d2ε associated
to the corresponding foliation, see Figure 4. Each map diε is a composition of
a “local” Dulac map (as in section 3) and two holomorphic holonomy maps.
From this it follows that Lemma 2 applies to diε, i = 1, 2, too. We parameterize
each cross-section by the restriction z of f on it. The function diε, i = 1, 2, is
multivalued and has a critical point at si (ε) ∈ R, si (0) = 0. The functions si
are real analytic. We consider first the case ε > 0 and we may suppose that
si (0) = 0, s1(ε) < s2(ε) for all sufficiently small ε, (the case ε < 0 is studied in

Bull Braz Math Soc, Vol. 42, N. 1, 2011
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Figure 4: The Dulac maps d1ε and d2ε .

the same way). Our aim is to bound the number of those zeros of the displace-
ment map d1ε − d2ε which are real, bigger than s2(ε) and tend to 0 as ε tends to 0.
Note that these zeros correspond to the fixed points of the Poincaré first return
map Pε. Indeed,

d1ε − d2ε = d2ε ◦ ((Pε − id), where d20 = id. (13)

We shall count the zeros of the displacement map in the larger complex domain
Dε of the universal covering of C \ {s1(ε)} defined as follows. It is bounded by
the circle

SR = {z : |z| = R}, (14)

by the interval [s1(ε), s2(ε)], and by the zero locus of the imaginary part of
the Dulac map d1ε for 0(z) < s1(ε), as it is shown on Figure 5. The numbers
ε, R are subject to certain conditions explained bellow. The zeros of an analytic
function in a complex domain equal the increase of the argument of the func-
tion along the border of the domain, divided by 2π (the argument principle).
To bound the increase of the argument we shall count the number of the zeros of
the imaginary part of the function, along the border of the domain.
Choose first the real numbers ε0, R > 0 as follows. Let

d1ε (z) − d2ε (z) = εdMd(z) + 0
(
εd+1

)

and let zν(log z)µ be the leading term of Md(z). Then, by (13), ν = ν(Pε) is
the characteristic number of the Poincaré map Pε associated to "2. We choose
R > 0 so small, that the increase of the argument of Md(z) along the circle SR
is sufficiently close to the increase of the argument of zν(log z)µ along SR . We
fix R and choose ε0 > 0 so small with respect to R, that for all ε, |ε| < ε0,
the increase of the argument of d1ε (z) − d2ε (z) along the circle SR is sufficiently
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Figure 5: The domainDε.

close to the increase of the argument of Md(z) along SR . This is indeed pos-
sible, according to Lemma 7. The conditions that we impose on ε0, ε and R
will be denoted (by abuse of notations) as follows

1 >> R >> ε0 > ε > 0.

To evaluate the increase of the argument of d1ε (z) − d2ε (z) along the inter-
val [s1(ε), s2(ε)], we bound the zeros of its imaginary part which equals (along
the interval [s1(ε), s2(ε)]) to the imaginary part of −d2ε (z). In other words, we
need to estimate the number of intersection points (counted with multiplicity)
between the zero locus of the imaginary part of d2ε (z) and [s1(ε), s2(ε)]. Accord-
ing to Lemma 2 this number of intersection points is bounded by the multiplicity
of the zero at the origin of the Poincaré-Pontryagin function of the holonomy
map hε

δ2
. This multiplicity equals ν(hε

δ2
).

Finally, we arrive at the most delicate point in the proof of Theorem 1: eval-
uate the increase of the argument of d1ε (z) − d2ε (z) along the zero locus of the
imaginary part of the Dulac map d1ε for 0(z) < s1(ε). For this purpose we
bound the zeros of the imaginary part Im (d1ε (z) − d2ε (z)), along the zero lo-
cus of Im d2ε (z). Thus, we need to estimate the number of intersection points
(counted with multiplicity) between the zero locus of the imaginary part of
d2ε (z), and the zero locus of the imaginary part of d1ε (z).
Recall that to a Dulac map diε we associated a family of vanishing loops

δi (z) with orientation prescribed by (10). With this convention, the orienta-
tion of the loops δ1 and δ2 do not agree: if γ (t) is the family of periodic or-
bits of F0 for t > 0, then the intersection indices of the homotopy classes of
δ1(t), δ2(t) with γ (t) have opposite signs. In order to have the same convention

Bull Braz Math Soc, Vol. 42, N. 1, 2011
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as in the formulation of Theorem 1 we reverse the orientation of δ2. With this
convention if

hε
δi

: z *→ z + εd
i Mi

d(z) + . . . (15)

then, by Lemma 2, the zero locus of the imaginary part of the holonomy maps
hε

δ1
, hε

δ2
is given by

{

z = u + iv : v = εd
1

2i
Md1(u) + εd

1+1R1(u, ε), u < 0

}

∩D (16)

{

z = u + iv : v = −εd
2

2i
Md2(u) + εd

2+1R2(u, ε), u < 0

}

∩D (17)

respectively, where R1, R2 are appropriate analytic functions.
We conclude that the number of intersection points of the above analytic

curves coincides with the multiplicity of the zero at the origin of either Md1
(if d1 < d2), or Md2 (if d2 < d1), or Md1 + Md2 (if d1 = d2). The number of
intersection points equals therefore to the characteristic number ν(hε

δ1
◦ hε

δ2
).

Summing up the above information we get that the increase of the argument
of d1ε (z) − d2ε (z) along the boundary of the complex domain Dε is not bigger
than

ν(Pε) + ν
(
hε

δ2

)
+ ν

(
hε

δ1
◦ hε

δ2

)
+ 2.

The above estimate can be slightly improved, by taking into consideration the
fact that the imaginary part of d1ε (z) − d2ε (z) vanishes at s2(ε). Theorem 1 is
proved. !

A Proof of Theorem 2

In this appendix we will prove Theorem 2 in the slightly more general context of
multi-parameter analytic deformations. This will be used in Appendix B. Note
that the zero-parameter case is well known [13, 19].
Consider a N -parameter analytic family of analytic plane vector fields Xλ,

λ ∈ (RN , 0), such that X0 has a hyperbolic singular point at the origin. It is
known, since Briot and Bouquet, that X0 has two transversal invariant analytic
curves which can be supposed to coincide with the axes x = 0 and y = 0, that
is to say

X0 = λ1x(1+ . . .)
∂

∂x
+ λ2y(1+ . . .)

∂

∂y
, λ1λ2 < 0.
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l(z)

0 1

z

Figure 6: The path l(z).

The proof is as follows: a formal change of the variables first removes some
(but not all) non-resonant terms, and then one verifies the convergency of the
transformation, see [14, Appendice II]. Exactly the same proof applies, however,
to the family Xλ. One can show in this way that Xλ is analytically orbitally
equivalent to the following (slightly improved) normal form

x
∂

∂x
+ y(r + xy.a) ∂

∂y
(18)

where r = r(λ), a = a(x, y, λ) are appropriate analytic functions in their
arguments, r(0) < 0, see [18, Appendice 1]. We shall suppose, without loss of
generality, that there exists a constant c > 0 such that r, a are analytic in the
complex domain

Dc = {x, y, λ) : |x | < 2, |y| < 2, |λ| < c}.
After a further linear re-scaling of x, y, we may suppose that |a(x, y, λ)| is so
small inDc, that

r(λ) + xy.a(x, y, λ) )= 0 .

After this preparation, choose the cross-sections

σ = {y = 1}, τ = {x = 1}
and consider the corresponding Dulac map

dλ : σ → τ

z *→ dλ(z) .

To prove Theorem 2 we have to show that the constant c > 0 can be chosen in
such a way, that for every ϕ0 > 0 there exists 0 < z0 < 1, such that the Dulac
map allows an analytic continuation in the sector

{z ∈ C : |z| < z0, |arg(z)| < ϕ0} × {λ : |λ| < c}.
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Figure 7: The path γλ(z).

The proof is similar to the proof of [19, Theorem 7], the only difference being
the presence of the parameter λ. We shall construct a continuous family of
paths γλ(z) contained in the leaves of the foliation Fλ defined by the vector field
Xλ in C2. Each path γλ(z) starts at the point (x = z, y = 1) and ends at the
point (x = 1, y = dλ(z). The path γλ(z) is constructed by lifting the path l(z)
contained in the x-plane {y = 0} and shown on Figure 6, with respect to the
projection

π : C2 → C
(x, y) *→ x

Indeed, the foliationFλ is transversal to the projection π except along the leaf
x = 0, provided that r + xy.a )= 0. The resulting path path γλ(z) is shown on
Figure 7.
To prove the existence of γλ(z), consider the solution y = y(x) associated to

the vector field Xλ, with initial condition y(z) = 1. We have to show that the
solution y = y(x) exists when x is restricted to the path l(z). The path l(z) is
composed by an arc and a segment. We consider them separately

• Along the arc
x = |z|eiϕ, y = 0, 0 < ϕ < arg(z)

Bull Braz Math Soc, Vol. 42, N. 1, 2011
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parameterized by ϕ we have

dy = −y(r + |z|eiϕ y.a)dϕ
d|y| = −|y|.|z|Im (eiϕ y.a)dϕ.

Therefore, if |z| < z0 is sufficiently small, then |y(|z|eiϕ)| < 2 when
0 < ϕ < arg(z)

• Along the segment
x ∈ [|z|, 1]

we have similarly

xdy = −y(r + xy.a)dx
xd|y| = −|y|(r + 0(xy.a))dx .

The derivative d|y|dx is therefore negative, the function |y|(x) decreasing, so
|y|(x) < 1. !

B Multi-parameter deformations of Hamiltonian two-saddle loops

Consider, as in the preceding Appendix, a N -parameter analytic family of ana-
lytic plane vector fields Xλ, λ ∈ (RN , 0). We suppose that X0 has a Hamiltonian
two-saddle loop "2 bounding a period annulus. This case is easily reduced to
the one-parameter case studied in the present paper by making use of a standard
procedure based on the Hironaka desingularization theorem. In this Appendix
we indicate the main steps.

B.1 Principalization of the Bautin ideal

In this section we follow [8, 20]. Let z0 ∈ σ , z0 )∈ "2 and consider the Poincaré
map

Pλ(z) = z +
∞∑

i=1
ai (λ)(z − z0)i .

The Bautin ideal, associated to Pλ, is the ideal I =< ai >, generated by the
germs of the analytic coefficients ai (.). It is Noetherian, so generated by a finite
number of coefficients, and moreover does not depend on the choice of z0 [19].
More generally, let {γ (z)} be any continuous family of closed loops in the fibers
of the foliation F0, intersecting the cross-section σ . For all sufficiently small λ
the (germ of) holonomy map

hλ
γ : σ → σ
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is defined. In the same way, we associate to hλ
γ (z) a Bautin ideal, generated by

the coefficients ai (λ) of the expansion of hλ
γ (z)with respect to z− z0. As before

it is Noetherian, and does not depend on the choice of z0 (with the same proof).
We may assume, without any loss of generality, that the Bautin ideal is princi-

pal. For this we use a variant of Hironaka’s desingularization theorem as follows.
Let ϕ0,ϕ1, . . . ,ϕp be non-zero analytic functions on a smooth complex or real

analytic variety X . The indeterminacy points of the rational map

ϕ : X ""# Pp

can be eliminated as follows [11, 2]

Theorem 3 (Hironaka desingularization). There exists a smooth analytic
variety X̃ and a proper analytic map π : X̃ → X such that the induced map
ϕ̃ = ϕ ◦ π is analytic.

X̃
π

ϕ̃

X
ϕ

Pp

Let OX be the sheaf of analytic functions on X and consider the ideal sheaf
I ⊂ OX generated by ϕ0,ϕ1, . . . ,ϕp. The inverse image ideal sheaf of I under
the map π : X̃ → X will be denoted π∗ I . This is the ideal sheaf generated
by the pull-backs of local sections of I . We note that π∗ I may differ from
the usual sheaf-theoretic pull-back, also commonly denoted by π∗ I . A simple
consequence of Theorem 3 is the following

Corollary 1. The inverse image ideal sheaf π∗ I is principal.

This is called the principalization of I . Indeed, as the induced map ϕ̃ is
analytic, then for every λ̃ ∈ X̃ there exists j , such that the functions ϕ̃i/ϕ̃ j ,
i = 1, 2, . . . , p, are analytic in a neighborhood of λ̃. Therefore there is a neigh-
borhood Ũ of λ̃ such that ϕ̃ j |Ũ divides ϕ̃i |Ũ in the ring of sections OŨ of the
sheaf OX̃ , that is to say IŨ is generated by ϕ̃ j |Ũ .
In our context X = σ is the cross-section to the family of periodic orbits

{γ (z)} and ϕ0,ϕ1, . . . ,ϕp are the germs of analytic functions which generate the
Bautin ideal associated to the holonomymap hλ

γ . To apply Theorem 3we assume
that σ is a polydisc on which ϕi are analytic, and the divisors (ϕi ) intersect
transversally the boundary of σ . After applying the Hironaka’s theorem, the
origin 0 of σ is replaced by a compact divisor π−1(0), along which the inverse
image ideal sheaf π∗ I is principal.
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Suppose now that we have a holonomy map hλ
δ associated to another family

of periodic orbits δ(t). Let ψ0,ψ1, . . . ,ψq be generators of the corresponding
Bautin ideal J . As before we assume that ψi are analytic on σ , with divisors
transversal to its boundary. Applying twice the Hironaka’s theorem we get
a new analytic variety smooth analytic variety X̃ and a proper analytic map
π : X̃ → X such that the induced maps ϕ̃ = ϕ ◦ π and ψ̃ = ψ ◦ π are analytic,
see diagram (19).

X̃
ψ̃

π
ϕ̃

Pq X
ψ ϕ

Pp

(19)

The inverse image ideal sheaf π∗ I and π∗ J are both principal along the com-
pact divisor π−1(0).

B.2 Multi-parameter version of Theorem 1

We begin by formulating the multi-parameter version of Lemma 2, let {δ(t)}
be the family of vanishing loops defined in section 3.3. In agreement with the
preceding section, let us suppose that the Bautin ideal of the holonomy map hλ

δ

is principal. We have, therefore (compare to (11)

hλ
δ : τ → τ

z *→ z + ϕ̃(λ)(M̃(z) + R̃(z, λ))
(20)

where R̃(., .) is analytic, R̃(z, 0) = 0, and M̃(.) is the highest order Poincaré-
Pontryagin function.

Lemma 3. The zero locus Hε of the imaginary part of the Dulac map is a
smooth real-analytic curve of R2 = C of the form

Hλ =
{
z = u + iv : v = ϕ̃(λ)

2i
(M̃(u) + R(u, λ)), u < 0

}
∩D (21)

where R(u, λ) is an analytic function, R(u, 0) = 0.

The proof of the above Lemma is completely analogous to that of Lemma 2
and is therefore omitted.
In the proof of Theorem 1 we used four Bautin ideals associated to the holon-

omy maps
Pλ = hλ

γ , hλ
δ1
, hλ

δ2
, hλ

δ1
◦ hλ

δ2
(22)

Bull Braz Math Soc, Vol. 42, N. 1, 2011



“main” — 2011/1/6 — 12:26 — page 21 — #21

HAMILTONIAN TWO-SADDLE CYCLES OF PLANAR VECTOR FIELDS 21

where {γ (z)} is the family of periodic orbits associated to the annulus, {δ1(z)},
{δ2(z)} are the vanishing families of loops associated to the saddle points. After
an appropriate blow up π we may suppose that the inverse image ideal sheafs
of the corresponding four Bautin ideals are principal along the compact divisor
π−1(0) ⊂ X̃ , see section B.1. Let λ̃ be a local variable on the smooth variety
X̃ . The cyclicity Cycl("2, (Fλ̃,Fλ̃0

)) is the maximal number of limit cycles
which Fλ̃ can have in an arbitrarily small neighborhood of "2, when λ̃ tends to
λ̃0. Denote also

Cycl("2,Fλ) = Cycl("2, (Fλ,F0).
Clearly

Cycl("2,Fλ) = sup
λ̃∈π−1(0)

Cycl("2, (Fλ̃,Fλ̃0
))

and because of the compactness of π−1(0), there exists λ̃0 ∈ π−1(0) such that

Cycl("2,Fλ) = Cycl("2, (Fλ̃,Fλ̃0
)).

The above considerations show that, without any harm, we may suppose that
X̃ = σ , λ = λ̃, λ̃0 = 0, and the Bautin ideals associated to the holonomies
(22) are principal. Consider the circle SR defined in (14). The Bautin ideal of
the Poincaré map Pλ coincides with the Bautin ideal of the displacement map
d1λ − d2λ and

d1λ(z) − d2λ(z) = ϕ(λ)(M(z) + R(z, λ))

where ϕ is the generator of the Bautin ideal, R is analytic, R(z, 0) = 0, and
M(z) is the Poincaré-Pontryagin function. As before M satisfies a Fuchs equa-
tion with a singularity at z = 0. We choose R so small, that the increase of
the argument of M(z) along SR , arg(z) < π is close to the increase of the ar-
gument of the leading term of M . We note that if zν(log(z))µ is the leading
term of M , then

ν = ν(Pλ(ε))

where ε → λ(ε) is a one-parameter deformation (a specialization), such that
ϕ(λ(.)) )= 0. We fix R and choose ε0 > 0 so small, that for all λ, such that
|λ| < ε0, the increase of the argument of the displacement map d1λ(z) − d2λ(z)
along SR , arg(z) < π , is close to the increase of the argument of M(z). By
making use of Lemma 3, the proof of Theorem 1 is completed as in section 4.
Note that the characteristic numbers which appear in the estimate of the cyclicity
may be obtained as characteristic numbers corresponding to a one-parameter
analytic deformation Fλ(ε) of F0

ε → λ(ε), λ(0) = 0, lim λ̃(ε) = λ̃0
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provided that the generators of the Bautin ideals do not vanish identically along
this deformation. Therefore, a multi-parameter version of Theorem 1 can be
formulated as follows

Theorem 4. There exists a germ of analytic curve ε → λ(ε), λ(0) = 0 in the
parameter space, such that

Cycl("2,Fλ) ≤ 1+ ν(Pλ(ε))

+max
{
ν(hλ(ε)

δ1
), ν(hλ(ε)

δ2
)
}

+ ν
(
hλ(ε)

δ1
◦ hλ(ε)

δ2

)
.

(23)
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